JP3842120B2 - Droplet discharge head and inkjet recording apparatus - Google Patents

Droplet discharge head and inkjet recording apparatus Download PDF

Info

Publication number
JP3842120B2
JP3842120B2 JP2001376884A JP2001376884A JP3842120B2 JP 3842120 B2 JP3842120 B2 JP 3842120B2 JP 2001376884 A JP2001376884 A JP 2001376884A JP 2001376884 A JP2001376884 A JP 2001376884A JP 3842120 B2 JP3842120 B2 JP 3842120B2
Authority
JP
Japan
Prior art keywords
nozzle
liquid chamber
forming member
pressurized liquid
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001376884A
Other languages
Japanese (ja)
Other versions
JP2003175597A (en
Inventor
滋 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001376884A priority Critical patent/JP3842120B2/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to CN2008101087558A priority patent/CN101284450B/en
Priority to CNB02816878XA priority patent/CN100398322C/en
Priority to PCT/JP2002/012790 priority patent/WO2003049951A1/en
Priority to EP02783792A priority patent/EP1453680B1/en
Priority to US10/487,012 priority patent/US7232202B2/en
Priority to DE60237229T priority patent/DE60237229D1/en
Publication of JP2003175597A publication Critical patent/JP2003175597A/en
Application granted granted Critical
Publication of JP3842120B2 publication Critical patent/JP3842120B2/en
Priority to US11/800,270 priority patent/US7571984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液滴吐出ヘッド及びインクジェット記録装置に関し、詳細には結晶方位を有するシリコン単結晶基板に微細な形状を形成するための加工方法、液滴吐出ヘッドに使用する加圧液室を構成するシリコン単結晶基板の加工方法及びその形状に関する。
【0002】
【従来の技術】
インクジェット記録装置は記録時の騒音が極めて小さいこと、高速印字が可能なこと、インクの自由度が高く安価な普通紙を使用できることなど多くの利点を有する。この中でも記録の必要なときにのみインク液滴を吐出する、いわゆるインク・オン・デマンド方式が記録に不要なインク液滴の回収を必要としないため現在主流となっている。このインク・オン・デマンド方式の液滴吐出ヘッドには駆動手段が圧電素子であるもの(特公平2−51734号公報)やインクを加熱して気泡を発生させ、その圧力でインクを吐出させる方法(特公昭61−59911号公報)、駆動手段に静電気力を利用したもの(特開平5−50601号公報)などがある。この中でもノズル開口が形成されたノズルプレートと振動板とをスペーサの両面に接着して圧力室を形成し、振動板を圧電振動子により変形させる形式の液滴吐出ヘッドは、インク滴を飛翔させるための駆動源として熱エネルギーを使用しないため熱によるインクの変質がなく特に熱により劣化しやすいカラーインクを吐出させることが可能である。しかも圧電振動子の変位量を調整してインク滴のインク量を自在に調節することが可能であるため高品質なカラー印刷のためのプリンタを構成するのに最適なヘッドである。
【0003】
一方、液滴吐出ヘッドを用いてより品質の高いカラー印刷を行おうとすると、一層高い解像度が要求されるため、圧電振動子やスペーサ部材の隔壁等のサイズが必然的に小さくなって、部材の加工や部材の組み立てに高い精度が要求される。このため比較的簡単な手法で微細な形状を高い精度で加工が可能なシリコン単結晶基板の異方性エッチングを用いた部品製作技術、いわゆるマイクロマシニング技術を適用して液滴吐出ヘッドを構成する部材を加工することが検討され、種々な技術や手法が提案されている。このような単結晶シリコンを使用したスペーサは機械的剛性が高いため、圧電振動子の変形に伴う記録ヘッド全体のたわみを小さくできるとともにエッチングを受けた壁面が表面に対してほぼ垂直であるため圧力発生室を均一に構成することが可能であるという大きな利点を備えている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例によれば、エッチングが結晶方位に依存するため液滴吐出ヘッドの圧力発生室として理想的な形状に加工することが困難で、インクの淀みや気泡の停滞を招きやすい、またヘッド組み立て時の接着剤が毛細管効果により接合部の反対面に流れ込んでしまう等の不都合を抱えている。このような課題に対して、特開平7−178908号公報に示されているように異方性エッチングにより生ずる鋭角部を無くし、6面で囲む提案があるが、この場合は高次面が発生してしまい、制御が難しいという問題がある。また、高次面からなるので表面がガタガタでインク流れを阻害するといった問題がある。
【0005】
本発明はこれらの問題点を解決するためのものであり、インクの流れが滑らかで、接着剤の流入のないシリコン単結晶基板の異方性エッチングにより加工した圧力室、インク供給口を備えた、液滴吐出ヘッド及びインクジェット記録装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記問題点を解決するために、本発明の液滴吐出装置は、液滴が吐出されるノズルを有するノズル形成部材と、このノズル形成部材と接合された連通管と、この連通管介してノズルと連通する加圧液室と、この加圧液室を加圧する振動板とを備えている。更に、本発明の液滴吐出装置によれば、通管及び加圧液室は、面方位(110)のシリコン単結晶基板の異方性エッチングで形成されており、連通管は、ノズル形成部材との接合面における平面形状が全ての辺が鈍角で接する六角形を有し、接合面と平行で連通管の連通方向中央部における断面形状が平行四辺形である。よって、ノズル形成部材と加圧液室とを接着剤で接合する際に毛細管効果による接着剤の連通管内部への流入を防止することが可能であるため接着剤の流入による液滴の噴射曲がり等の不具合をなくすことができ、また気泡の停滞がなくインクの流れに淀みがない形状であるために、気泡滞留による噴射ダウンのない高信頼性の液滴吐出ヘッドを提供することができる。
【0007】
また、別の発明としてのインクジェット記録装置は、上記液滴吐出ヘッドを搭載したことに特徴がある。よって、接着剤の連通管内部への流入を防止することが可能であり、また気泡の停滞を防止することが可能な液滴吐出ヘッドを使用した高信頼性のインクジェット記録装置を提供することができる。
【0014】
【発明の実施の形態】
本発明の液滴吐出ヘッドは、シリコンの異方性エッチングにより生ずる略平行四辺形形状のノズル接合面側及び振動板接合面側の鋭角部を無くして鈍角により接する形状にすることにより、気泡の停滞を招きやすい箇所に傾斜部を設けることによりインクの流れを滑らかにすること、またヘッド組み立て時、特に加圧液室形成部材とノズルあるいは振動板の接合時の接着剤が連通管内部へ流入することを防止して接着剤流入による組み立て不良の防止また接着剤の流入による噴射曲がりの防止できる。
【0015】
【実施例】
図1は本発明の一実施例に係る液滴吐出ヘッドの構成を示す分解斜視図である。同図において、本実施例の液滴吐出ヘッド100は、ノズル板101、加圧液室形成部材102、振動板103及びアクチュエータ形成部材104を含んで構成されている。ノズル板101にはインク滴を飛翔させるための微細孔である多数のノズル孔105を各加圧液室106の先端部分に対応して形成されており、このノズル孔105の径は20〜35μmである。このノズル板101は例えば電鋳工法によって製造したNiの金属プレートを用いているが、シリコンやその他金属材料、あるいはポリイミド等の樹脂フィルムを用いることができる。なお、ノズル板101には撥水性の表面処理膜を成膜している。加圧液室形成部材102はシリコンで形成されており、シリコン基板の面方位は(110)を使用している。このように、(110)基板を使用することにより、ノズルのピッチ方向に対して垂直に加圧液室106を形成することができるため、微細化、狭ピッチ化に有利となる。加圧液室形成部材102には、各ノズル孔105の連通する連通管107と加圧液室106が形成されている。各ノズル孔105へ連通する連通管107は、例えばドライエッチング法と異方性エッチング方法により形成されている。加圧液室106及び共通液室108はSiの異方性エッチング方により形成されている。また、シリコンの加圧液室形成部材102の表面には酸化膜が形成されている。酸化膜が形成されていることで、インクに対して溶出しにくく、また濡れ性も向上するため気泡の滞留が生じにくい構造となる。これは酸化膜に限らず窒化チタン(TiN)膜、またはポリイミド膜でもかまわない。また、振動板103はNi電鋳工法で形成した金属プレートからなり、この振動板103の振動機能部は圧電素子内の非駆動部に接合する梁部109と圧電素子内の駆動部と接合する島状の凸部110と、この凸部110の周囲に形成した厚み2〜10μm程度の最薄膜部分111(ダイヤフラム領域)とからなる。更に、アクチュエータ形成部材104はセラミックス基板、例えばチタン酸バリウム、アルミナ、フォルステライトなどの絶縁性の基板上に電気機械変換素子である複数の積層型圧電素子を列状に2列配列して接合して構成され、これら2列の各圧電素子をダイシングにより切断を行っている。なお、各列の複数の圧電素子はチャンネル方向で駆動波形を印加する駆動部112と駆動波形を印加しない非駆動部113を交互に構成している。ここで圧電素子は厚さ10〜50μm/層のチタン酸ジルコン酸(PZT)と厚さ数μm/層の銀パラジューム(AgPd)からなる内部電極とを交互に積層したものである。圧電素子を厚さ10〜50μm/層の積層型とすることによって低電圧駆動を可能としている。なお、電気機械変換素子としてPZTに限られるものではない。そして、この圧電素子の内部電極を交互に端面に取り出して端面電極として一方基板上に共通電極パターン及び個別電極パターンを駆動部となる圧電素子の端面電極に導電性接着剤等を介して電気的に接続し、共通電極パターン及び共通電極パターンに接続したFPCケーブルを介してPCB基板と接続して駆動部に駆動波形を印加することによって積層方向の伸びの変位を発生させる。
【0016】
図2は本実施例における液滴吐出ヘッドの加圧液室形成部材の構造を示す断面図である。図2の(a)は片面流路方式の構造を示す断面図、図2の(b)は両面流路方式の構造を示す断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。図2の(a)に示す片面流路方式の構造において、加圧液室形成部材102は、加圧液室106と、加圧液室106とノズルとを連通する連通管107とからなる。また、図2の(b)に示す両面流路方式の構造において、インクがノズルへと流れる流路がノズル面側201と振動板側202の2箇所形成されており高周波数での駆動時でもインクのリフィルを十分に確保できる構造となっている。インクは加圧液室106にて振動板を圧電素子により変形させることで加圧され連通管107を通ってノズルへと向かう。加圧されたインクはノズルより噴射される。
【0017】
ここで、本実施例と従来例とを比較してみると、図3の(a),(b)は従来例で加圧液室形成部材の上面図と、加圧液室形成部材のノズル接合面及び振動板接合面を示す上面図である。同図の(a)に示すように、ノズル接合面での連通管開口部の形状は略平行四辺形をしており、図中実線○で囲まれた部分の鋭角によりなる2つの角部と図中点線○で囲まれた部分の鈍角からなる2つの角部により囲まれている。このように、図3の(a)の実線○で囲まれた部分の鋭角の角部には気泡が停滞しやすくまたインク流れが滞りやすい形状となっている。また、同図の(b)に示すように、振動板接合部の連通管直下の形状は、図中実線○で囲まれた部分の鋭角によりなる1つの角部を含む3辺により形成されている。この形状の場合は、ノズルあるいは振動板との接合を接着剤にて行う際に毛細管効果により鋭角部では接着剤が連通管内部に流入してしまい、噴射不良や噴射曲がりの原因となってしまう。
【0018】
一方、図4の(a),(b)は本実施例による加圧液室形成部材の上面図と、本実施例の加圧液室形成部材のノズル接合面及び振動板接合面の上面図である。同図の(a)に示すように、本実施例のノズル接合面は図中実線○で囲まれた6つの部分の鈍角で接する六辺で形成されている。また、同図の(b)に示すように、振動板接合面は図中実線○で囲まれた部分の鈍角で接する四辺で形成されている。このために従来例で生じていたような毛細管効果により鋭角部で接着剤が連通管内部に流入してしまうこともなく、噴射不良や噴射曲がりといった不具合も生じない形状となっている。
【0019】
次に、図5の(a)は従来例における加圧液室形成部材の1ビット分の斜視図、図5の(b)は本実施例における加圧液室形成部材の1ビット分の斜視図である。図5の(a)に示す従来例によれば、図中実線○で囲まれた2つの鋭角の角部には気泡が停滞しやすくまたインク流れが滞りやすい形状となっている。一方、図5の(b)に示す本実施例によれば、連通管直下のノズルと接合される面がノズルと接合される面と垂直な4面の壁(A,B,C,D)とノズルと接合される面と鈍角で接する2面の壁(E,F)とで形成されており、また連通管直下の振動板と接合される面が振動板と接合される面と垂直な3面の壁(A,C,D)とノズルと接合される面と鈍角で接する1面の壁(G)とで形成されているために気泡の停滞がなく、更にインク流れの滞りもないため噴射ダウン等の不具合が生じない高信頼性の液滴吐出ヘッドを形成できる形状となっている。また、本実施例によれば、図5の(b)に示すように、連通管の形状がノズル面では表面は鈍角で囲まれた6辺で囲まれているのに対して連通管内部では4辺で囲まれた形状になっている。このような形状にすることで、従来例の1つである特開平7−178908号公報に示されているような高次面が発生してしまい、制御が難しいという問題もなく、また高次面からなるので表面がガタガタでインク流れを阻害するといった問題があるも解決することが可能となる。
【0020】
図6は本発明の一実施例に係る液滴吐出ヘッドの加圧液室形成部材の製造工程を示す断面図である。先ず、図6の(a)に示すように、厚さ400μmのシリコン基板(110)601を用意し、厚さ1.0μmのシリコン酸化膜602及び0.2μmのLP−CVD窒化膜603を形成する。次に、図6の(b)に示すように、ノズル接合面に連通管形成パターン605と接合時の余剰接着剤を流れ込ませる肉抜きパターン606の形状にレジストのパターニング604を行い、その後窒化膜603をドライエッチングにてパターニングを行う。この連通管形成パターンは鈍角で接する6辺によって形成された形状となっている。次に、図6の(c)に示すように、レジストのパターニング607を行い、その後シリコン酸化膜602を連通管形成パターン608の形状にドライエッチングにてパターニングを行う。その後、図6の(d)に示すように、加圧液室のパターン610及び振動板との接合時の余剰接着剤を流れ込ませる肉抜きパターン609の形状にレジストのパターニングを行い、その後窒化膜604のパターニングをノズル面同様ドライエッチングにて行う。次に、図6の(e)に示すように連通管形成パターン612の形状にシリコン酸化膜602のパターニングを行う。その後、図6の(f)に示すように、ICPドライエッチャーを使用して連通管形状613のパターニングを行う。この際のレジスト611の膜厚は8μmにて行った。ICPエッチャーを使用してのドライエッチングは300μmの深さまで行った。その後、図6の(g)に示すようにレジスト611を除去して水酸化カリウム水溶液によりシリコンの異方性エッチングを行い、連通管614を貫通させた。水酸化カリウム水溶液による連通管614の貫通工程ではノズル面側、振動板側両面よりエッチングを行う。連通管貫通直後は異方性エッチングによる傾斜部が発生するが、本実施例ではこの傾斜部をこの連通管貫通工程にて後退させて傾斜部全てのエッチングを行った。その後、図6の(h)に示すように、窒化膜604をマスクとして希ふっ酸によりシリコン酸化膜602のウェットエッチング615を行う。そして、図6の(i)に示すように、再度水酸化カリウム水溶液によりシリコンの異方性エッチングを行い、加圧液室部616及び肉抜き部617の形成を行う。最後に、図6の(j)に示すように、窒化膜604及びシリコン酸化膜602の除去を行い、その後耐インク接液膜としてシリコン酸化膜を1μmの厚さで形成してインクジェット用加圧液室形成部材の形成を行った。
【0021】
このように、本実施例ではノズル形成部材との接合面は鈍角で接する六辺で形成されており、振動板との接合面は全て鈍角で接する辺で形成されている。ノズル形成部材及び振動板との接合面に鋭角部分を形成しないことで後工程のノズル形成部材及び振動板との接合時に毛細管効果により接着剤が連通管内に進入することを防ぐことができる。また、連通管内部及び加圧液室の高次面が形成されないことにより気泡の停滞が無く、インク流れも滞りなく行われるため高信頼性の液滴吐出ヘッドを形成することが可能となった。
【0022】
図7は本発明による加圧液室形成部材の別の製造工程を示す断面図である。先ず、図7の(a)に示すように、厚さ400μmのシリコン基板(110)701を用意し、厚さ1.0μmのシリコン酸化膜702及び0.2μmのLP−CVD窒化膜703を形成した。次に、図7の(b)に示すように、ノズル接合面にノズル面側流路パターン705と接合時の余剰接着剤を流れ込ませる肉抜きパターン706の形状にレジストのパターニング704を行い、その後窒化膜703をドライエッチングにてパターニングを行う。このノズル面側流路パターンの連通管直下の形状は鈍角で接する4辺によって形成された形状となっている。次に、図7の(c)に示すように、レジストのパターニング707を行い、シリコン酸化膜702を連通管パターン708の形状にドライエッチングにてパターニングを行う。その後、図7の(d)に示すように、加圧液室のパターン710及び振動板との接合時の余剰接着剤を流れ込ませる肉抜きパターン709の形状にレジストのパターニング及び窒化膜703のパターニングを行う。次に、図7の(e)に示すように、連通管形成パターン712の形状にシリコン酸化膜702のパターニングを行う。その後、図7の(f)に示すように、ICPドライエッチャーを使用して連通管形状713のパターニングを行う。この際のレジスト711の膜厚は8μmにて行った。次に、図7の(g)に示すように、レジスト711を除去して水酸化カリウム水溶液によりシリコンの異方性エッチングを行い、連通管714を貫通させた。その後、図7の(h)に示すように、窒化膜703をマスクとして希ふっ酸によりシリコン酸化膜702のウェットエッチング715を行う。そして、図7の(i)に示すように、再度水酸化カリウム水溶液によりシリコンの異方性エッチングを行い、加圧液室部716及びノズル面流路部717、肉抜き部718を形成した。最後に、図7の(j)に示すように、窒化膜703及びシリコン酸化膜702の除去を行い、その後耐インク接液膜としてシリコン酸化膜702を1μmの厚さで形成インクジェット用加圧液室形成部材の形成を行った。
【0023】
このように、本実施例ではノズル形成部材との接合面及び振動板との接合面が全て鈍角で接する辺で形成されている。ノズル形成部材及び振動板との接合面に鋭角部分を形成しないことで後工程のノズル形成部材及び振動板との接合時に毛細管効果により接着剤が連通管内に進入することを防ぐことができる。また連通管内部及び加圧液室の高次面が形成されないことにより気泡の停滞が無くインク流れも滞りなく行われるため高信頼性のインクジェットを形成することが可能となった。また、本実施例はノズル面側にもノズルへインクを供給する流路が形成されており、高周波駆動時でのインクのリフィルが十分確保することができ、高速印字が可能となった。
【0024】
次に、上記各実施例の液滴吐出ヘッドを有するインクジェット記録装置について説明する。
図8は別の発明のインクジェット記録装置の構成を示す概略断面図である。同図に示すように、インクジェット記録装置801は、シアンC、マゼンタM、イエローY、ブラックBKの各色のインクをそれぞれ収納した4個のインクカートリッジ802と、複数のノズルを有し各カートリッジ802からインクが供給される4個の液滴吐出ヘッド803と、インクカートリッジ802と液滴吐出ヘッド803を搭載したキャリッジ804と、記録紙を収納した給紙トレイ805a,805bや手差しテーブル806から記録紙を印字部807に搬送する搬送ローラ808と、印字した記録紙を排紙トレイ809に排出する排出ローラ810を有する。そして、ホスト装置から送られてくる画像データを記録紙に印字するときは、キャリッジ804をキャリッジローラ811に倣って走査しながら、搬送ローラ808により印字部807に送られた記録紙に液滴吐出ヘッド803のノズルから画像データに応じてインクを噴射して文字や画像を記録する。本発明のインクジェット記録装置に適用される液滴吐出ヘッド803は、上記各実施例の液滴吐出ヘッドであり、電極に電圧を印加することにより、当該電極とこれに対向して配置された振動板との間に静電気力により引力が働き、この静電気力によって振動板を変形させ、インク液滴をノズルより吐出させるものである。
【0025】
なお、本発明は上記実施例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。
【0026】
【発明の効果】
以上説明したように、本発明の液滴吐出装置は、液滴が吐出されるノズルを有するノズル形成部材と、このノズル形成部材と接合された連通管と、この連通管介してノズルと連通する加圧液室と、この加圧液室を加圧する振動板とを備えている。更に、本発明の液滴吐出装置によれば、通管及び加圧液室は、面方位(110)のシリコン単結晶基板の異方性エッチングで形成されており、連通管は、ノズル形成部材との接合面における平面形状が全ての辺が鈍角で接する六角形を有し、接合面と平行で連通管の連通方向中央部における断面形状が平行四辺形である。よって、ノズル形成部材と加圧液室とを接着剤で接合する際に毛細管効果による接着剤の連通管内部への流入を防止することが可能であるため接着剤の流入による液滴の噴射曲がり等の不具合をなくすことができ、また気泡の停滞がなくインクの流れに淀みがない形状であるために、気泡滞留による噴射ダウンのない高信頼性の液滴吐出ヘッドを提供することができる。
【0027】
また、別の発明としてのインクジェット記録装置は、上記液滴吐出ヘッドを搭載したことに特徴がある。よって、接着剤の連通管内部への流入を防止することが可能であり、また気泡の停滞を防止することが可能な液滴吐出ヘッドを使用した高信頼性のインクジェット記録装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る液滴吐出ヘッドの構成を示す分解斜視図である。
【図2】本実施例における液滴吐出ヘッドの加圧液室形成部材の構造を示す断面図である。
【図3】従来例で加圧液室形成部材と、加圧液室形成部材のノズル接合面及び振動板接合面を示す上面図である。
【図4】本実施例による加圧液室形成部材と、本実施例の加圧液室形成部材のノズル接合面及び振動板接合面の上面図である。
【図5】従来例と本実施例における加圧液室形成部材の1ビット分の斜視図である。
【図6】本発明の一実施例に係る液滴吐出ヘッドの加圧液室形成部材の製造工程を示す断面図である。
【図7】本発明に係る液滴吐出ヘッドの加圧液室形成部材の別の製造工程を示す断面図である。
【図8】別の発明のインクジェット記録装置の構成を示す概略断面図である。
【符号の説明】
100;液滴吐出ヘッド、101;ノズル板、102;加圧液室形成部材、
103;振動板、104;アクチュエータ形成部材、105;ノズル孔、
106;加圧液室、107;連通管、108;共通液室、
109;梁部、110;凸部、111;最薄膜部分、112;駆動部、
113;非駆動部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a droplet discharge head and an ink jet recording apparatus, and more particularly, a processing method for forming a fine shape on a silicon single crystal substrate having a crystal orientation, and a pressurized liquid chamber used for the droplet discharge head. The present invention relates to a processing method and a shape of a silicon single crystal substrate.
[0002]
[Prior art]
The ink jet recording apparatus has many advantages such as extremely low noise during recording, high speed printing, and the ability to use inexpensive plain paper with a high degree of ink freedom. Among them, a so-called ink-on-demand system that discharges ink droplets only when recording is necessary does not require collection of ink droplets that are not necessary for recording, and is currently mainstream. In this ink-on-demand type liquid droplet ejection head, the driving means is a piezoelectric element (Japanese Patent Publication No. 2-51734), or a method of heating ink to generate bubbles and ejecting ink with the pressure. (Japanese Patent Publication No. 61-59911) and those using electrostatic force as driving means (Japanese Patent Laid-Open No. 5-50601). Among these, a droplet discharge head of a type in which a pressure chamber is formed by adhering a nozzle plate having a nozzle opening and a diaphragm to both surfaces of a spacer, and the diaphragm is deformed by a piezoelectric vibrator causes ink droplets to fly. Since heat energy is not used as a drive source for this purpose, it is possible to discharge color ink that is not easily deteriorated by heat and that is particularly susceptible to heat deterioration. Moreover, since the amount of ink in the ink droplets can be freely adjusted by adjusting the displacement amount of the piezoelectric vibrator, it is an optimum head for constructing a printer for high-quality color printing.
[0003]
On the other hand, when performing higher-quality color printing using a droplet discharge head, higher resolution is required. Therefore, the size of the piezoelectric vibrator, spacer member partition walls, and the like is inevitably reduced. High precision is required for processing and assembly of members. For this reason, a droplet discharge head is configured by applying a part manufacturing technology using anisotropic etching of a silicon single crystal substrate capable of processing a fine shape with high accuracy by a relatively simple method, so-called micromachining technology. The processing of members has been studied, and various techniques and methods have been proposed. Since the spacer using single crystal silicon has high mechanical rigidity, it can reduce the deflection of the entire recording head due to the deformation of the piezoelectric vibrator and the etched wall is almost perpendicular to the surface. This has the great advantage that the generation chamber can be configured uniformly.
[0004]
[Problems to be solved by the invention]
However, according to the above conventional example, since etching depends on the crystal orientation, it is difficult to process into an ideal shape as a pressure generating chamber of a droplet discharge head, which easily causes ink stagnation and bubble stagnation. There is a disadvantage that the adhesive at the time of assembling the head flows into the opposite surface of the joint due to the capillary effect. In order to deal with such problems, there is a proposal to eliminate the acute angle portion caused by anisotropic etching and surround it with six faces as disclosed in JP-A-7-178908. Therefore, there is a problem that control is difficult. Further, since it is composed of higher-order surfaces, there is a problem that the surface is rattling and obstructs ink flow.
[0005]
The present invention is for solving these problems, and includes a pressure liquid chamber processed by anisotropic etching of a silicon single crystal substrate having a smooth ink flow and no inflow of an adhesive, and an ink supply port. It was, and to provide a droplet discharge head and an ink jet recording apparatus.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the droplet ejection apparatus of the present invention includes a nozzle member having a nozzle which droplets are ejected, and the communicating pipe is joined to the nozzle formation member, via the communication pipe A pressurizing liquid chamber communicating with the nozzle and a diaphragm for pressurizing the pressurizing liquid chamber are provided. Furthermore, according to the liquid droplet ejection apparatus of the present invention, the communicating pipe and pressurized liquid chamber is formed by anisotropic etching of the silicon single crystal substrate of plane orientation (110), the communicating pipe is a nozzle formed a contact Keru planar shape all edges at the interface between the member a hexagonal contact at an obtuse angle, is parallelogram cross-sectional shape in the extending direction central portion of the joint surface and parallel communication pipe. Therefore, when the nozzle forming member and the pressurized liquid chamber are joined with an adhesive, it is possible to prevent the adhesive from flowing into the communication pipe due to the capillary effect, and therefore, the droplet jetting bend due to the inflow of the adhesive. In addition, since it has a shape in which there is no stagnation of bubbles and there is no stagnation in the flow of ink, it is possible to provide a highly reliable droplet discharge head that is free from jetting down due to bubble retention.
[0007]
In addition, an ink jet recording apparatus as another invention is characterized in that the above-described droplet discharge head is mounted. Therefore, it is possible to provide a highly reliable inkjet recording apparatus using a droplet discharge head that can prevent the adhesive from flowing into the communication pipe and can prevent the stagnation of bubbles. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The droplet discharge head of the present invention eliminates the acute angle portions on the nozzle joint surface side and the diaphragm joint surface side of the substantially parallelogram shape generated by anisotropic etching of silicon, thereby making the shape of the bubble contact by obtuse angle. Smoothing the ink flow by providing an inclined part at a place where stagnation is likely to occur, and when the head is assembled, the adhesive flows into the communication pipe especially when the pressurized liquid chamber forming member and the nozzle or diaphragm are joined. Therefore, it is possible to prevent the assembly failure due to the inflow of the adhesive and the injection bending due to the inflow of the adhesive.
[0015]
【Example】
FIG. 1 is an exploded perspective view showing a configuration of a droplet discharge head according to an embodiment of the present invention. In the figure, a droplet discharge head 100 of this embodiment includes a nozzle plate 101, a pressurized liquid chamber forming member 102, a vibration plate 103, and an actuator forming member 104. The nozzle plate 101 is formed with a large number of nozzle holes 105, which are fine holes for flying ink droplets, corresponding to the tip portions of the pressurized liquid chambers 106. The diameter of the nozzle holes 105 is 20 to 35 μm. It is. The nozzle plate 101 uses, for example, a Ni metal plate manufactured by an electroforming method, but silicon, other metal materials, or a resin film such as polyimide can be used. Note that a water-repellent surface treatment film is formed on the nozzle plate 101. The pressurized liquid chamber forming member 102 is formed of silicon, and (110) is used as the surface orientation of the silicon substrate. Thus, by using the (110) substrate, the pressurized liquid chamber 106 can be formed perpendicularly to the pitch direction of the nozzles, which is advantageous for miniaturization and narrow pitch. The pressurizing liquid chamber forming member 102 is formed with a communication pipe 107 and a pressurizing liquid chamber 106 communicating with each nozzle hole 105. The communication pipe 107 communicating with each nozzle hole 105 is formed by, for example, a dry etching method and an anisotropic etching method. The pressurized liquid chamber 106 and the common liquid chamber 108 are formed by an anisotropic etching method of Si. Further, an oxide film is formed on the surface of the silicon pressurized liquid chamber forming member 102. The formation of the oxide film makes it difficult for the ink to elute from the ink and improves the wettability, thereby preventing the bubbles from staying. This is not limited to an oxide film, but may be a titanium nitride (TiN) film or a polyimide film. The vibration plate 103 is made of a metal plate formed by a Ni electroforming method. The vibration function portion of the vibration plate 103 is joined to a beam portion 109 that is joined to a non-drive portion in the piezoelectric element and a drive portion in the piezoelectric element. It consists of island-shaped convex portions 110 and a thinnest film portion 111 (diaphragm region) having a thickness of about 2 to 10 μm formed around the convex portions 110. Further, the actuator forming member 104 joins a plurality of stacked piezoelectric elements, which are electromechanical conversion elements, arranged in rows on a ceramic substrate, for example, an insulating substrate such as barium titanate, alumina, and forsterite. These two rows of piezoelectric elements are cut by dicing. Note that the plurality of piezoelectric elements in each column alternately configure a drive unit 112 that applies a drive waveform in the channel direction and a non-drive unit 113 that does not apply a drive waveform. Here, the piezoelectric element is formed by alternately laminating internal electrodes made of zirconate titanate (PZT) having a thickness of 10 to 50 μm / layer and silver palladium (AgPd) having a thickness of several μm / layer. Low voltage driving is enabled by using a piezoelectric element having a thickness of 10 to 50 μm / layer. The electromechanical conversion element is not limited to PZT. Then, the internal electrodes of the piezoelectric element are alternately taken out to the end face, and the common electrode pattern and the individual electrode pattern are electrically connected to the end face electrode of the piezoelectric element serving as the driving unit on the substrate through a conductive adhesive or the like. Are connected to the PCB substrate via the common electrode pattern and the FPC cable connected to the common electrode pattern, and a drive waveform is applied to the drive unit to generate a displacement in the stacking direction.
[0016]
FIG. 2 is a cross-sectional view showing the structure of the pressurized liquid chamber forming member of the droplet discharge head in this embodiment. FIG. 2A is a cross-sectional view showing the structure of a single-sided channel method, and FIG. 2B is a cross-sectional view showing the structure of a double-sided channel method. In the figure, the same reference numerals as those in FIG. 1 denote the same components. In the structure of single-sided channel system shown in FIG. 2 (a), pressurized liquid chamber forming member 102 includes a pressurized liquid chamber 106, consisting of the communicating pipe 107 for communicating the pressurized liquid chamber 106 and the nozzle. Further, in the double-sided flow path structure shown in FIG. 2B, two flow paths where ink flows to the nozzles are formed at the nozzle surface side 201 and the diaphragm side 202 , even when driven at a high frequency. It has a structure that can sufficiently secure ink refill. The ink is pressurized by deforming the vibration plate with a piezoelectric element in the pressurized liquid chamber 106 , and then passes through the communication pipe 107 toward the nozzle. The pressurized ink is ejected from the nozzle.
[0017]
Here, comparing this embodiment with the conventional example, FIGS. 3A and 3B show the top view of the pressurized liquid chamber forming member and the nozzle of the pressurized liquid chamber forming member in the conventional example. It is a top view which shows a joining surface and a diaphragm joining surface. As shown to (a) of the figure, the shape of the communicating pipe opening part in a nozzle joint surface is a substantially parallelogram, and the two corners which consist of the acute angle of the part enclosed by the continuous line (circle) in the figure, It is surrounded by two corners consisting of an obtuse angle of the part surrounded by a dotted line ○ in the figure. In this way, bubbles are likely to stagnate and the ink flow is likely to stagnate at the acute corners surrounded by the solid line ○ in FIG. Further, as shown in (b) of the figure, the shape immediately below the communication pipe of the diaphragm joint portion is formed by three sides including one corner portion formed by an acute angle of a portion surrounded by a solid line ○ in the drawing. Yes. In the case of this shape, the adhesive flows into the communication pipe at the acute angle portion due to the capillary effect when the nozzle or the diaphragm is joined with the adhesive, which causes injection failure or injection bending. .
[0018]
On the other hand, FIGS. 4A and 4B are a top view of the pressurized liquid chamber forming member according to the present embodiment, and a top view of the nozzle bonding surface and the diaphragm bonding surface of the pressurized liquid chamber forming member according to the present embodiment. It is. As shown in the same figure (a), nozzle connection surface of this embodiment is formed by six sides which meet at an obtuse angle of six parts surrounded by a solid line ○ in FIG. Moreover, as shown in (b) of the figure, the diaphragm joint surface is formed by four sides that are in contact with each other at an obtuse angle surrounded by a solid line ◯ in the figure. For this reason, the adhesive does not flow into the inside of the communication pipe at the acute angle due to the capillary effect that has occurred in the conventional example, and it has a shape that does not cause problems such as injection failure and injection bending.
[0019]
Next, FIG. 5A is a perspective view of 1 bit of the pressurized liquid chamber forming member in the conventional example, and FIG. 5B is a perspective view of 1 bit of the pressurized liquid chamber forming member in the present embodiment. FIG. According to the conventional example shown in FIG. 5A, bubbles are likely to stagnate and ink flow is likely to stagnate at two acute corners surrounded by a solid line ◯ in the figure. On the other hand, according to the present embodiment shown in FIG. 5B, four surfaces (A, B, C, D) in which the surface joined to the nozzle directly below the communication pipe is perpendicular to the surface joined to the nozzle. And the surface to be joined to the nozzle and the two walls (E, F) that are in contact with each other at an obtuse angle, and the surface to be joined to the diaphragm directly below the communication pipe is perpendicular to the face to be joined to the diaphragm. Since the three walls (A, C, D) and the one wall (G) in contact with the surface to be joined to the nozzle at an obtuse angle are formed, there is no stagnation of bubbles and no stagnation of ink flow. Therefore, it has a shape capable of forming a highly reliable droplet discharge head that does not cause problems such as ejection down. Further, according to the present embodiment, as shown in FIG. 5B, the shape of the communication tube is surrounded by six sides surrounded by an obtuse angle on the nozzle surface, whereas in the communication tube, The shape is surrounded by four sides. By adopting such a shape, a higher order surface as shown in JP-A-7-178908, which is one of the conventional examples, is generated, and there is no problem that control is difficult. Since it consists of surfaces, it is possible to solve the problem that the surface is rattling and obstructs ink flow.
[0020]
FIG. 6 is a cross-sectional view illustrating a manufacturing process of a pressurized liquid chamber forming member of a droplet discharge head according to an embodiment of the present invention. First, as shown in FIG. 6A, a silicon substrate (110) 601 having a thickness of 400 μm is prepared, and a silicon oxide film 602 having a thickness of 1.0 μm and an LP-CVD nitride film 603 having a thickness of 0.2 μm are formed. To do. Next, as shown in FIG. 6B, the resist patterning 604 is performed in the shape of the hollow pattern 606 in which the connecting pipe forming pattern 605 and surplus adhesive at the time of joining flow into the nozzle joining surface, and then the nitride film 603 is patterned by dry etching. This communication pipe formation pattern has a shape formed by six sides that contact at an obtuse angle. Next, as shown in FIG. 6C, resist patterning 607 is performed, and then the silicon oxide film 602 is patterned by dry etching into the shape of the communication tube formation pattern 608. Thereafter, as shown in FIG. 6 (d), the resist is patterned in the shape of a pattern 610 of the pressurized liquid chamber and a pattern of hollowing pattern 609 into which surplus adhesive at the time of bonding with the diaphragm is poured, and then the nitride film The patterning 604 is performed by dry etching like the nozzle surface. Next, as shown in FIG. 6E, the silicon oxide film 602 is patterned in the shape of the communication tube formation pattern 612. Thereafter, as shown in FIG. 6F, the communication pipe shape 613 is patterned using an ICP dry etcher. At this time, the thickness of the resist 611 was 8 μm. Dry etching using an ICP etcher was performed to a depth of 300 μm. Thereafter, as shown in FIG. 6G, the resist 611 was removed, and silicon was anisotropically etched with a potassium hydroxide aqueous solution, and the communication pipe 614 was penetrated. In the step of penetrating the communication pipe 614 with an aqueous potassium hydroxide solution, etching is performed from both the nozzle surface side and the diaphragm side. Immediately after penetrating the communicating pipe, an inclined portion is generated by anisotropic etching. In this embodiment, the inclined portion is retracted in the communicating pipe penetrating step and all the inclined portions are etched. Thereafter, as shown in FIG. 6H, wet etching 615 of the silicon oxide film 602 is performed with dilute hydrofluoric acid using the nitride film 604 as a mask. Then, as shown in FIG. 6 (i), anisotropic etching of silicon is again performed with a potassium hydroxide aqueous solution to form a pressurized liquid chamber portion 616 and a lightening portion 617. Finally, as shown in FIG. 6J, the nitride film 604 and the silicon oxide film 602 are removed, and then a silicon oxide film having a thickness of 1 μm is formed as an ink-proof liquid contact film, and pressure applied for inkjet A liquid chamber forming member was formed.
[0021]
Thus, the junction surface of the nozzle formation member in the present embodiment is formed in a hexagonal contact at an obtuse angle, the junction surface of the vibration rotation plate is formed with Sessu that side at all obtuse. By not forming an acute angle portion on the joint surface between the nozzle forming member and the diaphragm, it is possible to prevent the adhesive from entering the communicating pipe due to the capillary effect when joining the nozzle forming member and the diaphragm in the subsequent process. Further, there is no stagnation of air bubbles by the high-order surface of the communicating pipe interior and the liquid room is not formed, the ink flows also became possible to form a highly reliable liquid jet head to be done smoothly .
[0022]
FIG. 7 is a sectional view showing another manufacturing process of the pressurized liquid chamber forming member according to the present invention. First, as shown in FIG. 7A, a silicon substrate (110) 701 having a thickness of 400 μm is prepared, and a silicon oxide film 702 having a thickness of 1.0 μm and an LP-CVD nitride film 703 having a thickness of 0.2 μm are formed. did. Next, as shown in FIG. 7B, resist patterning 704 is performed in the shape of a lightening pattern 706 that allows the nozzle surface-side flow path pattern 705 and excess adhesive at the time of bonding to flow into the nozzle bonding surface. The nitride film 703 is patterned by dry etching. The shape immediately below the communication pipe of the nozzle surface side flow path pattern is a shape formed by four sides that contact at an obtuse angle. Next, as shown in FIG. 7C, resist patterning 707 is performed, and the silicon oxide film 702 is patterned into the shape of the communication tube pattern 708 by dry etching. After that, as shown in FIG. 7D, the resist patterning and the nitride film 703 patterning are performed in the shape of a pattern 710 in the pressurized liquid chamber and a pattern 709 in which surplus adhesive at the time of bonding to the diaphragm is allowed to flow. I do. Next, as shown in FIG. 7E, the silicon oxide film 702 is patterned into the shape of the communication tube formation pattern 712. Thereafter, as shown in FIG. 7F, the communication pipe shape 713 is patterned using an ICP dry etcher. At this time, the film thickness of the resist 711 was 8 μm. Next, as shown in FIG. 7G, the resist 711 was removed, and silicon was anisotropically etched with a potassium hydroxide aqueous solution, and the communication pipe 714 was penetrated. Thereafter, as shown in FIG. 7H, wet etching 715 of the silicon oxide film 702 is performed with dilute hydrofluoric acid using the nitride film 703 as a mask. Then, as shown in FIG. 7I, anisotropic etching of silicon was again performed with a potassium hydroxide aqueous solution to form a pressurized liquid chamber portion 716, a nozzle surface channel portion 717, and a lightening portion 718. Finally, as shown in FIG. 7 (j), the nitride film 703 and the silicon oxide film 702 are removed, and then the silicon oxide film 702 is formed as an ink-proof liquid contact film with a thickness of 1 μm. A chamber forming member was formed.
[0023]
Thus, the bonding surface is formed by Sessu that side at all obtuse between the bonding surface and the diaphragm of the nozzle formation member in the present embodiment. By not forming an acute angle portion on the joint surface between the nozzle forming member and the diaphragm, it is possible to prevent the adhesive from entering the communicating pipe due to the capillary effect when joining the nozzle forming member and the diaphragm in the subsequent process. Also it becomes possible to form the inkjet reliable for stagnation of bubble by the high-order surface of the communicating pipe interior and the liquid room is not formed is also performed smoothly without ink flow. Further, in this embodiment, a flow path for supplying ink to the nozzles is also formed on the nozzle surface side, so that sufficient ink refilling during high frequency driving can be secured, and high-speed printing is possible.
[0024]
Next, an ink jet recording apparatus having the droplet discharge head of each of the above embodiments will be described.
FIG. 8 is a schematic sectional view showing the configuration of an ink jet recording apparatus according to another invention. As shown in the drawing, the ink jet recording apparatus 801 includes four ink cartridges 802 each containing ink of each color of cyan C, magenta M, yellow Y, and black BK, and a plurality of nozzles. Recording paper is supplied from four droplet discharge heads 803 to which ink is supplied, a carriage 804 on which ink cartridges 802 and droplet discharge heads 803 are mounted, paper feed trays 805a and 805b containing recording paper, and a manual feed table 806. A conveyance roller 808 that conveys the printing unit 807 and a discharge roller 810 that discharges the printed recording paper to a discharge tray 809 are provided. When printing image data sent from the host device on recording paper, droplets are ejected onto the recording paper sent to the printing unit 807 by the transport roller 808 while scanning the carriage 804 along the carriage roller 811. Characters and images are recorded by ejecting ink from the nozzles of the head 803 in accordance with image data. The liquid droplet ejection head 803 applied to the ink jet recording apparatus of the present invention is the liquid droplet ejection head of each of the above-described embodiments, and a vibration disposed so as to face the electrode by applying a voltage to the electrode. An attractive force acts between the plate and the electrostatic force, the diaphragm is deformed by the electrostatic force, and ink droplets are ejected from the nozzles.
[0025]
In addition, this invention is not limited to the said Example, It cannot be overemphasized that various deformation | transformation and substitution are possible if it is description in a claim.
[0026]
【The invention's effect】
As described above, the droplet ejection apparatus of the present invention includes a nozzle member having a nozzle which droplets are ejected, and the communicating pipe is joined to the nozzle forming member, a nozzle communicating with via the communication pipe And a diaphragm for pressurizing the pressurizing liquid chamber. Furthermore, according to the liquid droplet ejection apparatus of the present invention, the communicating pipe and pressurized liquid chamber is formed by anisotropic etching of the silicon single crystal substrate of plane orientation (110), the communicating pipe is a nozzle formed a contact Keru planar shape all edges at the interface between the member a hexagonal contact at an obtuse angle, is parallelogram cross-sectional shape in the extending direction central portion of the joint surface and parallel communication pipe. Therefore, when the nozzle forming member and the pressurized liquid chamber are joined with an adhesive, it is possible to prevent the adhesive from flowing into the communication pipe due to the capillary effect, and therefore, the droplet jetting bend due to the inflow of the adhesive. In addition, since it has a shape in which there is no stagnation of bubbles and there is no stagnation in the flow of ink, it is possible to provide a highly reliable droplet discharge head that is free from jetting down due to bubble retention.
[0027]
In addition, an ink jet recording apparatus as another invention is characterized in that the above-described droplet discharge head is mounted. Therefore, it is possible to provide a highly reliable inkjet recording apparatus using a droplet discharge head that can prevent the adhesive from flowing into the communication pipe and can prevent the stagnation of bubbles. it can.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a configuration of a droplet discharge head according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a structure of a pressurized liquid chamber forming member of a droplet discharge head in the present embodiment.
FIG. 3 is a top view showing a pressurized liquid chamber forming member and a nozzle bonding surface and a diaphragm bonding surface of the pressurized liquid chamber forming member in a conventional example.
FIG. 4 is a top view of the pressurized liquid chamber forming member according to the present embodiment and the nozzle bonding surface and the diaphragm bonding surface of the pressurized liquid chamber forming member according to the present embodiment.
FIG. 5 is a perspective view of one bit of a pressurized liquid chamber forming member in a conventional example and in the present embodiment.
FIG. 6 is a cross-sectional view showing a manufacturing process of a pressurized liquid chamber forming member of a droplet discharge head according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view showing another manufacturing process of the pressurized liquid chamber forming member of the droplet discharge head according to the present invention.
FIG. 8 is a schematic cross-sectional view showing a configuration of an ink jet recording apparatus according to another invention.
[Explanation of symbols]
100; droplet discharge head; 101; nozzle plate; 102; pressurized liquid chamber forming member;
103; Diaphragm 104; Actuator forming member 105; Nozzle hole
106; pressurized liquid chamber, 107; communication pipe, 108; common liquid chamber,
109; beam part, 110; convex part, 111; thinnest film part, 112; drive part,
113: Non-driving part.

Claims (2)

液滴が吐出されるノズルを有するノズル形成部材と、該ノズル形成部材と接合された連通管と、該連通管介してノズルと連通する加圧液室と、該加圧液室を加圧する振動板とを備え、
記連通管及び前記加圧液室は、面方位(110)のシリコン単結晶基板の異方性エッチングで形成されており、
前記連通管は、前記ノズル形成部材との接合面における平面形状が全ての辺が鈍角で接する六角形を有し、前記接合面と平行で前連通管の連通方向中央部における断面形状が平行四辺形であることを特徴とする液滴吐出ヘッド。
A nozzle forming member having a nozzle from which droplets are discharged, a communication pipe joined to the nozzle forming member, a pressurized liquid chamber communicating with the nozzle through the communication pipe , and pressurizing the pressurized liquid chamber With a diaphragm,
Before Kirendorikan and the pressurized liquid chamber is formed by anisotropic etching of the silicon single crystal substrate of plane orientation (110),
Said communicating pipe, said contact Keru planar shape at the interface between the nozzle forming member has a hexagonal all sides meet at an obtuse angle, the cross-sectional shape in the extending direction central portion of the front Symbol communicating tube parallel to the junction surface Is a parallelogram .
請求項1記載の液滴吐出ヘッドを搭載したことを特徴とするインクジェット記録装置 An ink jet recording apparatus comprising the droplet discharge head according to claim 1 .
JP2001376884A 2001-12-11 2001-12-11 Droplet discharge head and inkjet recording apparatus Expired - Fee Related JP3842120B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001376884A JP3842120B2 (en) 2001-12-11 2001-12-11 Droplet discharge head and inkjet recording apparatus
CNB02816878XA CN100398322C (en) 2001-12-11 2002-12-05 Drop discharge head and method of producing the same
PCT/JP2002/012790 WO2003049951A1 (en) 2001-12-11 2002-12-05 Drop discharge head and method of producing the same
EP02783792A EP1453680B1 (en) 2001-12-11 2002-12-05 Drop discharge head and method of producing the same
CN2008101087558A CN101284450B (en) 2001-12-11 2002-12-05 Drop discharge head and method of producing the same
US10/487,012 US7232202B2 (en) 2001-12-11 2002-12-05 Drop discharge head and method of producing the same
DE60237229T DE60237229D1 (en) 2001-12-11 2002-12-05 DROP DISCHARGE HEAD AND MANUFACTURING METHOD THEREFOR
US11/800,270 US7571984B2 (en) 2001-12-11 2007-05-03 Drop discharge head and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376884A JP3842120B2 (en) 2001-12-11 2001-12-11 Droplet discharge head and inkjet recording apparatus

Publications (2)

Publication Number Publication Date
JP2003175597A JP2003175597A (en) 2003-06-24
JP3842120B2 true JP3842120B2 (en) 2006-11-08

Family

ID=19184985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376884A Expired - Fee Related JP3842120B2 (en) 2001-12-11 2001-12-11 Droplet discharge head and inkjet recording apparatus

Country Status (2)

Country Link
JP (1) JP3842120B2 (en)
CN (1) CN101284450B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007813B2 (en) * 2007-06-27 2012-08-22 セイコーエプソン株式会社 Liquid ejecting head, manufacturing method thereof, and liquid ejecting apparatus
JP2013063557A (en) * 2011-09-16 2013-04-11 Ricoh Co Ltd Liquid ejection head and image forming apparatus
JP7088188B2 (en) * 2017-07-10 2022-06-21 コニカミノルタ株式会社 Manufacturing method of inkjet head, inkjet recording device and inkjet head
CN113873772B (en) * 2021-11-30 2022-04-05 江苏东方恒基通用航空有限公司 Anti-dripping device for spray head of printed circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818482A (en) * 1994-08-22 1998-10-06 Ricoh Company, Ltd. Ink jet printing head

Also Published As

Publication number Publication date
CN101284450A (en) 2008-10-15
JP2003175597A (en) 2003-06-24
CN101284450B (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP2006123550A (en) Nozzle plate, inkjet printing head with the same, and manufacturing method of nozzle plate
JPH06218917A (en) Ink jet head
JP2004066652A (en) Liquid droplet jetting head, ink cartridge, and ink jet recorder
JP3842120B2 (en) Droplet discharge head and inkjet recording apparatus
JP2009051081A (en) Droplet discharge head, integrated droplet discharge head unit, and image forming apparatus
JP2002086724A (en) Ink jet recording head and ink jet recorder
JP2004160827A (en) Liquid droplet jetting head, its manufacturing method, ink cartridge, and inkjet recording device
JP4326772B2 (en) Droplet discharge head, ink cartridge, and ink jet recording apparatus
JP2007062251A (en) Liquid discharge head, manufacturing method of liquid discharge head, recording liquid cartridge, and, image forming device
JP4765505B2 (en) Inkjet head
JPH09300635A (en) Ink jet recording apparatus
JP2004167951A (en) Liquid jet head, manufacturing method for the same, ink cartridge, and inkjet recorder
JP2003094641A (en) Droplet discharge head and manufacturing method therefor
JP2019217706A (en) Liquid jet head, and liquid jet device
JP2003276192A (en) Liquid drop ejection head, its manufacturing method and ink jet recorder
JP2004306396A (en) Liquid droplet ejection head and its manufacturing process, ink cartridge and ink jet recorder
JP2003103778A (en) Ink-jet head and production method therefor
JP2003266689A (en) Liquid drop discharge head, its manufacturing method and inkjet recorder
JP2005305827A (en) Liquid ejection head
JP2003089203A (en) Liquid drop discharge head and ink jet recorder
JP2003260792A (en) Liquid drop discharge head and capacitive actuator
JP2001010065A (en) Ink-jet recording head, ink-jet recording apparatus, production of nozzle plate, and production of ink-jet recording head
JP2002264346A (en) Ink jet head
JP2002240279A (en) Ink jet head and ink jet recorder
JP2004066537A (en) Process for manufacturing liquid ejection head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees