JP3841547B2 - Method for producing copper alloy powder, and laser cladding method using the copper alloy powder - Google Patents

Method for producing copper alloy powder, and laser cladding method using the copper alloy powder Download PDF

Info

Publication number
JP3841547B2
JP3841547B2 JP12410798A JP12410798A JP3841547B2 JP 3841547 B2 JP3841547 B2 JP 3841547B2 JP 12410798 A JP12410798 A JP 12410798A JP 12410798 A JP12410798 A JP 12410798A JP 3841547 B2 JP3841547 B2 JP 3841547B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
powder
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12410798A
Other languages
Japanese (ja)
Other versions
JPH11302701A (en
Inventor
高司 水口
秀信 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Original Assignee
Nissan Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Mitsui Mining and Smelting Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12410798A priority Critical patent/JP3841547B2/en
Publication of JPH11302701A publication Critical patent/JPH11302701A/en
Application granted granted Critical
Publication of JP3841547B2 publication Critical patent/JP3841547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、自動車部品等で耐摩耗性に優れた、特にエンジン用摺動部材、例えばアルミニウム合金製シリンダーヘッドのバブルシート(弁座)部等への肉盛り用素材等に用いるに好適な銅合金粉末の製造方法、並びにその銅合金粉末を用いたレーザ肉盛り方法に関する。
【0002】
【従来の技術およびその問題点】
最近、自動車部品等でアルミニウム合金等からなる基材の一部の耐摩耗性や耐熱性を改善する目的で、基材上に異種金属を粉末の形で供給し、レーザビームを用いて溶融し、肉盛りする技術が注目を浴びている。これら異種金属の粉末には通常ガスアトマイズ法で製造された銅を主成分とする合金が用いられることが多い。
【0003】
前記ガスアトマイズ法で製造される金属粉末は、気相中での冷却の過程で、溶融粒の表面張力により球状化する。ガスアトマイズ法により得られた金属粉末の特徴としては、球形度が優れていることにあるが、仮に数10μmレベルの粒径品を製造すると、その表面には部分的に数μmレベルの突出部(以下、サテライトと称す)が点在している場合が多い(特開平2-225678号参照)。このようなサテライト含有粉末をレーザクラッド用粉末供給装置に供用した際に、当該装置の供給経路において衝撃や振動等の外力でサテライトがサテライト含有粉末より脱落してしまう現象が多々生じる。その際、供給経路の粉末供給管中で流動性が悪化し、閉塞や脈動に伴う加工位置への供給量が変動する現象をもたらす原因となる等の弊害があった。かかる原因に基づき、レーザ肉盛り加工を行った場合に加工製品にクラッドの発生や肉盛り量が安定しない等の不具合が発生していた。
【0004】
本発明者らは上記課題について、前記粉末供給装置に供用した際に、供給経路の粉末供給管中で粉末の流動性が悪化し、閉塞や脈動に伴う加工位置への供給量が変動する現象は、粉末の粒子平均粒径及びサテライト粉の存在に左右されることに着目し、最適な特性とそれをもたらす製造方法を開発することを目的とし、鋭意研究したものであり、本発明の目的とするところも、サテライト粉の影響を可及的に少なくすることにより前記課題を解決することにある。
【0005】
【問題点を解決するための手段】
すなわち、本発明に係る銅合金粉末は、その粒子平均粒径が30〜150μmの範囲にあり、かつJIS Z2502に基づく試験法による流動度が15秒/50g以下である銅合金粉末により前記課題を達成したものである。かかる銅合金粉末はガスアトマイズ法により銅合金溶湯から得られた銅合金粉末をパンミル又はローラミルを用いて摩砕し、得られた銅合金粉末を粒子平均粒径30〜150μmの範囲に分級することにより得られる。これら銅合金粉末を用いて肉盛りするには前記銅合金粉末の製造工程と、該製造工程により製造された銅合金粉末を異種金属上へ供給する供給工程と、該銅合金粉末を溶融して異種金属上へ銅合金を肉盛りするレーザ加工工程とからなるレーザ肉盛り方法により達成される。このように、得られる銅合金粉末は流動性に優れたものであり、異種金属上に供給し、レーザビームを用いて該銅合金粉末を溶融して異種金属上銅合金をレーザ肉盛りするためのレーザクラッド用銅合金粉末として極めて好適なものであり、好適な肉盛りが行えるものである。
【0006】
【発明の態様】
以下、本発明をより詳細に説明することとする。まず、本発明に係る銅合金粉末における粒子平均粒径は30〜150μmの範囲内に特定することが肝要である。すなわち、粒子平均粒径が30μm未満の場合、銅合金粒子が微小すぎ、大気中の湿度あるいは加工位置よりのヒュームに含まれる水分等の影響を受け、粒子同士の凝集を起こしやすく、粉末供給装置の管路中等での粉末の閉塞やひっかかりの原因となりやすい。逆に粒子平均粒径が150μmを越える場合、例えばレーザクラッド用として用いる際にレーザによる粉末の溶解が不安定になりやすく、肉盛り部の機械的強度に支障を来す恐れがある。
【0007】
本発明に係る銅合金粉末では、JIS Z2502に基づく試験法による流動度が15秒/50g以下であることが必要である。すなわち、当該流動度が15秒/50gを越える場合、サテライトの除去が不十分であることを意味し、前記粉末供給装置の管路中等での粉末の閉塞やひっかかりの原因となりやすい。
【0008】
上記の如き本発明に係る銅合金粉末は、ガスアトマイズ法により銅合金溶湯から得られた銅合金粉末を摩砕し、分級することにより得られる。ガスアトマイズ法により得られた銅合金粉末からサテライトを極力減らすためには、摩砕効果に優れ、かつ粉体の形状を損なわないような処理装置を選択する必要がある。このような要求を満たす処理装置として本発明ではパンミル又はローラミルを使用する。本発明処理に用いる装置としてのパンミルの代表例としてはエッジランナ、ミックスマラー、アイリッヒミル等が挙げられ、ローラミルの代表例としてはリングローラミル、ローラレースミル、ボールレースミル等が挙げられる。パンミル又はローラミル以外の処理装置では粉体の形状が変形したり、所望の流動度に調整することが困難である。
【0009】
上記処理装置で処理した銅合金粉末は、脱落したサテライトが夾雑するので、常法である篩い分級を行い夾雑物を除去すると共に銅合金粉末が所定粒径範囲内に入るよう調整する。そして上記のような銅合金粉末製造工程と、該粉末の供給工程と、該粉末を用いたレーザ加工工程とを一連の工程として連続形成することにより、効率的なレーザ肉盛り加工が行えるものとなる。
【0010】
【発明の効果】
本発明に係る銅合金粉末は、その粒子平均粒径が30〜150μmの範囲にあり、かつJIS Z2502に基づく試験法による流動度が15秒/50g以下である銅合金粉末であり、これら銅合金粉末はガスアトマイズ法により銅合金溶湯から得られた銅合金粉末をパンミル又はローラミルを用いて摩砕し、得られた銅合金粉末を粒子平均粒径30〜150μmの範囲に分級することにより得られるものであるため、ガスアトマイズ法により往々にして発生するサテライトが含有しない球形状の銅合金粉末が得られる。従ってこれら本発明銅合金粉末は流動性に優れたものであり、粉末搬送に際して供給装置の管路中での閉塞やひっかかりが極めて減少し、異種金属上に供給し、レーザビームを用いて該銅合金粉末を溶融して異種金属上銅合金を肉盛りするためのレーザクラッド用銅合金粉末として使用する等の場合、サテライトに起因する粉体の脈動等の搬送異常が防止出来、安定した加工位置への安定供給が可能となり、均一な肉盛りが得られる。
【0011】
以下、本発明の実施例を比較例とともに説明するが、本発明はこれら実施例に限定されるものではない。
【実施例】
高周波誘導炉を用い、黒鉛るつぼ内で下記成分組成を有する銅合金溶湯を用意し、孔径4.5mmのノズルを有するるつぼ底部から下流させる間に窒素ガスを噴射するガスアトマイズ法によって粉末化し、脱水化処理及び脱ガス処理を行った。しかる後、エッジランナに粉末を投入し、3時間処理することにより得られた粉末を振動篩いで分級し、平均粒径83μm、流動度13.5秒/50gの銅合金粉末を得た。 (銅合金組成)
Ni:15.5wt%
Co:14.1wt%
Al:0.9wt%
V :1.6wt%
Nb:1.8wt%
Si:2.8wt%
Cu:残部
【0012】
【比較例1】
ガスアトマイズ法を適用する際のるつぼ底部のノズル径を7mmとしたこと以外、実施例と同様にして銅合金粉末を得た。
【0013】
【比較例2】
ガスアトマイズ法を適用する際のるつぼ底部のノズル径を2mmとしたこと以外、実施例と同様にして銅合金粉末を得た。
【0014】
【比較例3】
エッジランナ処理を行わなかったこと以外は実施例と同様にして銅合金粉末を得た。
【0015】
【比較例4】
エッジランナ処理を30分間としたこと以外は実施例と同様にして銅合金粉末を得た。
【0016】
【比較例5】
エッジランナ処理の代わりにボールミル処理(6.3mm径ボールを10kg投入した300mm径のボールミルにアトマイズ粉を1.5kg投入)を1時間行ったこと以外は実施例と同様にして銅合金粉末を得た。
【0017】
以上により得られた銅合金粉末の形状、粒子平均粒径、Z 2502に基づく試験法による流動度、及び粉末供給装置の粉末ひっかかり度を測定し、それらの結果を表1に示す。なお、粉末のひっかかり度の計測は、出力端子を有する電子天秤とパソコンを接続し、実際の加工点位置にセットした電子天秤受け皿内に粉末供給装置から一定の供給量となるように銅合金粉末を投入し、粉末の供給に伴って増加する天秤重量及び時間から時間当たりの粉末供給量を計測し、記録した。また、粉末供給量が図1のように突発的な変化として現れた場合をひっかかり発生と捉え、同一試験を20回繰返し、ひっかかり回数をチェックした。
【0018】
【表1】

Figure 0003841547
【0019】
表1から明らかなように、本発明実施例による銅合金粉末はひっかかり度がゼロであり、理想的な流動性を有するのに対し、比較例の粉末はいずれも流動性が不良でひっかかり度が大きいことがわかる。これらから本発明法に従って上記の如き銅合金粉末を製造する工程と、該粉末の供給工程と、該粉末を用いたレーザ加工工程とを一連の工程として連続形成することにより、効率的なレーザ肉盛り加工が行えることがわかる。
【図面の簡単な説明】
【図1】粉末供給装置から銅合金粉末を供給する場合における粉末供給量と時間との関係図である。[0001]
[Industrial application fields]
The present invention has excellent wear resistance in automobile parts and the like, and is particularly suitable for use as a material for overlaying an engine sliding member, such as a bubble sheet (valve seat) portion of an aluminum alloy cylinder head. the method of producing fine alloy powder, and to a laser padding method using the copper alloy powder.
[0002]
[Prior art and its problems]
Recently, for the purpose of improving the wear resistance and heat resistance of a part of base material made of aluminum alloy etc. in automobile parts, etc., dissimilar metals are supplied on the base material in the form of powder and melted using a laser beam. The technology to fill up is attracting attention. In many cases, these dissimilar metal powders are usually made of an alloy mainly composed of copper manufactured by a gas atomizing method.
[0003]
The metal powder produced by the gas atomization method is spheroidized by the surface tension of the molten grains in the course of cooling in the gas phase. A characteristic of the metal powder obtained by the gas atomization method is that it has excellent sphericity. However, if a product with a particle size of several tens of μm is manufactured, a protrusion of a few μm level is partially formed on the surface ( (Hereinafter referred to as satellites) are often scattered (see Japanese Patent Laid-Open No. 2-225678). When such a satellite-containing powder is used in a laser clad powder supply device, many phenomena occur in which the satellite is dropped from the satellite-containing powder by an external force such as impact or vibration in the supply path of the device. At that time, the fluidity deteriorates in the powder supply pipe of the supply path, and there is an adverse effect such as causing the phenomenon that the supply amount to the processing position fluctuates due to blockage or pulsation. Based on this cause, when laser overlay processing is performed, defects such as generation of clad and unstable deposition amount have occurred in the processed product.
[0004]
Regarding the above problems, the present inventors have a phenomenon in which, when used in the powder supply apparatus, the fluidity of the powder deteriorates in the powder supply pipe of the supply path, and the supply amount to the processing position due to blockage or pulsation varies. Is the result of diligent research aimed at developing optimum characteristics and production methods that bring about it, focusing on the fact that it depends on the average particle size of the powder and the presence of satellite powder. The purpose is to solve the above problem by reducing the influence of satellite powder as much as possible.
[0005]
[Means for solving problems]
That is, the copper alloy powder according to the present invention has the above-mentioned problem due to the copper alloy powder having an average particle size in the range of 30 to 150 μm and a fluidity by a test method based on JIS Z2502 of 15 seconds / 50 g or less. Achieved. Such copper alloy powder is obtained by grinding a copper alloy powder obtained from a molten copper alloy by a gas atomizing method using a pan mill or a roller mill, and classifying the obtained copper alloy powder into a particle average particle size of 30 to 150 μm. can get. In order to build up using these copper alloy powders, the manufacturing process of the copper alloy powder, the supply process of supplying the copper alloy powder manufactured by the manufacturing process onto a dissimilar metal, and melting the copper alloy powder This is achieved by a laser overlaying method comprising a laser processing step of overlaying a copper alloy on a dissimilar metal. As described above, the obtained copper alloy powder is excellent in fluidity, and is supplied onto a dissimilar metal and melts the copper alloy powder using a laser beam to build up the copper alloy on the dissimilar metal by laser. It is extremely suitable as a copper alloy powder for laser cladding, and can be suitably built up.
[0006]
Aspects of the Invention
Hereinafter, the present invention will be described in more detail. First, it is important to specify the average particle size of the copper alloy powder according to the present invention within a range of 30 to 150 μm. That is, when the average particle size of the particles is less than 30 μm, the copper alloy particles are too small, and are affected by humidity in the atmosphere or moisture contained in the fume from the processing position, and are likely to cause aggregation of the particles. This is likely to cause clogging or catching of powder in the pipe line. On the other hand, when the average particle diameter exceeds 150 μm, for example, when used for laser cladding, the dissolution of the powder by the laser tends to become unstable, which may hinder the mechanical strength of the built-up portion.
[0007]
In the copper alloy powder according to the present invention, the fluidity according to the test method based on JIS Z2502 needs to be 15 seconds / 50 g or less. That is, when the fluidity exceeds 15 seconds / 50 g, it means that the satellite is not sufficiently removed, which tends to cause clogging or catching of the powder in the conduit of the powder supply device.
[0008]
The copper alloy powder according to the present invention as described above can be obtained by grinding and classifying a copper alloy powder obtained from a molten copper alloy by a gas atomizing method. In order to reduce satellites as much as possible from the copper alloy powder obtained by the gas atomization method, it is necessary to select a processing apparatus that is excellent in the grinding effect and does not impair the shape of the powder. In the present invention, a pan mill or a roller mill is used as a processing apparatus that satisfies such requirements. Typical examples of the pan mill as an apparatus used in the processing of the present invention include an edge runner, a mix muller, and an Eyrich mill. Typical examples of the roller mill include a ring roller mill, a roller race mill, and a ball race mill. In processing apparatuses other than the pan mill or the roller mill, it is difficult to change the shape of the powder or to adjust to a desired fluidity.
[0009]
The copper alloy powder treated with the above processing apparatus is contaminated with the dropped satellites, so that the sieving classification, which is a conventional method, is performed to remove the contaminants and the copper alloy powder is adjusted to fall within a predetermined particle size range. Then, by continuously forming the copper alloy powder manufacturing process, the powder supplying process, and the laser processing process using the powder as a series of processes, an efficient laser overlay process can be performed. Become.
[0010]
【The invention's effect】
The copper alloy powder according to the present invention is a copper alloy powder whose average particle size is in the range of 30 to 150 μm and whose fluidity by a test method based on JIS Z2502 is 15 seconds / 50 g or less. Powder is obtained by grinding a copper alloy powder obtained from a molten copper alloy by a gas atomizing method using a pan mill or a roller mill, and classifying the obtained copper alloy powder into a particle average particle size range of 30 to 150 μm. Therefore, a spherical copper alloy powder that does not contain satellites often generated by the gas atomization method can be obtained. Therefore, these copper alloy powders of the present invention are excellent in fluidity, and clogging and catching in the pipeline of the supply device are extremely reduced during powder conveyance. When used as a copper alloy powder for laser cladding to melt alloy powder and build up copper alloy on dissimilar metals, it is possible to prevent abnormal transport such as pulsation of powder caused by satellite, stable processing position Can be supplied stably, and a uniform build-up can be obtained.
[0011]
Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to these examples.
【Example】
Using a high-frequency induction furnace, prepare a molten copper alloy having the following composition in a graphite crucible, and pulverize it by a gas atomization method in which nitrogen gas is injected while it is downstream from the bottom of the crucible having a nozzle with a hole diameter of 4.5 mm for dehydration treatment And degassing treatment. Thereafter, the powder was put into an edge runner and the powder obtained by treating for 3 hours was classified with a vibration sieve to obtain a copper alloy powder having an average particle size of 83 μm and a fluidity of 13.5 seconds / 50 g. (Copper alloy composition)
Ni: 15.5wt%
Co: 14.1wt%
Al: 0.9wt%
V: 1.6wt%
Nb: 1.8wt%
Si: 2.8wt%
Cu: balance [0012]
[Comparative Example 1]
A copper alloy powder was obtained in the same manner as in the example except that the nozzle diameter at the bottom of the crucible when applying the gas atomizing method was 7 mm.
[0013]
[Comparative Example 2]
A copper alloy powder was obtained in the same manner as in the example except that the nozzle diameter at the bottom of the crucible when applying the gas atomizing method was 2 mm.
[0014]
[Comparative Example 3]
A copper alloy powder was obtained in the same manner as in Example except that the edge runner treatment was not performed.
[0015]
[Comparative Example 4]
A copper alloy powder was obtained in the same manner as in Example except that the edge runner treatment was performed for 30 minutes.
[0016]
[Comparative Example 5]
A copper alloy powder was obtained in the same manner as in Example except that the ball mill treatment (1.5 kg of atomized powder was introduced into a 300 mm diameter ball mill into which 10 kg of 6.3 mm balls were added) was performed for 1 hour instead of the edge runner treatment.
[0017]
The shape of the copper alloy powder obtained as described above, the average particle diameter, the fluidity by the test method based on Z 2502, and the degree of powder catching of the powder supply device were measured, and the results are shown in Table 1. In addition, the measurement of the degree of powder trapping is performed by connecting an electronic balance with an output terminal and a personal computer, and copper alloy powder so that a constant supply amount is obtained from the powder supply device in the electronic balance tray set at the actual processing point position. The amount of powder supplied per hour was measured and recorded from the balance weight and time that increased with the supply of powder. Moreover, the case where the powder supply amount appeared as a sudden change as shown in FIG. 1 was regarded as occurrence of a catch, and the same test was repeated 20 times to check the number of catches.
[0018]
[Table 1]
Figure 0003841547
[0019]
As is clear from Table 1, the copper alloy powder according to the embodiment of the present invention has a zero degree of catch and ideal fluidity, whereas the powders of the comparative examples all have poor fluidity and the degree of catch. You can see that it ’s big. From these, the process of producing the copper alloy powder as described above according to the method of the present invention, the supply process of the powder, and the laser processing process using the powder are continuously formed as a series of processes, whereby efficient laser meat is produced. It can be seen that heaping can be performed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of powder supplied and time when copper alloy powder is supplied from a powder supply device.

Claims (2)

ガスアトマイズ法により銅合金溶湯から得られた銅合金粉末をパンミル又はローラミルを用いて摩砕し、得られた銅合金粉末を粒子平均粒径が30〜150μmの範囲に分級することを特徴とする粒子平均粒径が30〜150μmの範囲にあり、かつJIS Z2502に基づく試験法による流動度が15秒/50g以下である銅合金粉末を製造する方法。Particles characterized by grinding a copper alloy powder obtained from a molten copper alloy by a gas atomizing method using a pan mill or a roller mill, and classifying the obtained copper alloy powder into a particle average particle size in the range of 30 to 150 μm. A method for producing a copper alloy powder having an average particle size in the range of 30 to 150 μm and having a fluidity of 15 seconds / 50 g or less by a test method based on JIS Z2502. ガスアトマイズ法により銅合金溶湯から得られた銅合金粉末をパンミル又はローラミルを用いて摩砕し、得られた銅合金粉末を粒子平均粒径が30〜150μmの範囲に分級する銅合金粉末の製造工程と、該製造工程により製造された銅合金粉末を異種金属上へ供給する供給工程と、該銅合金粉末を溶融して異種金属上へ銅合金を肉盛りするレーザ加工工程とからなるレーザ肉盛り方法。A copper alloy powder produced from a molten copper alloy by a gas atomization method is ground using a pan mill or a roller mill, and the obtained copper alloy powder is classified into a particle average particle size in the range of 30 to 150 μm. A laser build-up process comprising: supplying a copper alloy powder produced by the production process onto a dissimilar metal; and a laser processing process for melting the copper alloy powder and depositing the copper alloy on the dissimilar metal Method.
JP12410798A 1998-04-17 1998-04-17 Method for producing copper alloy powder, and laser cladding method using the copper alloy powder Expired - Fee Related JP3841547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12410798A JP3841547B2 (en) 1998-04-17 1998-04-17 Method for producing copper alloy powder, and laser cladding method using the copper alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12410798A JP3841547B2 (en) 1998-04-17 1998-04-17 Method for producing copper alloy powder, and laser cladding method using the copper alloy powder

Publications (2)

Publication Number Publication Date
JPH11302701A JPH11302701A (en) 1999-11-02
JP3841547B2 true JP3841547B2 (en) 2006-11-01

Family

ID=14877100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12410798A Expired - Fee Related JP3841547B2 (en) 1998-04-17 1998-04-17 Method for producing copper alloy powder, and laser cladding method using the copper alloy powder

Country Status (1)

Country Link
JP (1) JP3841547B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6794100B2 (en) * 2015-09-28 2020-12-02 東洋アルミニウム株式会社 Aluminum particle swarm and its manufacturing method
JP6579129B2 (en) 2017-02-23 2019-09-25 トヨタ自動車株式会社 Method and apparatus for forming overlay layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754680B2 (en) * 1989-03-17 1998-05-20 大同特殊鋼株式会社 Processing method of metal powder
JP2984344B2 (en) * 1990-09-21 1999-11-29 福田金属箔粉工業株式会社 Cu-based alloy powder for laser cladding

Also Published As

Publication number Publication date
JPH11302701A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US6517602B2 (en) Solder ball and method for producing same
JP6449982B2 (en) Titanium powder and its melted and sintered products
CN114641462A (en) Unique raw material for spherical powder and manufacturing method
KR102171007B1 (en) Manufacturing method of metal particle
CN110621796A (en) Method for manufacturing aluminum alloy parts
JP2016211027A (en) Method for producing metal powder and production device
CN112384636A (en) Method for manufacturing aluminum alloy parts
JP3841547B2 (en) Method for producing copper alloy powder, and laser cladding method using the copper alloy powder
Sreekanth et al. Influence of laser-directed energy deposition process parameters and thermal post-treatments on Nb-rich secondary phases in single-track Alloy 718 specimens
US11821059B2 (en) Ni-based alloy, Ni-based alloy powder, Ni-based alloy member, and product including Ni-based alloy member
EP3693104A1 (en) Methods for additive manufacturing with masticated particles
TWI683004B (en) Spherical Ti-based powder and its manufacturing method
JP7386819B2 (en) Method for manufacturing parts made of aluminum alloy
JP2002339006A (en) Method for manufacturing titanium and titanium alloy powder
JP2005161338A (en) Solder sheet
Schade et al. Atomization
JP2004232084A (en) Method of producing micro metallic ball
US20230191488A1 (en) Method for producing an aluminium alloy part
US6911618B1 (en) Method of producing minute metal balls
JP2008240059A (en) Method for producing metal powder
JP2607254B2 (en) Manufacturing method of high carbon steel standard sample for carbon analysis
O’Dell et al. Plasma alloying and spheroidization process and development
JP2008240060A (en) Method for producing metal powder
JPS6082604A (en) Manufacture of amorphous metallic granular powder
US4755353A (en) Process for producing metal foils

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140818

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees