JP6274347B1 - Deep layer processing equipment using internal pressure relief blades - Google Patents

Deep layer processing equipment using internal pressure relief blades Download PDF

Info

Publication number
JP6274347B1
JP6274347B1 JP2017130225A JP2017130225A JP6274347B1 JP 6274347 B1 JP6274347 B1 JP 6274347B1 JP 2017130225 A JP2017130225 A JP 2017130225A JP 2017130225 A JP2017130225 A JP 2017130225A JP 6274347 B1 JP6274347 B1 JP 6274347B1
Authority
JP
Japan
Prior art keywords
blade
internal pressure
rotating shaft
pressure relief
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017130225A
Other languages
Japanese (ja)
Other versions
JP2018178689A (en
Inventor
野元 義一
義一 野元
幸男 遠西
幸男 遠西
幸彦 徳永
幸彦 徳永
大西 常康
常康 大西
廣渡 智晶
智晶 廣渡
博文 田口
博文 田口
滋 久保
滋 久保
大古利 勝己
勝己 大古利
倫嗣 松井
倫嗣 松井
喜代孝 大野
喜代孝 大野
学 ▲高▼橋
学 ▲高▼橋
理 坪内
理 坪内
隆之 篠井
隆之 篠井
勉 横井
勉 横井
康司 長崎
康司 長崎
尚史 細見
尚史 細見
俊郎 原
俊郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Nittoc Constructions Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Shimizu Corp
Aomi Construction Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Toa Corp
Penta Ocean Construction Co Ltd
Nittoc Constructions Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Toyo Construction Co Ltd
Shimizu Corp
Aomi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd, Toa Corp, Penta Ocean Construction Co Ltd, Nittoc Constructions Co Ltd, Takenaka Civil Engineering and Construction Co Ltd, Toyo Construction Co Ltd, Shimizu Corp, Aomi Construction Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2017130225A priority Critical patent/JP6274347B1/en
Application granted granted Critical
Publication of JP6274347B1 publication Critical patent/JP6274347B1/en
Publication of JP2018178689A publication Critical patent/JP2018178689A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】回転軸に掛かる土圧を緩和する多段の内圧緩和翼を用いた深層混合処理装置を提供する。【解決手段】深層混合処理装置において、回転軸14における撹拌翼16の上部に、前記回転軸14の周りの地盤10をほぐして前記回転軸14に掛かる土圧を緩和する多段の内圧緩和翼22を、その幅方向が前記回転軸14の軸方向と略一致して設け、この内圧緩和翼22は、L≦a+2b、a≧β/α、D/4≦b≦D/2を満足するように構成する。D:回転軸14の直径、a:内圧緩和翼22の幅、b:内圧緩和翼22の長さ、L:内圧緩和翼22の取り付け間隔、β:回転軸14の単位時間当たりの貫入速度、α:回転軸14の単位時間当たりの回転数とする。【選択図】図1Disclosed is a deep mixing processing apparatus using multistage internal pressure relief blades that relieve earth pressure applied to a rotating shaft. In a deep mixing apparatus, a multi-stage internal pressure relief blade (22) that loosens a ground (10) around the rotation shaft (14) and relieves earth pressure applied to the rotation shaft (14) above an agitating blade (16) on the rotation shaft (14). Is provided so that the width direction thereof substantially coincides with the axial direction of the rotary shaft 14, and the internal pressure relief blade 22 satisfies L ≦ a + 2b, a ≧ β / α, and D / 4 ≦ b ≦ D / 2. Configure. D: Diameter of the rotating shaft 14, a: Width of the inner pressure relaxing blade 22, b: Length of the inner pressure relaxing blade 22, L: Installation interval of the inner pressure relaxing blade 22, β: Penetration speed per unit time of the rotating shaft 14, α: The number of rotations of the rotating shaft 14 per unit time. [Selection] Figure 1

Description

本発明は、砂質土、シルト質粘土等の軟弱地盤中にスラリー状のセメント系改良材を注入し、原位置で大口径の攪拌翼で攪拌混合して改良地盤を形成する深層混合処理装置において、回転軸の周りの地盤をほぐして回転軸に掛かる土圧を緩和する内圧緩和翼を用いた深層混合処理装置に関するものである。   The present invention is a deep mixing treatment apparatus for injecting a slurry-like cement-based improving material into soft ground such as sandy soil, silty clay, etc., and stirring and mixing with a large-diameter stirring blade in situ to form an improved ground The present invention relates to a deep mixing treatment apparatus using an internal pressure relief blade that loosens the ground around the rotation axis and relieves earth pressure applied to the rotation axis.

CDM(登録商標)工法に代表される深層混合処理工法(スラリー式機械攪拌工法)は、主に軟弱地盤を対象として圧密沈下防止や変形防止のための地盤改良工法であり、所定のスラリーの注入と撹拌軸の1m当りの攪拌回数の基準を満足すれば必要な設計強度の改良地盤を得ることができる。
近年、この工法は、阪神、北越、東日本等の大震災の後、防災対策や地震対策として利用されることが多く、また、エネルギー関連施設や港湾施設において、地盤、杭、構造物の連成系耐震補強及び砂地盤を対象に改良強度3.0〜5.0MN/m2程度の比較的高強度の地盤改良工法として採用されるケースが増えている。
The deep mixing process method (slurry type mechanical stirring method) represented by the CDM (registered trademark) method is a ground improvement method mainly for soft ground to prevent consolidation settlement and deformation prevention. If the standard of the number of stirrings per 1 m of the stirring shaft is satisfied, an improved ground having the required design strength can be obtained.
In recent years, this method has often been used as a disaster prevention measure and earthquake countermeasure after major earthquakes such as Hanshin, Hokuetsu, and East Japan. In addition, ground, piles, and structures are coupled in energy-related facilities and port facilities. An increasing number of cases are being adopted as a relatively high-strength ground improvement method with an improved strength of about 3.0 to 5.0 MN / m 2 for seismic reinforcement and sand ground.

現状は、大口径化や多軸化してコストを優先する工法や、高圧噴射、特殊噴射と機械攪拌の組み合わせに特化した工法等がある。これらは、機械装備優先型の工法であるため、従来からあるスラリー式機械攪拌工法とは設備構成が異なり、従来工法との汎用性が少ない。また、機械装置・機械構成に特化しているので特定の地盤を対象としている場合が多い。   At present, there are methods that give priority to cost by increasing the diameter and number of axes, and methods that specialize in the combination of high-pressure injection, special injection, and mechanical stirring. These are mechanical equipment-prioritized construction methods, so the equipment configuration is different from the conventional slurry-type mechanical stirring method, and the versatility with the conventional method is low. Also, since it specializes in mechanical devices and machine configurations, it is often targeted for a specific ground.

陸上工事における深層混合処理工法の1軸式又は2軸式攪拌翼の直径は、φ1,000mmからφ1,300mmへと拡大してきたが、さらに大口径(たとえば、φ1,600mm)にすることにより、より経済的に優れた深層混合処理工法を提供すべく大口径深層混合処理工法の確立が望まれていた。   The diameter of the uniaxial or biaxial agitator blade of the deep mixing treatment method in land construction has been expanded from φ1,000 mm to φ1,300 mm, but by further increasing the diameter (for example, φ1,600 mm), In order to provide a more economically superior deep mixing method, it has been desired to establish a large-diameter deep layer processing method.

大口径深層混合処理工法は、対象地盤が洪積粘性土層や硬質砂層などの施工深度が深い場合には、処理機の重量が摩擦により低減し徐々に貫入能力が低下し施工不能になるケースがある。一般に、硬質地盤への対応としては、処理機のモーターを大きくすることにより貫入能力を大きくしており、現有の最大能力90kw〜120kwの処理機を使用し、刃先先端部には掘削ビットを使用し掘削能力を上げている。   The large-diameter deep-bed mixing method is a case where when the target ground has a deep construction depth such as a piled clay soil layer or hard sand layer, the weight of the processing machine is reduced by friction and the penetration capacity gradually decreases, making the construction impossible. There is. In general, to cope with hard ground, the penetration capacity is increased by enlarging the motor of the processing machine, the existing maximum processing capacity of 90 kW to 120 kW is used, and a drill bit is used at the tip of the cutting edge The drilling capacity is increased.

また、土粒子が細かく粘性が非常に強い地盤などの攪拌混合しにくい土などの場合には、セメントスラリーを注入し攪拌混合しても混合物が攪拌羽根の周りで団子状になり、共回り現象を起こし、充分に混ざらないケースがある。その場合には、水セメント比(以下W/Cという)を極端に大きくする場合があるが、セメントスラリーが材料分離を起こす問題があり、目標とする強度を得るために、セメント添加量を大幅に多くした施工を余儀なくされ、セメントスラリーが土中に充分に入りきらず、上方に溢れ出すなどの施工上の支障をきたす。このような施工において、施工能率の低下や材料のロスを少なくし、攪拌翼の破損、貫入不能・引き抜き不能などのトラブルの発生を可能な限り防ぐ施工法が必要であった。   In addition, in the case of soil that is difficult to stir and mix, such as the ground where the soil particles are fine and the viscosity is very strong, even if cement slurry is poured and stirred, the mixture becomes dumped around the stirring blades, causing a co-rotation phenomenon There is a case that does not mix well. In that case, the water-cement ratio (hereinafter referred to as W / C) may be extremely increased, but there is a problem that the cement slurry causes material separation, and the amount of cement added is greatly increased in order to obtain the target strength. Therefore, the construction is forced to be excessively large, and the cement slurry does not sufficiently enter the soil, causing problems in construction such as overflowing upward. In such construction, there has been a need for a construction method that reduces the reduction in construction efficiency and material loss, and prevents the occurrence of troubles such as breakage of the stirring blade, impenetrability, and inability to pull out as much as possible.

一般に硬質地盤での施工は、施工能率の低下や材料のロスが多くなり、処理機の破損や攪拌翼の破損、貫入不能・引き抜き不能などのトラブルが発生している。硬質地盤に充分に対応できる大口径深層混合処理工法の施工方法の確立は必須であり、回転軸を回転するための駆動部に大きな抵抗がかかり施工不能を来すことが生じるのを防がなければならない。   In general, construction on hard ground causes a decrease in construction efficiency and material loss, and troubles such as breakage of the processing machine, breakage of the stirring blade, impenetrability, and inability to pull out have occurred. It is essential to establish a construction method for large-diameter, deep-layer mixing method that can sufficiently handle hard ground, and it is necessary to prevent the drive part for rotating the rotating shaft from becoming too resistant and causing construction failure. I must.

特許文献1及び2には、攪拌翼に加えて小さな補助翼を攪拌軸に取り付けて攪拌する工法が知られている。
特許文献1には、先端部に掘削ヘッドおよび攪拌翼を複数段備えた攪拌軸を回転上下動させて攪拌軸の先端部の吐出口より吐出した固化材と土壌とを攪拌混合して地盤を改良する地盤改良工法において、攪拌軸の外周に棒状又は板状の攪拌補助部材を所定の間隔で放射状に前記攪拌軸の上部まで多段に取り付け、また、周辺地盤に与える変位を低減させるための円板状の攪拌補助部材を当該攪拌軸に併設した地盤改良装置が記載されている。
特許文献2には、先端部に掘削刃および攪拌翼を複数段備えた攪拌軸を回転上下動させて攪拌翼の噴射ノズルより噴射した固化材と圧縮エアーを同伴させて土壌を攪拌混合して地盤を改良する地盤改良工法において、攪拌軸の外周に板状のエアー回収用リブ材を攪拌翼から攪拌軸の上端部まで連続して対に設けた地盤の混合処理装置が記載されている。
In Patent Documents 1 and 2, a method is known in which a small auxiliary blade is attached to a stirring shaft in addition to the stirring blade and is stirred.
In Patent Document 1, the ground is prepared by stirring and mixing the solidified material discharged from the discharge port at the tip of the stirring shaft and the soil by rotating and rotating the stirring shaft having a plurality of excavation heads and stirring blades at the tip. In the ground improvement method to be improved, rod-like or plate-like stirring auxiliary members are radially attached at predetermined intervals to the upper part of the stirring shaft on the outer periphery of the stirring shaft, and a circle for reducing displacement given to the surrounding ground. A ground improvement device is described in which a plate-like stirring auxiliary member is attached to the stirring shaft.
In Patent Document 2, the stirring shaft having a plurality of excavating blades and stirring blades at the tip is rotated and moved up and down, and the soil is stirred and mixed together with the solidified material and compressed air sprayed from the spray nozzle of the stirring blade. In the ground improvement method for improving the ground, a ground mixing treatment apparatus is described in which plate-like air recovery rib members are continuously provided on the outer periphery of the stirring shaft in pairs from the stirring blade to the upper end of the stirring shaft.

特開平8−184030号公報JP-A-8-184030 特開2000−290993号公報JP 2000-290993 A

特許文献1に記載の地盤改良装置は、攪拌軸の直径に対する棒状又は板状の攪拌補助部材と円板状の攪拌補助部材の形状と寸法、これらの攪拌軸上の取り付けピッチに係る具体的数値が記載されていないから、図面上から推し量る以外にない。特許文献1の図面から推し量ると、棒状又は板状の攪拌補助部材の側方への突出長さは、攪拌軸の直径の約2倍である。このような長さの棒状又は板状の攪拌補助部材が多段に設けられていることと相俟って、駆動装置に掛かる抵抗が増大する。攪拌翼を従来よりも大口径にしようとすると、駆動装置をより大型化する必要がある。また、攪拌軸上の攪拌補助部材の取り付けピッチ間隔が攪拌補助部材の幅の7〜8倍と広いので、攪拌軸の貫入時に攪拌軸の周りに付着する土を十分にほぐすことができず、これも駆動装置に掛かる抵抗が増大する。したがって、攪拌翼を大口径にすることが益々困難になるという問題があった。   The ground improvement device described in Patent Document 1 is a numerical value related to the shape and dimensions of a rod-like or plate-like stirring auxiliary member and a disk-like stirring auxiliary member with respect to the diameter of the stirring shaft, and the mounting pitch on these stirring shafts. Is not described, it can only be estimated from the drawing. As estimated from the drawing of Patent Document 1, the protruding length of the bar-like or plate-like stirring auxiliary member to the side is about twice the diameter of the stirring shaft. Coupled with the fact that the bar-like or plate-like stirring auxiliary member having such a length is provided in multiple stages, the resistance applied to the driving device increases. In order to make the stirring blade larger in diameter than in the past, it is necessary to enlarge the drive device. In addition, since the mounting pitch interval of the stirring auxiliary member on the stirring shaft is as wide as 7 to 8 times the width of the stirring auxiliary member, it is not possible to sufficiently loosen the soil adhering around the stirring shaft when the stirring shaft penetrates, This also increases the resistance applied to the drive unit. Therefore, there has been a problem that it becomes increasingly difficult to make the stirring blade larger in diameter.

特許文献2に記載の地盤の混合処理装置は、固化材と圧縮エアーを同伴させて攪拌翼で土壌を攪拌混合する工法において、リブ材の突出量は、攪拌軸が回転されるときに軸外周と原位置土との間に隙間を形成し、その隙間を介して噴射ノズルから吐出されるエアーを地表面へ放出し易くなるように設定される、と記載している。この工法におけるリブ材は、エアー回収目的のみの効果であり、攪拌軸の全長に亘って対に設けられているので、回転駆動装置に極めて大きな負荷がかかる。そのため、本発明の目的である攪拌翼を大口径にするには、より大型の駆動装置を使用する必要がある、という問題がある。   The ground mixing treatment apparatus described in Patent Document 2 is a method of stirring and mixing soil with a stirring blade accompanied by a solidified material and compressed air. The protruding amount of the rib material is the outer circumference of the shaft when the stirring shaft is rotated. It is described that a gap is formed between the soil and the original position soil, and the air discharged from the injection nozzle through the gap is set to be easily released to the ground surface. The rib material in this construction method has an effect only for the purpose of air recovery, and is provided in pairs over the entire length of the stirring shaft, so that a very large load is applied to the rotary drive device. Therefore, there is a problem that it is necessary to use a larger driving device in order to increase the diameter of the stirring blade which is the object of the present invention.

本発明が解決しようとする第1の課題は、従来から使用されている容量の駆動装置を用いて、従来に比較してより大口径の攪拌翼を用いることを可能にする内圧緩和翼を用いた深層混合処理装置の確立である。
本発明が解決しようとする第2の課題は、簡単で経済的に第1の課題を解決する内圧緩和翼を用いた深層混合処理装置を提供することである。
The first problem to be solved by the present invention is to use an internal pressure relief blade that makes it possible to use a stirring blade having a larger diameter than in the past by using a drive device having a capacity that has been conventionally used. It was the establishment of the deep mixing processing equipment.
The second problem to be solved by the present invention is to provide a deep mixing treatment apparatus using an internal pressure relief blade that solves the first problem in a simple and economical manner.

本出願人は、図5に示すように、従来の回転軸(内圧緩和翼なし)(1)と、本発明の内圧緩和翼を取り付けた回転軸(2)(3)(4)とを準備し、攪拌翼の直径、攪拌時に噴射する圧縮空気の有無、流動添加剤の有無、内圧緩和翼の有無のパラメータを種々変化させて実験を繰り返したところ、適正な形状の内圧緩和翼を使用することで、大口径の攪拌翼を使用しても貫入抵抗を大幅に減少させることを知見した。
具体的には、攪拌翼付き回転軸の貫入引抜抵抗を、駆動部のモーターの電流値として測定してみると、図6(a)(b)に示すように、従来の回転軸(内圧緩和翼なし)(1)と、本発明の内圧緩和翼を取り付けた回転軸(2)(3)(4)とでは、特に、貫入時の抵抗値(電流値)に顕著な相違点があることを発見した。
As shown in FIG. 5, the present applicant prepares a conventional rotary shaft (without internal pressure relief blade) (1) and rotary shafts (2), (3) and (4) to which the internal pressure relief blade of the present invention is attached. The experiment was repeated with various parameters such as the diameter of the stirring blade, the presence or absence of compressed air injected during the stirring, the presence or absence of the flow additive, and the presence or absence of the internal pressure relief blade. Thus, it was found that the penetration resistance is greatly reduced even when a large-diameter stirring blade is used.
Specifically, when the penetration resistance of the rotating shaft with a stirring blade is measured as the current value of the motor of the drive unit, as shown in FIGS. 6 (a) and 6 (b), the conventional rotating shaft (internal pressure relaxation) (1) and the rotating shaft (2) (3) (4) to which the internal pressure relief blade of the present invention is attached are particularly different in resistance value (current value) at the time of penetration. I found

具体的には、図5(1)に示す従来の回転軸(内圧緩和翼なし)では、攪拌翼の直径φ=1,000mmにおいて、図6(a)の実線で示すように、N=20の砂質土のとき、駆動部のモーターの電流値が約300Aに達した。
これに対し、図5(2)に示す本発明の内圧緩和翼を取り付けた攪拌翼直径φ=1,600mmでは、図6(a)の点線で示すように、N=20の砂質土のとき、駆動部のモーターの電流値が約130Aであった。
図5(3)に示す本発明の内圧緩和翼を取り付けた攪拌翼直径φ=1,600mm、圧縮空気有、流動添加剤有では、図6(a)の1点鎖線で示すように、約30Aであった。
図5(4)に示す本発明の内圧緩和翼を取り付けた攪拌翼直径φ=1,600mm、圧縮空気有、流動添加剤無、事前削孔有では、図6(a)の2点鎖線で示すように、約120Aであった。
Specifically, in the conventional rotating shaft (without the internal pressure relaxation blade) shown in FIG. 5 (1), N = 20 as shown by the solid line in FIG. 6 (a) at the diameter φ = 1,000 mm of the stirring blade. In the case of sandy soil, the current value of the motor of the driving unit reached about 300A.
On the other hand, in the stirring blade diameter φ = 1,600 mm to which the internal pressure relaxation blade of the present invention shown in FIG. 5 (2) is attached, as shown by the dotted line in FIG. At that time, the current value of the motor of the driving unit was about 130A.
As shown by the one-dot chain line in FIG. 6 (a), the stirring blade diameter φ = 1,600 mm to which the internal pressure relaxation blade of the present invention shown in FIG. 30A.
When the stirring blade diameter φ = 1,600 mm to which the internal pressure relaxation blade of the present invention shown in FIG. 5 (4) is attached, with compressed air, with no fluid additive, and with pre-drilling, the two-dot chain line in FIG. As shown, it was about 120A.

本発明による深層混合処理装置は、先端部に掘削刃15と撹拌翼16を有する回転軸14を回転しつつ地盤10に貫入及び引抜き、前記回転軸14の先端部からセメントスラリーを噴射して地盤10を攪拌して固化改良体25を構築するようにした深層混合処理工法及びその装置において、
前記回転軸14における前記撹拌翼16の上部から駆動部17の下端までの位置に、前記回転軸14の周りの地盤10をほぐして前記回転軸14に掛かる土圧を緩和する多段の内圧緩和翼22を、その幅方向が前記回転軸の軸方向と略一致して設け、この内圧緩和翼22は、次の条件を満足するように構成したことを特徴とする。
L≦a+2b
a≧β/α
D/4≦b≦D/2
ここでD:回転軸14の直径(cm)
a:内圧緩和翼22の幅(cm)
b:内圧緩和翼22の長さ(cm)
L:回転軸14における内圧緩和翼22の取り付け間隔(cm)
β:回転軸14の単位時間当たりの貫入速度(cm/分)
α:回転軸14の単位時間当たりの回転数(回/分)
The deep mixing treatment apparatus according to the present invention penetrates and withdraws the ground 10 while rotating the rotary shaft 14 having the excavating blade 15 and the stirring blade 16 at the tip portion, and injects cement slurry from the tip portion of the rotary shaft 14 to turn the ground. In the deep mixing treatment method and the apparatus in which the solidification improved body 25 is constructed by stirring 10,
A multistage internal pressure relief blade that loosens the ground 10 around the rotation shaft 14 and relaxes the earth pressure applied to the rotation shaft 14 at a position from the upper part of the stirring blade 16 to the lower end of the drive unit 17 in the rotation shaft 14. 22 is provided such that the width direction thereof substantially coincides with the axial direction of the rotating shaft, and the internal pressure relief blade 22 is configured to satisfy the following conditions.
L ≦ a + 2b
a ≧ β / α
D / 4 ≦ b ≦ D / 2
Where D: diameter of the rotating shaft 14 (cm)
a: Width (cm) of the internal pressure relief blade 22
b: Length (cm) of the internal pressure relief blade 22
L: Mounting interval (cm) of the internal pressure relief blades 22 on the rotary shaft 14
β: penetration speed per unit time of the rotating shaft 14 (cm / min)
α: Number of rotations of the rotating shaft 14 per unit time (times / minute)

内圧緩和翼22は、少なくとも各段に1個を設ける。
内圧緩和翼22は、各段の中心角度を所定角度ずつずらして螺旋状に配置することが望ましい。
At least one internal pressure relief blade 22 is provided in each stage.
It is desirable that the internal pressure relief blades 22 be arranged in a spiral shape with the center angle of each step shifted by a predetermined angle.

内圧緩和翼22は、各段に中心角度を180度ずらして2個設けるとともに、上下の段で中心角度を90度ずらして設け、また、各段に中心角度を180度ずらして2個設けた内圧緩和翼22は、回転軸14の軸方向と直交する線上に配置する。
Pressure relieving blade 22, with a central angle providing two shifted 180 degrees to each stage, is provided by shifting the central angle of 90 degrees above and below the stage, also provided two staggered 180 degrees center angle to each stage The internal pressure relief blades 22 are arranged on a line orthogonal to the axial direction of the rotary shaft 14.

各段に中心角度を180度ずらして2個設けた内圧緩和翼22は、回転軸14の軸方向と90度以外の角度で交差する線上に配置することもできる。   The two internal pressure relief blades 22 provided with the center angle shifted by 180 degrees at each stage may be arranged on a line that intersects the axial direction of the rotating shaft 14 at an angle other than 90 degrees.

撹拌翼16は、従来の板型をベースとし、台形、半円、半楕円形などの形状とすることで地盤との抵抗を軽減し攪拌抵抗を減らす。これは回転軸14を回転するための駆動部17に大きな抵抗がかかり施工不能を来すことがないようにするためであり、抵抗が少なく混合効率に問題が生じない形状のものを使用する。   The stirring blade 16 is based on a conventional plate shape, and has a trapezoidal shape, a semicircle, a semi-elliptical shape, etc., thereby reducing the resistance to the ground and reducing the stirring resistance. This is to prevent the drive unit 17 for rotating the rotating shaft 14 from being subjected to a large resistance and causing inability to perform the construction, and uses a shape having a low resistance and causing no problem in mixing efficiency.

セメントスラリーに圧縮空気を混入して吐出し、さらに、セメントスラリーの流動性を高め、混合直後の土壌を流動化させる流動添加剤を混入して噴射するものからなるものとすることがより望ましい。   More preferably, the cement slurry is made of mixed air and discharged, and further injected with a fluid additive that enhances the fluidity of the cement slurry and fluidizes the soil immediately after mixing.

回転軸14は、1軸式からなるものであってもよいし、また、多軸式であってもよい。   The rotary shaft 14 may be a single-shaft type or a multi-axis type.

請求項1記載の発明によれば、
先端部に掘削刃と撹拌翼を有する回転軸を回転しつつ地盤に貫入及び引抜き、前記回転軸の先端部からセメントスラリーを吐出して地盤を攪拌して固化改良体を構築するようにした深層混合処理装置において、
前記回転軸における前記撹拌翼の上部に、前記回転軸の周りの地盤をほぐして前記回転軸に掛かる土圧を緩和する多段の内圧緩和翼を、その幅方向が前記回転軸の軸方向と略一致して設け、この内圧緩和翼は、
L≦a+2b
a≧β/α
D/4≦b≦D/2
ここでD:回転軸の直径
a:内圧緩和翼の幅
b:内圧緩和翼の長さ
L:回転軸における内圧緩和翼の取り付け間隔
β:回転軸の単位時間当たりの貫入速度
α:回転軸の単位時間当たりの回転数
の条件を満足するように構成したので、
内圧緩和翼による回転軸の周りの地盤の揉みほぐし効果により、回転軸の貫入時の攪拌抵抗値が大幅に減少する。このため、従来は、深層混合処理機は処理機のモーターを大きくすることにより貫入能力が大きくなり、通常使用する処理機で能力不足が予測される場合にはワンランク大きなモーターを使用するが、本発明では、従前のモーターを使用して大口径深層混合処理工法が可能となる。ちなみに、図6(a)によれば、直径が1,000mmから1,600mmに大きくなっても抵抗値(電流値)を1/2以下に抑えることができた。
According to invention of Claim 1,
A deep layer in which a solidified improved body is constructed by rotating and rotating a rotary shaft having a drilling blade and a stirring blade at the tip while penetrating into and pulling out from the ground, discharging cement slurry from the tip of the rotary shaft and stirring the ground In the mixing processing device,
A multistage internal pressure relief blade that loosens the ground around the rotation shaft and relieves earth pressure applied to the rotation shaft above the stirring blade in the rotation shaft, the width direction of which is substantially the same as the axial direction of the rotation shaft. This internal pressure relief blade is
L ≦ a + 2b
a ≧ β / α
D / 4 ≦ b ≦ D / 2
Where D: diameter of the rotating shaft a: width of the inner pressure relaxing blade b: length of the inner pressure relaxing blade L: interval between the inner pressure relaxing blades on the rotating shaft β: penetration speed per unit time of the rotating shaft α: of the rotating shaft Since it is configured to satisfy the condition of the number of revolutions per unit time,
Due to the effect of loosening the ground around the rotating shaft by the internal pressure relief blade, the stirring resistance value when the rotating shaft penetrates is greatly reduced. For this reason, in the past, deep-mixing processing machines have increased penetration capacity by increasing the motor of the processing machine, and if a processing capacity normally used is predicted to be insufficient, a larger motor is used. In the invention, a large-diameter deep layer mixing method can be performed using a conventional motor. Incidentally, according to FIG. 6A, the resistance value (current value) could be suppressed to ½ or less even when the diameter was increased from 1,000 mm to 1,600 mm.

請求項2記載の発明によれば、内圧緩和翼は、少なくとも各段に1個を設けるだけで、回転軸の周りの地盤の揉みほぐし効果が可能である。   According to the second aspect of the present invention, it is possible to achieve the effect of loosening the ground around the rotation axis by providing at least one internal pressure relief blade at each stage.

請求項3及び4記載の発明によれば、内圧緩和翼は、各段の中心角度を所定角度ずつずらして螺旋状に配置したり、各段に中心角度を180度ずらして2個設けるとともに、上下の段で中心角を90度ずらして設けたりすることにより、回転軸に係る内圧を均等に掛けることができる。
According to the inventions of claims 3 and 4, the internal pressure relief blades are arranged in a spiral form with the center angle of each stage shifted by a predetermined angle, or provided with two center angles shifted by 180 degrees on each stage, by or provided by shifting the central angle of 90 degrees above and below the stage, it is possible to apply a pressure of the rotation axis equally.

請求項5及び6記載の発明によれば、各段に中心角度を180度ずらして2個設けた内圧緩和翼は、回転軸の軸方向と直交する線上に配置したり、回転軸の軸方向と90度以外の角度で交差する線上に配置したりすることで、効率よく地盤のもみほぐしができる。   According to the fifth and sixth aspects of the present invention, the two internal pressure relief blades provided with the center angle shifted by 180 degrees at each stage are arranged on a line orthogonal to the axial direction of the rotating shaft, or the axial direction of the rotating shaft By placing them on a line that intersects at an angle other than 90 degrees, it is possible to efficiently unravel the ground.

請求項7及び8記載の発明によれば、撹拌翼は、縦断面が台形、半円又は半楕円形を採用することにより、圧縮空気による貫入引抜抵抗の低減、流動添加剤の使用により従来の地盤改良機械では貫入困難な硬質砂地盤(N>30)でも改良が可能となる。   According to the inventions of claims 7 and 8, the stirring blade adopts a trapezoidal, semicircular or semielliptical longitudinal section, thereby reducing the penetration resistance due to compressed air and using a flow additive. Improvement is possible even on hard sand ground (N> 30), which is difficult to penetrate with ground improvement machines.

請求項9記載の発明によれば、スラリーに圧縮空気を混入して噴射する場合において、攪拌翼先端からの余剰空気は、内圧緩和翼の回転に伴って発生する空隙を利用し土圧が緩和され、かつ、内圧緩和翼が回転軸に沿って断続的に取り付けられているために地上に排出される。また、セメントスラリーを空気加速により砂地盤に対して塑性破壊を起こして液状にし、セメントスラリーの混入をスムースに行うことができる。   According to the ninth aspect of the present invention, when the compressed air is mixed and injected into the slurry, the surplus air from the tip of the stirring blade relieves the earth pressure by utilizing the gap generated by the rotation of the internal pressure relief blade. In addition, since the internal pressure relief blades are intermittently attached along the rotation axis, they are discharged to the ground. In addition, the cement slurry can be made into a liquid state by causing plastic fracture to the sand ground by air acceleration, and the cement slurry can be smoothly mixed.

請求項10記載の発明によれば、セメントスラリーの流動性を高め、混合直後の土壌を流動化させる流動添加剤を混入して噴射することにより、地層の違いによらず、大幅な攪拌抵抗値の減少が期待できる。ちなみに、図6(a)によれば、直径が1,000mmから1,600mmに大きくなっても抵抗値(電流値)を数分の一以下に抑えることができた。   According to the invention of claim 10, by increasing the fluidity of the cement slurry and injecting a fluid additive that fluidizes the soil immediately after mixing, a significant stirring resistance value can be obtained regardless of the difference in the formation. Can be expected to decrease. Incidentally, according to FIG. 6A, even when the diameter is increased from 1,000 mm to 1,600 mm, the resistance value (current value) can be suppressed to a fraction or less.

請求項11及び12記載の発明によれば、回転軸が1軸式であっても多軸式であっても内圧緩和翼の作用効果が期待できる。   According to the invention described in claims 11 and 12, the effect of the internal pressure relief blade can be expected regardless of whether the rotating shaft is a single shaft type or a multi-axis type.

本発明による内圧緩和翼を用いた深層混合処理装置の実施例1を示す全体の正面図である。It is the whole front view which shows Example 1 of the deep layer mixing processing apparatus using the internal pressure relaxation blade by this invention. 図1における内圧緩和翼22の詳細を示すもので、(a)は、内圧緩和翼22を取り付けた回転軸14の一部の正面図、(b)は、内圧緩和翼22の他の例の横断面図、(c)は、内圧緩和翼22のさらに他の例の正面図である。1 shows details of the internal pressure relief blade 22 in FIG. 1, (a) is a front view of a part of the rotating shaft 14 to which the internal pressure relief blade 22 is attached, and (b) is another example of the internal pressure relief blade 22. A cross-sectional view, (c), is a front view of still another example of the internal pressure relief blade 22. 本発明による内圧緩和翼22の土の破壊状態を示すもので、(a)は、粘土の場合の説明図、(b)は、砂の場合の説明図である。The state of destruction of the soil of the internal pressure relief blade 22 according to the present invention is shown, (a) is an explanatory diagram in the case of clay, (b) is an explanatory diagram in the case of sand. 本発明による深層混合処理装置の2軸式の場合を示すもので、(a)は、正面図、(b)は、横断面図である。The case of the biaxial type of the deep mixing processing apparatus by this invention is shown, (a) is a front view, (b) is a cross-sectional view. 実証試験仕様一覧を示す図である。It is a figure which shows a verification test specification list. 実証試験における施工中の攪拌抵抗値(電流値)を示すもので、(a)は、貫入時の攪拌抵抗値(電流値)を示す図、(b)は、引き抜き時の攪拌抵抗値(電流値)を示す図である。It shows the stirring resistance value (current value) during construction in the demonstration test, (a) is a diagram showing the stirring resistance value (current value) at the time of penetration, (b) is the stirring resistance value (current) at the time of pulling out Value). 攪拌翼の形状による貫入力(N・m)比較図で、(a)は、従来の板状翼が45度に傾斜した攪拌翼のφの大きさの違いによる特性図(1)と本発明による台形翼の攪拌翼のφの大きさの違いによる特性図(2)(3)(4)、(b)は、本発明による攪拌翼の断面を台形とした例の説明図、(c)は、本発明による攪拌翼の断面を半円形とした例の説明図、(d)は、本発明による攪拌翼の断面を半楕円形とした例の説明図である。FIG. 6 is a comparative diagram of the penetration force (N · m) according to the shape of the stirring blade, wherein (a) is a characteristic diagram (1) according to the difference in the φ size of the stirring blade in which the conventional plate blade is inclined at 45 degrees and the present invention. (2), (3), (4), and (b) are diagrams illustrating an example in which the cross section of the stirring blade according to the present invention is trapezoidal, (c) These are explanatory drawings of the example which made the cross section of the stirring blade by this invention semicircular, (d) is explanatory drawing of the example which made the cross section of the stirring blade by this invention semi-elliptical.

本発明の深層混合処理装置は、先端部に掘削刃15と撹拌翼16を有する回転軸14を回転しつつ地盤10に貫入及び引抜き、前記回転軸14の先端部からセメントスラリーを噴射して地盤10を攪拌して固化改良体25を構築するようにした深層混合処理装置において、
前記回転軸14における前記撹拌翼16の上部から駆動部17の下端までの位置に、前記回転軸14の周りの地盤10をほぐして前記回転軸14に掛かる土圧を緩和する多段の内圧緩和翼22を、その幅方向が前記回転軸の軸方向と略一致して設け、この内圧緩和翼22は、次の条件を満足するように構成したことを特徴とする。
L≦a+2b
a≧β/α
D/4≦b≦D/2
ここでD:回転軸14の直径(cm)
a:内圧緩和翼22の幅(cm)
b:内圧緩和翼22の長さ(cm)
L:回転軸14の内圧緩和翼22の取り付け間隔(cm)
β:回転軸14の単位時間当たりの貫入速度(cm/分)
α:回転軸14の単位時間当たりの回転数(回/分)
The deep mixing treatment apparatus of the present invention penetrates and withdraws the ground 10 while rotating the rotary shaft 14 having the excavating blade 15 and the stirring blade 16 at the tip portion, and injects cement slurry from the tip portion of the rotary shaft 14 to ground. In the deep-mixing processing apparatus in which the solidified improvement body 25 is constructed by stirring 10
A multistage internal pressure relief blade that loosens the ground 10 around the rotation shaft 14 and relaxes the earth pressure applied to the rotation shaft 14 at a position from the upper part of the stirring blade 16 to the lower end of the drive unit 17 in the rotation shaft 14. 22 is provided such that the width direction thereof substantially coincides with the axial direction of the rotating shaft, and the internal pressure relief blade 22 is configured to satisfy the following conditions.
L ≦ a + 2b
a ≧ β / α
D / 4 ≦ b ≦ D / 2
Where D: diameter of the rotating shaft 14 (cm)
a: Width (cm) of the internal pressure relief blade 22
b: Length (cm) of the internal pressure relief blade 22
L: Mounting interval (cm) of the internal pressure relief blade 22 of the rotating shaft 14
β: penetration speed per unit time of the rotating shaft 14 (cm / min)
α: Number of rotations of the rotating shaft 14 per unit time (times / minute)

内圧緩和翼22は、少なくとも一段に1個を設ける例、各段の中心角度を所定角度ずつずらして螺旋状に配置する例、各段に中心角度を180度ずらして2個設けるとともに、上下の段で中心角度を90度ずらして設ける例、各段に中心角度を180度ずらして2個設けた内圧緩和翼22は、回転軸14の軸方向と直交する線上に配置する例、各段に中心角度を180度ずらして2個設けた内圧緩和翼22は、回転軸14の軸方向と90度以外の角度で交差する線上に配置する例などとすることができる。
An example in which at least one internal pressure relief blade 22 is provided in at least one stage, an example in which the central angle of each stage is shifted by a predetermined angle and a spiral arrangement, two central axes are shifted by 180 degrees in each stage, and examples provided by shifting the central angle of 90 degrees stage, pressure relieving wings 22 provided two staggered 180 degrees center angle to each stage, an example of placing on a line perpendicular to the axial direction of the rotary shaft 14, each stage The two internal pressure relaxation blades 22 provided with the center angle shifted by 180 degrees at the same angle may be arranged on a line intersecting the axial direction of the rotating shaft 14 at an angle other than 90 degrees.

撹拌翼16は、縦断面が台形、半円又は半楕円形の中から適宜選択してもよい。   The stirring blade 16 may be appropriately selected from a trapezoidal, semicircular or semielliptical vertical section.

セメントスラリーに圧縮空気を混入して噴射する深層混合処理工法やセメントスラリーの流動性を高め、混合直後の土壌を流動化させる流動添加剤を混入して噴射する深層混合処理工法とすることで貫入時の攪拌抵抗を減らすことができる。
回転軸14は、1軸式であっても多軸式であっても利用できる。
Penetration is achieved by using a deep mixing treatment method in which compressed air is mixed and injected into the cement slurry, or a deep mixing treatment method in which the fluidity of the cement slurry is increased and fluid additives that fluidize the soil immediately after mixing are injected. The stirring resistance at the time can be reduced.
The rotating shaft 14 may be a single-axis type or a multi-axis type.

以下、本発明の実施例1を図面に基づき説明する。
図1において、10は、軟弱地盤で、この地盤10に固化改良体25を構築しようとする例を示している。
この地盤10に、ベースマシーン11を据え付け、リーダー12をステー13で支持して垂直に固定し、このリーダー12に、上部支持部26と中間振れ止め部19と基部振れ止め部18で1軸式の回転軸14を保持する。この回転軸14の下端部には、掘削刃15が設けられ、この掘削刃15の上に、複数段の撹拌翼16が取り付けられる。また、前記回転軸14の上端部には、この回転軸14を地盤10に貫入し、引き抜くために正回転と逆回転を与える駆動部17が設けられている。また、前記回転軸14の上端部には、セメントスラリーと圧縮空気を送るためのスラリー注入管20とエアー注入管21が結合されている。このスラリー注入管20とエアー注入管21から送られたセメントスラリーと圧縮空気は、掘削刃先端吐出口15及び/又は撹拌翼16の翼内のセメントスラリー吐出口23から地盤の攪拌時に土中に噴射される。また、攪拌軸を二重菅とした場合、セメントスラリー吐出口23と、別途にエアー噴出口24から吐出することが出来る。
Embodiment 1 of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 10 denotes a soft ground, and shows an example in which a solidified improved body 25 is to be constructed on the ground 10.
A base machine 11 is installed on the ground 10, and a leader 12 is supported by a stay 13 and fixed vertically. The leader 12 is fixed to the upper support part 26, an intermediate steadying part 19, and a base steadying part 18. The rotating shaft 14 is held. A drilling blade 15 is provided at the lower end of the rotating shaft 14, and a plurality of stages of stirring blades 16 are attached on the drilling blade 15. In addition, a drive unit 17 is provided at the upper end of the rotary shaft 14 so as to penetrate the rotary shaft 14 into the ground 10 and pull it out. A slurry injection pipe 20 and an air injection pipe 21 for sending cement slurry and compressed air are coupled to the upper end of the rotary shaft 14. The cement slurry and compressed air sent from the slurry injection pipe 20 and the air injection pipe 21 enter the soil from the excavation blade tip discharge port 15 and / or the cement slurry discharge port 23 in the blade of the stirring blade 16 into the soil when the ground is stirred. Be injected. Further, when the stirring shaft is a double rod, it can be discharged from the cement slurry discharge port 23 and the air discharge port 24 separately.

前記回転軸14の上端部から下端部まで本発明特有に構成した内圧緩和翼22が設けられる。この内圧緩和翼22を採用するに至ったのは、前記撹拌翼16を大口径(たとえば、φ1,600mm)にすることにより施工効率を上げ、より経済的に優れた深層混合処理工法を提供しようとしたことにある。
本特許出願人は、攪拌翼の直径、攪拌時に噴射する圧縮空気の有無、流動添加剤の有無、回転軸の周りの付着土をほぐす内圧緩和翼の有無のパラメータを種々変化させて実験を繰り返したところ、適正な形状の内圧緩和翼を使用することで、大口径の攪拌翼を使用しても貫入抵抗を大幅に減少させることを知見した。
An internal pressure relief blade 22 that is configured peculiar to the present invention is provided from the upper end to the lower end of the rotating shaft 14. The reason why this internal pressure relief blade 22 has been adopted is to increase the construction efficiency by making the stirring blade 16 have a large diameter (for example, φ1,600 mm) and to provide a more economical deep mixing treatment method. It is in that.
The applicant of this patent repeated the experiment by changing various parameters such as the diameter of the stirring blade, the presence or absence of compressed air injected during stirring, the presence or absence of a fluid additive, and the presence or absence of an internal pressure relief blade that loosens the adhering soil around the rotating shaft. As a result, it has been found that the penetration resistance can be greatly reduced by using a suitably shaped internal pressure relief blade even when a large-diameter stirring blade is used.

前記内圧緩和翼22は、図2(a)に示すように、基本的には、幅a、長さbの形状をなし、回転軸14の外周に、各段の間隔Lをもって取り付けられる。これらa、b、Lの寸法は、次のような特性を有することが望まれる。
(1)内圧緩和翼22は、回転軸14の回転時に、この回転軸14の外周部に地盤10との間で発生する内圧を緩和する作用をすること。
(2)回転軸14の回転トルクを弱め、発生する周面付着力を小さくし、上方に圧力を発散させること。
(3)セメントスラリーに圧縮空気を混合して使用する場合には、余剰の圧縮空気を地盤10の中に滞留させずに上方に抜く作用があること。
(4)セメントスラリーに流動添加剤を使用した場合には、攪拌土壌をより練り混ぜやすくすること。
(5)内圧緩和翼22の枚数が多すぎたり、各段の間隔が狭すぎたりして攪拌した地盤10が上方に排土してしまうのを避けること。
(6)造成中は、深度に応じて地中応力やスラリー内圧などにより、回転軸14の先端の撹拌翼16で攪拌されても、撹拌翼16が通過すると回転軸14の周辺部の内圧の発生を瞬時に抑えられること。
(7)内圧緩和翼22は、回転軸14の貫入時と引抜時の造成中において地盤10が内圧緩和翼22の回転による外力を受け、地盤10の中にせん断応力が生じて、その中でせん断抵抗を超える箇所にせん断破壊が生じる。破壊する面は、すべり面といわれ、せん断応力に抵抗する最大のせん断抵抗が生じ破壊に至る。
すべり面の破壊パターンは、粘土の場合と砂の場合とで異なる。
粘土の場合、内圧緩和翼22の長さbと地盤10が破壊される影響範囲xは、図3(a)のように、押し方向、引き方向ともに次式となる。
x=b・tan45°
したがって、L=a+2bとなる。
砂の場合、内圧緩和翼22の長さbと地盤10が破壊される影響範囲xは、図3(b)のように、次式となる。+は押し方向、−は引き方向である。
x=b・tan(45°±φ/2) (φ=30°)
したがって、L=a+2.3bとなる。
(8)内圧緩和翼22の幅aは、小さすぎるとせん断破壊がほとんど生ぜず、大きすぎると抵抗が大きくなり、大口径の攪拌翼を使用する目的が達成できなくなる。これらを満足する幅aは、図2(a)において、回転軸14が1回転したときに、内圧緩和翼22の外周端の一点A0が幅aだけ移動したA1に達する寸法以上とすることが望ましい。
(9)内圧緩和翼22の長さbは、長すぎると抵抗が大きくなり、トルクも増大し、部材として回転軸14への取り付け補強も大きくなり、さらに、通過する中間振れ止め部19の内径も大きくなり振れ止め効果がなくなる。また、短すぎるとせん断破壊の生じる部分が小さすぎ、内圧緩和の効果が小さくなる。このことから、D/4≦b≦D/2が望ましい。Dは、回転軸14の直径である。
As shown in FIG. 2A, the internal pressure relief blade 22 basically has a shape of a width a and a length b, and is attached to the outer periphery of the rotating shaft 14 with an interval L between the steps. These dimensions a, b, and L are desired to have the following characteristics.
(1) The internal pressure relief blade 22 acts to relieve internal pressure generated between the rotary shaft 14 and the ground 10 when the rotary shaft 14 rotates.
(2) The rotational torque of the rotating shaft 14 is weakened, the generated peripheral surface adhesion force is reduced, and the pressure is diffused upward.
(3) When compressed air is mixed with cement slurry and used, excess compressed air must be removed upward without being retained in the ground 10.
(4) When a fluid additive is used in cement slurry, make the agitated soil easier to mix.
(5) Avoid that the ground 10 that has been agitated due to too many internal pressure relief blades 22 or too narrow intervals between the steps is discharged upward.
(6) During the creation, even if the stirring blade 16 at the tip of the rotating shaft 14 is stirred due to underground stress or slurry internal pressure depending on the depth, if the stirring blade 16 passes, the internal pressure around the rotating shaft 14 is reduced. Generation can be suppressed instantaneously.
(7) The internal pressure relief blade 22 is subjected to external force due to the rotation of the internal pressure relief blade 22 during the formation of the rotating shaft 14 during penetration and withdrawal, and shear stress is generated in the ground 10. Shear fracture occurs where the shear resistance is exceeded. The fracture surface is called a slip surface, and the maximum shear resistance that resists shear stress is generated, leading to fracture.
The failure pattern of the slip surface is different between clay and sand.
In the case of clay, the length b of the internal pressure relief blade 22 and the influence range x in which the ground 10 is destroyed are expressed by the following equations in both the pushing direction and the pulling direction, as shown in FIG.
x = b · tan45 °
Therefore, L = a + 2b.
In the case of sand, the length b of the internal pressure relief blade 22 and the influence range x in which the ground 10 is destroyed are expressed by the following equations as shown in FIG. + Is the pushing direction and-is the pulling direction.
x = b · tan (45 ° ± φ / 2) (φ = 30 °)
Therefore, L = a + 2.3b.
(8) If the width a of the internal pressure relaxation blade 22 is too small, almost no shear fracture occurs, and if it is too large, the resistance increases, and the purpose of using a large-diameter stirring blade cannot be achieved. In FIG. 2A, the width “a” that satisfies these conditions is set to be equal to or larger than the dimension at which one point A0 of the outer peripheral end of the inner pressure relief blade 22 reaches A1 that is moved by the width “a” when the rotary shaft 14 makes one rotation. desirable.
(9) If the length b of the internal pressure relaxation blade 22 is too long, the resistance increases, the torque also increases, the attachment reinforcement to the rotating shaft 14 as a member also increases, and the inner diameter of the intermediate steady rest 19 passing therethrough. Becomes larger and the steady rest effect is lost. On the other hand, if it is too short, the portion where shear fracture occurs is too small, and the effect of reducing internal pressure becomes small. Therefore, D / 4 ≦ b ≦ D / 2 is desirable. D is the diameter of the rotating shaft 14.

以上のような種々の条件を満足する幅a、長さb、各段の間隔Lは、次のように設定される。
(ア)内圧緩和翼22の幅aの設定
前記(8)に基づき、幅aは、回転軸14が1回転したときに、内圧緩和翼22の外周端の一点A0が幅aだけ移動したA1に達する寸法以上とするために、
a≧β/α
の式で設定する。βは、単位時間当たりの貫入速度で、一般的には、50〜150cm/分で、αは、単位時間当たりの回転数で、一般的には、16〜20回/分である。例えば、β=100、α=20とすると、a=5cm以上と設定される。
(イ)内圧緩和翼22の突出する長さbの設定
前記(9)に基づき、次の式で設定する。
D/4≦b≦D/2
回転軸14の直径は、一般的に26.7cm又は31.6cmであるが、26.7cmとすると、6.7≦b≦13.4となり、b≧6.7cmとなる。
(ウ)内圧緩和翼22の取り付け間隔Lの設定
前記(7)に基づくと、Lは、粘土の場合の方が、砂の場合よりも狭くなる。しかし、地盤10はすべての地層が粘土であったり、砂であったりすることが少ないので、いずれにも適用するためには、狭い方のL=a+2bを採用することが望ましい。例えばa=15cm、b=10cmの場合には、L≦a+2b=15+20=35cmとなる。
The width a, the length b, and the interval L between the stages satisfying the various conditions as described above are set as follows.
(A) Setting of the width a of the internal pressure reducing blade 22 Based on the above (8), the width a is A1 when the point A0 of the outer peripheral end of the internal pressure relaxing blade 22 is moved by the width a when the rotating shaft 14 makes one rotation. To be more than the dimension to reach
a ≧ β / α
Set with the following formula. β is the penetration speed per unit time, generally 50 to 150 cm / min, and α is the number of rotations per unit time, generally 16 to 20 times / min. For example, when β = 100 and α = 20, a = 5 cm or more is set.
(A) Setting of length b of protrusion of internal pressure relaxation blade 22 Based on (9), the length is set by the following equation.
D / 4 ≦ b ≦ D / 2
The diameter of the rotating shaft 14 is generally 26.7 cm or 31.6 cm. However, if 26.7 cm, 6.7 ≦ b ≦ 13.4 and b ≧ 6.7 cm.
(C) Setting of the attachment interval L of the internal pressure relaxation blades 22 Based on the above (7), L is narrower in the case of clay than in the case of sand. However, since the ground 10 is rarely made of clay or sand, it is desirable to use the narrower L = a + 2b in order to apply to any of them. For example, when a = 15 cm and b = 10 cm, L ≦ a + 2b = 15 + 20 = 35 cm.

このようにして設定された内圧緩和翼22で地盤10を攪拌すると、粘土の場合は、図3(a)のように斜線で囲まれた地盤10が破壊される。回転軸14は、図中の矢印の方向に貫入するから、回転軸14の外周が確実にほぐされて内圧が緩和される。なお、図3(a)においては、内圧緩和翼22が、回転軸14の外周に180度の間隔で取り付けられているため、回転軸14の外周の略同一箇所が2重にほぐされる。したがって、左右のいずれか1個の内圧緩和翼22だけであっても所期の目的は達成できる。   When the ground 10 is agitated by the internal pressure relaxation blades 22 set in this way, in the case of clay, the ground 10 surrounded by diagonal lines is destroyed as shown in FIG. Since the rotating shaft 14 penetrates in the direction of the arrow in the figure, the outer periphery of the rotating shaft 14 is reliably loosened and the internal pressure is relieved. In FIG. 3A, since the internal pressure relaxation blades 22 are attached to the outer periphery of the rotating shaft 14 at an interval of 180 degrees, substantially the same portion of the outer periphery of the rotating shaft 14 is loosened twice. Therefore, the intended purpose can be achieved even with only one of the left and right internal pressure relief blades 22.

また、図3(b)に示すように、地盤10が砂の場合は、斜線で示された破壊範囲が粘土の場合よりも広いので、一部重なり合って破壊される。この例でも、内圧緩和翼22が、回転軸14の外周に180度の間隔で取り付けられているため、回転軸14の外周の略同一箇所が2重にほぐされる。したがって、左右のいずれか1個の内圧緩和翼22だけであっても所期の目的は達成できるが、粘着力により内圧が回復する場合があるので対の2個の方が望ましい。   Further, as shown in FIG. 3B, when the ground 10 is sand, the destruction range indicated by oblique lines is wider than that of clay, so that the ground 10 is partially overlapped and destroyed. Also in this example, since the internal pressure relief blades 22 are attached to the outer periphery of the rotating shaft 14 at an interval of 180 degrees, substantially the same portion of the outer periphery of the rotating shaft 14 is loosened twice. Accordingly, the desired purpose can be achieved by using only one of the left and right internal pressure relief blades 22, but the internal pressure may be restored by the adhesive force, so two pairs are preferable.

以上のように構成された本発明の内圧緩和翼及びこの内圧緩和翼を用いた深層混合処理装置による実証試験結果を説明する。
実証試験は、図5に示すような従来の仕様(1)と、本発明の3種類の仕様(2)(3)(4)の4種類の仕様で行われた。
この図5において、「径mm」は、回転する撹拌翼16の直径で、断面形状、段数は、共通とする。「圧縮空気」は、セメントスラリーと合流する圧縮空気が有は〇、無は×とし、「内圧緩和翼」は、図2(a)に示した内圧緩和翼22が有は〇、無は×とし、「流動添加剤」は、アルカリ金属炭酸塩、無機塩化物、高分子系分散剤で構成されるセメントスラリーに添加する流動添加剤で、有は〇、無は×とする。
地盤10は、地盤の層は、図6(a)(b)に示すように、深度0〜5mがN値8の埋土、深度5〜10mがN値20の砂質土、深度10〜15mがN値13の砂質土、深度15〜17mがN値4の粘性土、深度17〜20mがN値3の粘性土とした。
また、駆動部17は、同一規格のモーターを使用し、その電流値を測定した。
The results of demonstration tests using the internal pressure relaxation blade of the present invention configured as described above and a deep mixing treatment apparatus using the internal pressure relaxation blade will be described.
The verification test was performed with the conventional specification (1) as shown in FIG. 5 and the four types of specifications (2), (3), and (4) of the present invention.
In FIG. 5, “diameter mm” is the diameter of the rotating stirring blade 16, and the cross-sectional shape and the number of steps are the same. “Compressed air” means that the compressed air that merges with the cement slurry is “Yes” or “No”, and “Internal pressure relief blade” means that the internal pressure relief blade 22 shown in FIG. The “fluid additive” is a fluid additive added to a cement slurry composed of alkali metal carbonate, inorganic chloride, and a polymer dispersant.
As shown in FIGS. 6 (a) and 6 (b), the ground layer 10 is a buried soil having an N value of 8 at a depth of 0 to 5m, a sandy soil having an N value of 20 at a depth of 5 to 10m, and a depth of 10 to 10. 15 m is sandy soil having an N value of 13, 15 to 17 m deep is viscous soil having an N value of 4, and 17 to 20 m deep is viscous soil having an N value of 3.
Moreover, the drive part 17 used the motor of the same specification, and measured the electric current value.

以上のような条件で貫入の試験をしたところ、図6(a)に示すような結果が得られた。
従来の回転軸(1)(径1,000mm、圧縮空気×、内圧緩和翼×、流動添加剤×)では、深度0〜5mで130〜230A、深度5〜10mで180〜300A、深度10〜15mで地盤10〜180A、深度15〜20mで120Aであった。
本発明の回転軸(2)(径1,600mm、圧縮空気×、内圧緩和翼〇、流動添加剤×)では、深度0〜5mで100〜150A、深度5〜10mで30〜130A、深度10〜15mで30〜110A、深度15〜20mで120〜130Aであった。
本発明の回転軸(3)(径1,600mm、圧縮空気〇、内圧緩和翼〇、流動添加剤〇)では、深度0〜20mで20〜30Aであった。
本発明の回転軸(4)(径1,600mm、圧縮空気〇、内圧緩和翼〇、流動添加剤×、事前削孔あり)では、深度0〜5mで30〜100A、深度5〜10mで100A、深度10〜15mで100〜120A、深度15〜20mで120〜130Aであった。
以上のように、回転軸14に適正な寸法の内圧緩和翼22を設けることで、大口径になっても逆に貫入時の攪拌抵抗値が大幅に減少することが判明した。
When the penetration test was performed under the above conditions, the result shown in FIG. 6A was obtained.
In the conventional rotating shaft (1) (diameter 1,000 mm, compressed air x, internal pressure relaxation blade x, fluid additive x), the depth is 0 to 5 m, 130 to 230 A, the depth 5 to 10 m, 180 to 300 A, the depth 10 to 10. The ground was 10 to 180 A at 15 m and 120 A at a depth of 15 to 20 m.
In the rotating shaft (2) of the present invention (diameter 1,600 mm, compressed air x, internal pressure relaxation blade O, fluid additive x), the depth is 0 to 5 m, 100 to 150 A, the depth 5 to 10 m, 30 to 130 A, the depth 10 It was 30 to 110 A at ˜15 m, and 120 to 130 A at a depth of 15 to 20 m.
In the rotating shaft (3) of the present invention (diameter 1,600 mm, compressed air ◯, internal pressure relaxation blade ◯, fluid additive ◯), the depth was 20 to 30 A at a depth of 0 to 20 m.
In the rotating shaft (4) of the present invention (diameter 1,600 mm, compressed air ○, internal pressure relaxation blade ○, fluid additive ×, pre-drilled), 30 to 100 A at a depth of 0 to 5 m, 100 A at a depth of 5 to 10 m. The depth was 100 to 120 A at a depth of 10 to 15 m, and 120 to 130 A at a depth of 15 to 20 m.
As described above, it has been found that by providing the internal pressure relaxation blade 22 of an appropriate size on the rotating shaft 14, the stirring resistance value at the time of penetration is greatly reduced even when the diameter becomes large.

次に引抜時は、図6(b)に示すような結果が得られた。
従来の回転軸(1)は、深度20mでの引抜開始時は、170Aと高いが、深度20〜12m程度までは、粘性土地盤のため100〜70Aにすぐに低下し、深度12〜9m程度まで70〜200Aまでは砂地盤のため上昇し、深度9〜0m程度まで200〜50Aまで略直線的に低下する。
本発明の回転軸(2)は、引抜開始の深度20〜15m程度までは、150〜220Aの間を上下動し、深度15〜10mまで150Aを推移し、深度9mの砂地盤で220Aまで上昇するが、以後内圧が0に減少する深度0mまでに50Aに直線的に低下する。
本発明の回転軸(3)は、深度20mでの引抜開始時は、220Aと高いが、流動添加剤の効果ですぐに70Aまで低下し、以後内圧が0に減少する深度0mまで60〜70Aを推移する。
本発明の回転軸(4)は、深度20〜10m程度までは、150〜220Aの間の上下動を繰り返し、深度10m以後深度0mまでに50Aに直線的に低下する。
以上のように、回転軸14に適正な寸法の内圧緩和翼22を設けることで、貫入時ほどではないが、従来の小さな径と本発明の大口径で引抜時の攪拌抵抗値に大きな変化がないことが判明した。
Next, at the time of drawing, a result as shown in FIG. 6B was obtained.
The conventional rotating shaft (1) is as high as 170A at the start of drawing at a depth of 20m, but it quickly decreases to 100-70A due to the viscous land, up to a depth of about 20-12m, and a depth of about 12-9m Up to 70-200A, it rises due to the sand ground, and decreases almost linearly to 200-50A up to a depth of about 9-0m.
The rotary shaft (2) of the present invention moves up and down between 150-220A up to a depth of about 20-15m at the start of drawing, changes 150A up to a depth of 15-10m, and rises up to 220A on a 9m deep sand ground. However, after that, it decreases linearly to 50 A by 0 m at which the internal pressure decreases to zero.
The rotating shaft (3) of the present invention is as high as 220A at the start of drawing at a depth of 20m, but immediately decreases to 70A due to the effect of the flow additive, and thereafter reaches 60m to 70m until the depth of 0m where the internal pressure decreases to 0. Transition.
The rotating shaft (4) of the present invention repeats vertical movement between 150 and 220A up to a depth of about 20 to 10 m, and linearly decreases to 50 A from a depth of 10 m to a depth of 0 m.
As described above, by providing the internal pressure relaxation blade 22 of an appropriate size on the rotary shaft 14, although not as much as when penetrating, there is a large change in the stirring resistance value at the time of drawing with the conventional small diameter and the large diameter of the present invention. Not found out.

内圧緩和翼22の配置は、図2(a)の場合に限られず、図2(b)又は図2(c)のように取り付けてもよい。
すなわち、図2(b)では、内圧緩和翼22は、中心角度を120度の間隔で、かつ、順次Lの間隔で螺旋状に多段に配置したものであり、また、図2(c)は、回転軸14の中心線に対して所定の角度θをもって配置した例を示している。この角度θは、回転軸14の貫入角度であってもよいし、それ以外でもよい。さらに、内圧緩和翼22の幅aは、単位時間当たりの貫入速度βが大きく、単位時間当たりの回転数αが少ないときには、β/αの数値に応じて広くしてもよい。
The arrangement of the internal pressure relief blades 22 is not limited to the case of FIG. 2A, and may be attached as shown in FIG. 2B or FIG.
That is, in FIG. 2 (b), the pressure relieving blade 22 at intervals of a central angle of 120 degrees, and are those arranged in multiple stages in a spiral at intervals of sequential L, also, and FIG. 2 (c) Shows an example in which the rotating shaft 14 is arranged with a predetermined angle θ with respect to the center line. This angle θ may be the penetration angle of the rotating shaft 14 or may be other than that. Further, the width a of the internal pressure relaxation blade 22 may be increased according to the numerical value of β / α when the penetration speed β per unit time is large and the rotational speed α per unit time is small.

図1の実施例では、回転軸14が1軸式の場合を説明したが、図4(a)(b)に示すように、径φの撹拌翼16を取り付けた2本の回転軸14を間隔xをもって配置した2軸式としてもよい。2軸の回転軸14は、上中下段が基部振れ止め部18で位置保持のために連結されている。   In the embodiment of FIG. 1, the case where the rotary shaft 14 is a single-shaft type has been described. However, as shown in FIGS. It is good also as a biaxial type arrange | positioned with the space | interval x. The two rotary shafts 14 are connected at the upper, middle, and lower stages by a base steadying portion 18 to maintain the position.

前記実施例における撹拌翼16は、従来は、板状翼を断面が45度に傾斜して回転軸14に取り付けていたが、図7(b)に示すように両側面を傾斜した台形とし、底面を水平にして回転軸14に取り付けたものとすることができる。
これは回転軸14を回転するための回転駆動部17に大きな抵抗がかからないようにするためである。
砂地盤における従来の撹拌翼を取り付けた回転軸14と本発明の台形翼を取り付けた回転軸14による実証試験の結果、図7(a)に示すような特性結果が得られた。
従来の45度の傾斜板の回転軸14(1)で、φ=1,000mmのときは、貫入時の最大貫入力は、400N・mで、引抜時の最大貫入力は、−700N・mであった。
本発明の台形翼を取り付けた回転軸14(2)で、φ=1200mmのときは、貫入時の最大貫入力は、500N・mで、引抜時の最大貫入力は、−400N・mであった。
本発明の台形翼を取り付けた回転軸14(3)で、φ=1,300mmのときは、貫入時の最大貫入力は、600N・mで、引抜時の最大貫入力は、−600N・mであった。
本発明の台形を取り付けた回転軸14(4)で、φ=1,500mmのときは、貫入時の最大貫入力は、750N・mで、引抜時の最大貫入力は、−750N・mであった。
以上の結果から貫入時は、従来のφ=1,000mmと本発明のφ=1,200mmが略等しく、引抜時は、従来のφ=1,000mmと本発明のφ=1,500mmが略等しいということが分かった。
Conventionally, the stirring blade 16 in the above example is a trapezoid whose both side surfaces are inclined as shown in FIG. The bottom surface may be horizontal and attached to the rotating shaft 14.
This is to prevent a large resistance from being applied to the rotation drive unit 17 for rotating the rotating shaft 14.
As a result of the demonstration test using the rotary shaft 14 with the conventional stirring blades attached to the sand ground and the rotary shaft 14 with the trapezoid blades of the present invention, characteristic results as shown in FIG. 7A were obtained.
When φ = 1,000 mm with the conventional rotating shaft 14 (1) of a 45 ° inclined plate, the maximum penetration force at the time of penetration is 400 N · m, and the maximum penetration force at the time of withdrawal is −700 N · m. Met.
When the rotary shaft 14 (2) to which the trapezoidal wing of the present invention is attached and φ = 1200 mm, the maximum penetration force at the time of penetration is 500 N · m, and the maximum penetration force at the time of withdrawal is −400 N · m. It was.
When the rotary shaft 14 (3) to which the trapezoidal wing of the present invention is attached and φ = 1,300 mm, the maximum penetration force at the time of penetration is 600 N · m, and the maximum penetration force at the time of withdrawal is −600 N · m. Met.
When the rotation shaft 14 (4) to which the trapezoid of the present invention is attached and φ = 1500 mm, the maximum penetration input at the time of penetration is 750 N · m, and the maximum penetration input at the time of withdrawal is −750 N · m. there were.
From the above results, the conventional φ = 1,000 mm and the present invention φ = 1,200 mm are substantially equal when penetrating, and the conventional φ = 1,000 mm and the present invention φ = 1,500 mm are substantially equal when pulled out. It turns out that they are equal.

本発明の回転軸14は、図7(b)に示す台形の場合に限られず、図7(c)に示すような半円形でも、また、図7(d)に示す半楕円形であっても同様の効果が得られる。
以上のように、本発明は、内圧緩和翼を取り付ける効果に加えて、攪拌翼を断面台形等とすることで、さらに貫入時と引抜時の抵抗の減少効果を得ることができる。
The rotating shaft 14 of the present invention is not limited to the trapezoidal shape shown in FIG. 7 (b), and may be a semicircular shape as shown in FIG. 7 (c) or a semi-elliptical shape as shown in FIG. 7 (d). The same effect can be obtained.
As described above, according to the present invention, in addition to the effect of attaching the internal pressure reducing blade, the effect of reducing the resistance at the time of penetration and at the time of drawing can be obtained by making the stirring blade a trapezoidal section or the like.

本発明は、セメントスラリーの流動性を高め、混合直後の土壌を流動化させる流動添加剤を混入して噴射するものとすることができる。図7に示すように、撹拌翼16の翼幅が小さいと攪拌混合の乱れが生じ難く、混合効率に問題が生じやすいため流動性のある流動添加剤を使用しその弊害をなくすことができる。深層混合処理改良体の良好な品質を確保するために、混合処理機の1分間当たりの貫入・引き抜き速度、攪拌羽根の段数、及び回転数などは、ある一定の基準値を満たす施工を行ってきたが、流動添加剤を使用することにより基準値を下げても同様の改良体の品質が確保され、施工効率の大幅なアップが見込まれ、施工コストを下げることが出来るなど経済的な施工が行える。   In the present invention, the fluidity of the cement slurry is increased and a fluid additive that fluidizes the soil immediately after mixing is mixed and sprayed. As shown in FIG. 7, when the blade width of the stirring blade 16 is small, disturbance of stirring and mixing is difficult to occur, and problems in mixing efficiency are likely to occur. Therefore, a fluid flow additive having fluidity can be used to eliminate the adverse effects. In order to ensure the good quality of the deep mixing process improvement body, the penetration / drawing speed per minute of the mixing processing machine, the number of stages of the stirring blade, the number of rotations, and the like have been performed to satisfy certain standard values. However, even if the standard value is lowered by using a fluid additive, the quality of the same improved body is ensured, the construction efficiency is expected to be significantly increased, and the construction cost can be reduced. Yes.

本発明は、セメントスラリーに圧縮空気を混入して噴射することができる。
硬質砂質地盤の貫入に対してセメントスラリーに圧縮空気を混合し、地盤の塑性破壊を起こして処理機の貫入引抜を補助し、また、粘性土層の引き抜き時に対しても圧縮空気により付着抵抗を減らす。セメントスラリーと共に地盤に供給される圧縮空気は、回転軸の外周部に配備された内圧緩和翼によってほぐされた地盤を伝って回転軸周辺より地表面に伝達される。圧縮空気は、造成中において地盤中又は周辺土壌中に留まることがなく、地表面に排出させるため、改良体に悪影響を及ぼさない。
内圧緩和翼は、回転軸に25cm〜50cmピッチで取り付けられており、回転軸の回転に伴って発生するほぐされた地盤を伝って速やかに地表に排出される。その場合にも、まだ固まらない混合物の流動性が必要となり流動添加剤を使用することによる効果がさらに増す。
In the present invention, compressed air can be mixed and injected into a cement slurry.
Compressed air is mixed into the cement slurry for penetration of hard sandy ground, causing plastic breakage of the ground to assist the penetration of the processing machine, and adhesion resistance by compressed air even when the viscous soil layer is pulled out Reduce. The compressed air supplied to the ground together with the cement slurry is transmitted to the ground surface from the periphery of the rotating shaft through the ground loosened by the internal pressure relief blades disposed on the outer peripheral portion of the rotating shaft. Compressed air does not stay in the ground or the surrounding soil during creation, and is discharged to the ground surface, so it does not adversely affect the improved body.
The internal pressure relief blades are attached to the rotary shaft at a pitch of 25 cm to 50 cm, and are quickly discharged to the ground surface along the loosened ground generated as the rotary shaft rotates. Even in that case, the fluidity of the mixture which has not yet solidified is required, and the effect of using a fluid additive is further increased.

10…地盤、11…ベースマシーン、12…リーダー、13…ステー、14…回転軸、15…掘削刃、16…撹拌翼、17…駆動部、18…基部振れ止め部、19…中間振れ止め部、20…セメントスラリー注入管、21…エアー注入管、22…内圧緩和翼、23…セメントスラリー吐出口、24…エアー噴出口、25…固化改良体、26…上部支持部。 DESCRIPTION OF SYMBOLS 10 ... Ground, 11 ... Base machine, 12 ... Leader, 13 ... Stay, 14 ... Rotating shaft, 15 ... Excavation blade, 16 ... Stirring blade, 17 ... Drive part, 18 ... Base steadying part, 19 ... Intermediate steadying part 20 ... Cement slurry injection pipe, 21 ... Air injection pipe, 22 ... Internal pressure relief blade, 23 ... Cement slurry discharge port, 24 ... Air jet outlet, 25 ... Solidification improvement body, 26 ... Upper support part.

Claims (12)

先端部に掘削刃と撹拌翼を有する回転軸を回転しつつ地盤に貫入及び引抜して前記回転軸の先端部からセメントスラリーを吐出して地盤を攪拌混合して固化改良体を構築するようにした深層混合処理装置において、
前記回転軸における前記撹拌翼の上部に、前記回転軸の周りの地盤をほぐして前記回転軸に掛かる土圧を緩和する多段の内圧緩和翼を、その幅方向が前記回転軸の軸方向と略一致して設け、この内圧緩和翼は、次の条件を満足するように構成したことを特徴とする深層混合処理装置。
L≦a+2b
a≧β/α
D/4≦b≦D/2
ここでD:回転軸の直径
a:内圧緩和翼の幅
b:内圧緩和翼の長さ
L:回転軸における内圧緩和翼の取り付け間隔
β:回転軸の単位時間当たりの貫入速度
α:回転軸の単位時間当たりの回転数
While rotating the rotating shaft having the excavating blade and the agitating blade at the tip, it penetrates and withdraws into the ground, discharges the cement slurry from the tip of the rotating shaft, and stirs and mixes the ground to construct a solidified improved body In the deep mixing processing equipment
A multistage internal pressure relief blade that loosens the ground around the rotation shaft and relieves earth pressure applied to the rotation shaft above the stirring blade in the rotation shaft, the width direction of which is substantially the same as the axial direction of the rotation shaft. A deep mixing treatment apparatus characterized in that the internal pressure relief blades are provided so as to satisfy the following conditions.
L ≦ a + 2b
a ≧ β / α
D / 4 ≦ b ≦ D / 2
Where D: diameter of the rotating shaft a: width of the inner pressure relaxing blade b: length of the inner pressure relaxing blade L: interval between the inner pressure relaxing blades on the rotating shaft β: penetration speed per unit time of the rotating shaft α: of the rotating shaft Number of revolutions per unit time
内圧緩和翼は、少なくとも各段に1個を設けたことを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein at least one internal pressure relief blade is provided for each stage. 内圧緩和翼は、各段の中心角度を所定角度ずつずらして螺旋状に配置したことを特徴とする請求項1記載の深層混合処理装置。   The deep mixing treatment apparatus according to claim 1, wherein the internal pressure relaxation blades are arranged in a spiral shape with a center angle of each stage shifted by a predetermined angle. 内圧緩和翼は、各段に中心角度を180度ずらして2個設けるとともに、上下の段で中心角度を90度ずらして設けたことを特徴とする請求項2記載の深層混合処理装置。
Pressure relieving wing with a central angle providing two shifted 180 degrees to each stage, Deep Mixing apparatus according to claim 2, characterized in that provided by shifting the central angle of 90 degrees above and below the stage.
各段に中心角度を180度ずらして2個設けた内圧緩和翼は、回転軸の軸方向と直交する線上に配置したことを特徴とする請求項4記載の深層混合処理装置。   5. The deep mixing apparatus according to claim 4, wherein two internal pressure relief blades each having a central angle shifted by 180 degrees on each stage are arranged on a line orthogonal to the axial direction of the rotating shaft. 各段に中心角度を180度ずらして2個設けた内圧緩和翼は、回転軸の軸方向と90度以外の角度で交差する線上に配置したことを特徴とする請求項4記載の深層混合処理装置。   5. The deep mixing process according to claim 4, wherein the two internal pressure relief blades provided with the central angle shifted by 180 degrees at each stage are arranged on a line intersecting with the axial direction of the rotating shaft at an angle other than 90 degrees. apparatus. 撹拌翼は、縦断面が台形をしたものからなることを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein the stirring blade has a trapezoidal longitudinal section. 撹拌翼は、縦断面が半円又は半楕円形をしたものからなることを特徴とする請求項1記載の深層混合処理装置。   The deep mixing apparatus according to claim 1, wherein the stirring blade has a semicircular or semi-elliptical longitudinal section. セメントスラリーに圧縮空気を混入して噴射するものからなることを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein the cement slurry is injected with compressed air mixed therein. セメントスラリーに、セメントスラリーの流動性を高め、混合直後の土壌を流動化させる流動添加剤を混入して吐出するものからなることを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein the cement slurry is discharged by mixing a fluid additive that enhances the fluidity of the cement slurry and fluidizes the soil immediately after mixing. 回転軸は、1軸式からなることを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein the rotating shaft is a single-shaft type. 回転軸は、多軸式からなることを特徴とする請求項1記載の深層混合処理装置。   2. The deep mixing apparatus according to claim 1, wherein the rotating shaft is a multi-shaft type.
JP2017130225A 2017-07-03 2017-07-03 Deep layer processing equipment using internal pressure relief blades Active JP6274347B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017130225A JP6274347B1 (en) 2017-07-03 2017-07-03 Deep layer processing equipment using internal pressure relief blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017130225A JP6274347B1 (en) 2017-07-03 2017-07-03 Deep layer processing equipment using internal pressure relief blades

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017078859A Division JP6198094B1 (en) 2017-04-12 2017-04-12 Setting method of internal pressure relief blade

Publications (2)

Publication Number Publication Date
JP6274347B1 true JP6274347B1 (en) 2018-02-07
JP2018178689A JP2018178689A (en) 2018-11-15

Family

ID=61158356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017130225A Active JP6274347B1 (en) 2017-07-03 2017-07-03 Deep layer processing equipment using internal pressure relief blades

Country Status (1)

Country Link
JP (1) JP6274347B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7150656B2 (en) * 2019-03-29 2022-10-11 株式会社不動テトラ Ground Displacement Control Method for Slurry Agitation Deep Mixing Method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184030A (en) * 1994-12-27 1996-07-16 Onoda Kemiko Kk Ground improvement method and device thereof
JPH08232257A (en) * 1994-12-28 1996-09-10 Raito Kogyo Co Ltd Device for improving foundation
JPH0931968A (en) * 1995-07-19 1997-02-04 Shimizu Corp Method and device for soil improvement
JPH11254425A (en) * 1998-03-11 1999-09-21 Lion Corp Method for building additive composition for soil cement and consolidated material for soil cement
JP2000290993A (en) * 1999-04-07 2000-10-17 Fudo Constr Co Ltd Method and device for soil mixing process
JP2017048508A (en) * 2015-08-31 2017-03-09 株式会社大林組 Sampling device, connecting body of sampling devices, and manufacturing method of soil cement improvement body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184030A (en) * 1994-12-27 1996-07-16 Onoda Kemiko Kk Ground improvement method and device thereof
JPH08232257A (en) * 1994-12-28 1996-09-10 Raito Kogyo Co Ltd Device for improving foundation
JPH0931968A (en) * 1995-07-19 1997-02-04 Shimizu Corp Method and device for soil improvement
JPH11254425A (en) * 1998-03-11 1999-09-21 Lion Corp Method for building additive composition for soil cement and consolidated material for soil cement
JP2000290993A (en) * 1999-04-07 2000-10-17 Fudo Constr Co Ltd Method and device for soil mixing process
JP2017048508A (en) * 2015-08-31 2017-03-09 株式会社大林組 Sampling device, connecting body of sampling devices, and manufacturing method of soil cement improvement body

Also Published As

Publication number Publication date
JP2018178689A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
JP6274347B1 (en) Deep layer processing equipment using internal pressure relief blades
JP3220925U (en) Auger device for liquefaction prevention ground improvement construction
JP2009030338A (en) Soil bearing power reinforcing construction method for soft ground
JP6045907B2 (en) Anti-rotation blade for agitator and mixer
JP6198094B1 (en) Setting method of internal pressure relief blade
JP2007255064A (en) Jet mixing construction method
JP6076383B2 (en) Ground improvement pile construction method and ground improvement pile construction equipment
JP5512752B2 (en) Drilling auger head
JP4796197B2 (en) Ground improvement body construction apparatus and ground improvement body construction method
JP3158053U (en) Ground improvement body construction equipment
JP3748024B2 (en) Method for reducing soil discharge of synthetic steel pipe piles
JP5597232B2 (en) Ground improvement device and residual soil discharge suppression body of ground improvement device
JP2013057194A (en) Rotary penetration steel pipe pile and construction method of foundation pile having foot protection
JP5163711B2 (en) Threaded pile and method of construction
JP2017197909A (en) Drilling/agitation head for installing steel pipe soil cement pile
JP6851196B2 (en) Pile structure and construction method of pile structure
JP7051567B2 (en) Excavation agitation head
JP5161896B2 (en) Ground improvement device
JP6074472B2 (en) Ground excavation method and excavator
JP6101732B2 (en) Ground improvement method
JP6553101B2 (en) Ground improvement stirring device
JP4867045B2 (en) Column replacement construction method
JP2017014869A (en) Auger screw and ground reinforcement method
JP6374430B2 (en) Ground improvement method and ground improvement device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171207

R150 Certificate of patent or registration of utility model

Ref document number: 6274347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250