JP3841508B2 - Injection quantity measuring device - Google Patents

Injection quantity measuring device Download PDF

Info

Publication number
JP3841508B2
JP3841508B2 JP04409297A JP4409297A JP3841508B2 JP 3841508 B2 JP3841508 B2 JP 3841508B2 JP 04409297 A JP04409297 A JP 04409297A JP 4409297 A JP4409297 A JP 4409297A JP 3841508 B2 JP3841508 B2 JP 3841508B2
Authority
JP
Japan
Prior art keywords
liquid
amount
injection
replenishing
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04409297A
Other languages
Japanese (ja)
Other versions
JPH10238439A (en
Inventor
賢治 金原
時男 小浜
秀幸 大地
秀一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP04409297A priority Critical patent/JP3841508B2/en
Publication of JPH10238439A publication Critical patent/JPH10238439A/en
Application granted granted Critical
Publication of JP3841508B2 publication Critical patent/JP3841508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関用液体燃料噴射装置等の間欠的液体噴射装置に採用される噴射量測定装置に係り、特に当該液体噴射装置による液体の噴射毎の噴射量を測定する噴射量測定装置に関する。
【0002】
【従来の技術】
従来、噴射毎の液体燃料噴射量を測定する装置としては、容器内に複数回分の液体を溜めて、その重量を電子天秤で測定し、その値を噴射回数で割って1回当たりの噴射量を測定するものがある。
また、特開平8−121288号公報にて示されるように、噴射モーメンタム法による装置を用いて測定した噴射率を積分して噴射量を求めるものがある。
【0003】
【発明が解決しようとする課題】
しかし、従来の電子天秤で噴射量を測定する装置では、その測定原理が秤量台の位置を一定にするようにフィードバック制御するものである。従って、応答時間が1秒乃至2秒と長いため、実機作動周波数域での測定が不可能である。
このため、1噴射時の噴射量は、複数回の噴射量の平均値より求める手法が一般的に用いられているにすぎず、この方法では、1噴射毎の噴射量を連続的に精度よく測定することは困難である。
【0004】
また、上記噴射モーメンタム法による装置では、燃料噴射弁の出口側で測定するため、燃料噴射弁による燃料の噴霧形状が変化してしまう。従って、この装置を燃料噴射装置に装着した場合、燃料の良好な噴射状態を確保できない。
本発明は、以上のようなことに対処するため、液体の噴霧形状に影響を及ぼすことなく、当該液体の噴射毎の噴射量を精度よく連続的に測定する噴射量測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1乃至4に記載の発明は、間欠的に液体を噴射する液体噴射手段の上流側管路から鉛直状に延出する筒体と、筒体及び上流側管路内に液体を間欠的に補給する液体補給手段と、筒体内の液体の量を液面レベルにて測定する測定手段とを備える。
【0006】
そして、液体補給手段が、測定液面レベルにおける液体噴射手段の噴射前後の変化に基づき、液体噴射手段の噴射前毎に筒体内の液体量が所定量になるように、液体を液体噴射手段の一噴射量だけ上流側管路に補給する。これにより、液体噴射手段の噴射液体量がその噴射毎に連続的に測定され得る。この場合、筒体内の液体量の測定のみでよいため、ノイズや液体の液面の振動等による測定誤差が小さく、高精度の測定が可能となる。
【0007】
また、液体噴射手段の上流側で測定するため、液体噴射手段による液体の噴霧形状に悪影響を及ぼすことがない。よって、本発明を実機に装備した状態での良好な測定が可能となる。
ここで、上記作用効果は、請求項2乃至4に記載の発明のように、測定手段が、投光系及び受光系を有したり、超音波送受信機を有したり、両電極を有することによっても、同様に達成できる。
【0008】
【発明の実施の形態】
以下、本発明の各実施形態を図面に基づいて説明する。
(第1実施形態)
図1は、本発明に係る噴射量測定装置の第1実施形態が車両用4気筒型内燃機関EGに適用された例を示している。なお、本発明の適用対象は、上記内燃機関に限ることなく、各種の内燃機関(4気筒以外の車両の内燃機関や自動二輪車の内燃機関、コンバインの内燃機関等)や、間欠的に液体を噴射する装置であってもよい。
【0009】
この噴射量測定装置は、当該車両の静止部材(図示しない)に固定した略逆T字状の基柱部材10を備えている。ここで、この基柱部材10は、水平状に位置する水平柱部10aと、この水平柱部10aの長手方中間部位から鉛直状に上方へ延出する円筒状鉛直筒部10bとにより構成されている。
また、噴射量測定装置は、鉛直筒部10bに取り付けた投光系S及び受光系Rとを備えている。投光系Sは、ケーシング20を有しており、このケーシング20は、その透明窓部21にて、鉛直筒部10bの上下方向中央部一側に形成した開口部11に嵌め込まれて、当該鉛直筒部10bに支持されている。
【0010】
また、ケーシング20内には、発光素子30及びシリンドリカルレンズ40が収納されている。発光素子30は、波長670nmのレーザ光を出射する半導体式赤色レーザ素子からなるもので、この発光素子30は、ケーシング20の低部22に固定されている。
シリンドリカルレンズ40は、発光素子30と透明窓部21との間に配置されており、このシリンドリカルレンズ40は、発光素子30からのレーザ光を平行光に変換して透明窓部21を通し鉛直筒部10bの中空部内に出射する。
【0011】
受光系Rは、ケーシング50を有しており、このケーシング50は、その透明窓部51にて、鉛直筒部10bの上下方向中央部一側に形成した開口部12(開口部11に対向して位置する)に嵌め込まれて、当該鉛直筒部10bに支持されている。
また、ケーシング50内には、受光素子60が収納されており、この受光素子60は、CCDアレイを透明窓部51の内面に沿い鉛直方向に一次元状に配置して構成されている。これにより、受光素子60は、ケーシング20の透明窓部21からの出射レーザ光を後述するガラス管70を通して受光して受光信号を発生する。
【0012】
ガラス管70は、鉛直筒部10bの中空部内にてこの鉛直筒部10bと同心的に支持されており、このガラス管70の上端部71は、継手部材13の流出口内に接続されている。一方、ガラス管70の下端部72は、水平柱部10a内にて、そのクランク状連通路14の一端に接続されている。
ここで、ガラス管70の軸心、シリンドリカルレンズ40からの平行レーザ光の図1にて図示鉛直方向中心線及び受光素子60の長手方向中心線が、互いに平行であって同一鉛直面内に位置している。
【0013】
また、継手部材13は、その流入口にて、金属配管P1、サージタンク82、圧力逃がし弁83、圧力制御弁80、金属配管P2を通して高圧ボンベGに接続されている。
これにより、高圧ボンベGからの窒素や空気等の圧縮流体が、金属配管P2、圧力制御弁80、金属配管P1及び継手部材13を通してガラス管70内に圧送される。但し、圧力制御弁80、サージタンク82及び圧力逃がし弁83は、鉛直筒部10b内の圧力を所定圧に調圧する役割を果たす。なお、圧力逃がし弁83は、後述する燃料補給弁90の燃料供給で高くなったガラス管70内の圧力を逃がす役割を果たす。
【0014】
燃料補給弁90は、水平柱部10aの凹所15内にその長手方向に沿い収納されており、この燃料補給弁90は、流入口91にて、水平柱部10aの一端に嵌め込んだ継手部材15の流出口に接続されている。また、この燃料補給弁90の流出口92は、凹所15の端壁を介し連通路14に中間部位に連通している。
しかして、燃料補給弁90は、後述のごとく燃料タンク100から圧送される液体燃料を連通路14の中間部位内に圧送する。これにより、後述する燃料噴射弁120の閉状態において、燃料補給弁90からの液体燃料がガラス管70内に流入する。そして、この液体燃料は、燃料補給弁90の噴射毎に図1にて符号Lにて示す所定レベルまで上昇するようになっている。なお、圧力調整弁110の設定圧力は、圧力調整弁80の設定圧力よりも高い値に設定されている。
【0015】
継手部材15は、その流入口にて、金属配管P3、燃料タンク100、金属配管P4、圧力制御弁110及び金属配管P5を通して金属配管P1の中間部位に接続されている。
これにより、高圧ボンベGの高圧流体が、金属配管P2の上流部、金属配管P5、圧力制御弁110及び金属配管P4を通して燃料タンク100内に圧送されると、燃料タンク100内の液体燃料が当該圧送流体の圧力を受けて金属配管P3、継手部材15を通して燃料補給弁90に圧送される。
【0016】
燃料噴射弁120は、図2にて示すように、他の三つの燃料噴射弁と共に内燃機関EGのインテークマニホールドに取り付けられている。なお、燃料噴射弁120は、噴射量測定装置による測定用及び内燃機関EGへの燃料噴射用燃料噴射弁としての役割を果たす一方、他の燃料噴射弁は、内燃機関EGへの燃料噴射弁としての役割を果たす。また、燃料噴射弁120及び他の燃料噴射弁は、当該車両の内燃機関の燃料噴射装置により適正な駆動タイミング(図3にて符号D1参照)にて開弁される
燃料噴射弁120は、管部材131、デリバリパイプ130、継手部材132、金属配管P6及び継手部材16を介して、水平柱部10aの連通路14の他端に接続されている。これにより、燃料噴射弁120は、連通路14内の液体燃料を金属配管P6及びデリバリパイプ130を通して圧送されて内燃機関EGのインテークマニホールド内に噴射する。なお、管部材131及び継手部材132は、デリバリパイプ130の両対向壁部に接続されている。
【0017】
デリバリパイプ130内には、仕切り板133が設けられており、この仕切り板133は、デリバリパイプ130の内部を両室130a、130bに区画する。これにより、室130a内では、管部材131及び継手部材132が連通しており、一方、室130b内には、残りの燃料噴射弁を接続する管部材134及び内燃機関EGの燃料ポンプ(図示しない)からの液体燃料を圧送する燃料流入用管部材口134が連通している。なお、図2にて符号136は内燃機関EGの他の燃料タンク及びサージタンクに接続されるプレッシャレギュレータを示す。
【0018】
次に、燃料補給弁90の駆動回路構成について説明する。噴射量演算回路140は、受光素子60の受光信号を、燃料噴射弁120の噴射(図3にて符号D1参照)の開始前のレベル(図3にて符号Vf参照)及び噴射の終了後のレベル(図3にて符号Va参照)にて2回取り込んで、次の数1の式に基づき燃料噴射量Qを演算する。
【0019】
【数1】
Q=ガラス管70の中空部断面積×(Vf−Va)×α
ここで、Vfは、燃料噴射弁120の噴射前に取り込んだ受光信号のレベルV上のレベルを表す。また、Vaは、燃料噴射弁120の噴射後に取り込んだ受光信号のレベルV上のレベルを表す。αは、受光信号のレベルを長さに変換する定数を表す。
【0020】
具体的には、例えば、Vf=Vf1及びVa=Va1(図3参照)を数1の式に代入して燃料噴射量Qを求める。
パルス幅演算回路150は、次の数2の式に基づき噴射量演算回路140の演算噴射量Qに応じてパルス幅τを演算してパルスデータとして補給弁駆動回路160に出力する。
【0021】
【数2】
τ=β×Q
ここで、βは、燃料補給弁90で燃料噴射量Qを噴射するためのパルス幅換算計数である。
補給弁駆動回路160は、燃料噴射弁120へのパルスデータの周期を周波数カウンタ(図示しない)により計数し、この計数値に基づき燃料噴射弁120の噴射タイミング(図3にて符号D1参照)の間にて、図3にて符号D2にて示すタイミングにて噴射するように燃料補給弁90を駆動制御する。
【0022】
このように構成した本第1実施形態において、内燃機関EG及び噴射量測定装置を作動させる。ここで、ガラス管70内には、図1の所定レベルLの高さまで液体燃料が存在しているものとする。なお、圧力制御弁100の調圧作用のためガラス管70内の液体燃料の液面レベルは精度よく所定レベルLに維持され得る。
【0023】
このような状態では、シリンドリカルレンズ40が発光素子30のレーザ光に基づき出射する平行レーザ光は、ケーシング20の透明窓部21、ガラス管70及びケーシング50の透明窓部51を通り受光素子60に入射する。
このとき、上述のごとく、ガラス管70内には、図1の所定レベルLの高さまで液体燃料が存在している。
【0024】
このため、透明窓部21からの出射レーザ光は、液体燃料の無いガラス管70の部分では散乱され、液体燃料の有るガラス管70の部分では、そのまま透過する。なお、液体燃料の無いガラス管70の部分での散乱は、当該ガラス管70の内壁に付着している残存燃料部分により発生する。
換言すれば、ガラス管70内の液体燃料を通るレーザ光の透過光量は、所定レベルLを境界として異なる。具体的には、ガラス管70の所定レベルL以上の部分の透過光量は、所定レベルLより低い燃料部分の透過光量に比べて著しく減少する。このことは、所定レベルL以上のガラス管70の部分の透過光の強度が、所定レベルLより低い燃料部分の透過光の強度に比べて著しく低下することを意味する。
【0025】
しかして、受光素子60が、上記両強度の差を閾値として受光信号を発生し、噴射量演算回路140がこの受光信号に基づき燃料噴射量Qを演算し、パルス幅演算回路150は、この演算噴射量Qに応じてパルス幅τを演算してパルスデータとして補給弁駆動回路160に出力する。
このため、補給弁駆動回路160は、燃料噴射弁120の噴射タイミング(図3にて符号D1参照)の間にて、図3にて符号D2にて示すタイミングにて噴射するように燃料補給弁90を駆動制御する。
【0026】
これにより、燃料補給弁90が、燃料タンク100の液体燃料を連通路14内に噴射する。この場合、燃料補給弁90の噴射量は、ガラス管70内の所定レベルLまで液体燃料が上昇するように設定されている。
このため、連通路14内に噴射される液体燃料はガラス管70内に所定レベルLまで流入する。
【0027】
なお、その後、燃料噴射弁120の噴射タイミングになると、この燃料噴射弁120は、ガラス管70、連通路14及び配管P6等内にある燃料補給弁90の補給燃料を噴射する。以下、上記作動が繰り返される。
以上説明したように、本第1実施形態では、燃料噴射弁120の上流側にある鉛直柱部10b内の燃料の量が投光系Sと受光系Rとにより液面レベルにて測定される。そして、燃料補給弁90が、上述のごとく、当該測定結果の燃料噴射弁120の噴射前後の変化量に基づく噴射量演算回路140及びパルス幅演算回路150の演算のもと補給弁駆動回路160により駆動される。これに伴い、燃料噴射弁120の噴射前毎に鉛直柱部10b内の燃料量が所定レベルLになるように、液体燃料が燃料噴射弁120の一噴射量だけ補給される。
【0028】
これにより、燃料噴射弁120の噴射燃料量がその噴射毎に連続的に測定され得る。この場合、鉛直柱部10b内の燃料量の測定のみでよいため、ノイズや燃料の液面の振動等による測定誤差が小さく、高精度の測定が可能となる。
また、燃料噴射弁120の上流側で測定するため、燃料噴射弁120による液体燃料の噴霧形状に悪影響を及ぼすことがない。よって、本実施形態の噴射量測定装置をを内燃機関EGに装備した状態での良好な測定が可能となる。
【0029】
なお、レーザドップラ流速計による測定のように液体燃料中にトレーサを入れる必要がないため、燃料性状が変化することもなく、トレーサ粒子の不均一及び内燃機関の振動によるレーザ焦点の変化により測定精度が低下するということもない。
また、熱線流速計による場合のように、熱線で液体燃料が過熱されることによる測定誤差、熱線の熱容量による応答遅れ及び燃料温度変化による影響が発生することがなく、従って、これによる測定誤差も発生しない。また、熱線の低流速領域における測定精度の低下というような不具合も発生しない。
(第2実施形態)
図4は、本発明に第2実施形態の要部を示している。
【0030】
この第2実施形態では、上記第1実施形態にて述べた基柱部材10において、円筒状鉛直筒部10cが、鉛直筒部10bに代えて、これと同様に、水平柱部10aから延出形成されている。なお、継手部材13は、鉛直筒部10cの上端部内に連通している。
また、この第2実施形態では、超音波送受信機170が、上記第1実施形態にて述べた投光系S及び受光系Rに代えて、鉛直筒部10cの中空部上壁に装着されている。
【0031】
この超音波送受信機170は、送信機171と、受信機172とにより構成されており、これら送信機171及び受信機172は、互いに隣接して鉛直筒部10cの中空部上壁に配設されている。
しかして、送信機171は、鉛直筒部10c内に上記鉛直筒部10bの場合と同様に液体燃料の液面に向けて超音波を送信する。一方、受信機172は、上記液体燃料の液面で反射される超音波を受信して受信信号を発生する。
【0032】
噴射量演算回路140は、受信機172からの受信信号を、燃料噴射弁120の噴射開始前と噴射終了後の液面レベルにて2回取り込んで、次の数3及び数4の両式に基づき燃料噴射量Qを演算する。
【0033】
【数3】
R=T×α
【0034】
【数4】
Q=R2−R1
ここで、Rは、鉛直筒部10c内の液体燃料の液面レベルである。Tは、送信機171か送信された超音波が上記液体燃料の液面で反射されて受信機172により受信されるまでの時間である。R2は、燃料噴射弁120の噴射後の液面レベルであり、一方、R1は、燃料噴射弁120の噴射前の液面レベルである。その他の構成は上記第1実施形態と同様である。
【0035】
このように構成した本第2実施形態では、上記投光系S及び受光系Rに代わる超音波送受信機170でもって、上記第1実施形態と同様の作用効果を達成できる。
(第3実施形態)
図5は、本発明の第3実施形態の要部を示している。
【0036】
この第3実施形態では、上記第1実施形態にて述べた基柱部材10において、円筒状鉛直筒部10d(絶縁材料からなる)が、鉛直筒部10bに代えて、これと同様に、水平柱部10aから延出形成されている。なお、継手部材13は、鉛直筒部10dの上端部内に連通している。
また、この第3実施形態では、静電容量センサ180が、上記第1実施形態にて述べた投光系S及び受光系Rに代えて、鉛直筒部10dの中空部内に設けれている。
【0037】
この静電容量センサ180は、一対の平板状電極181と、検出回路182とを備えている。一対の電極181は、図5にて示すごとく、鉛直筒部10dの中空部内周壁に互いに液体燃料を介し対向して装着されている。この場合、両電極181は互いに絶縁されており、これら両電極181は、ハーメチックシール181a及び両リード181bを介し検出回路182に接続されている。なお、これら電極181は、平板状でなく長手状のものでもよい。
【0038】
ここで、両電極181の間隔が小さい場合には、これら両電極181間の静電容量Cは、次の数5の式に基づき算出される。
【0039】
【数5】
C=εS/d
ここで、εは鉛直筒部10dの中空部内の空気及び液体燃料双方の合成誘電率である。Sは、電極181の表面積であり、dは両電極181の間隔である。なお、合成誘電率εは、鉛直筒部10d内の液体燃料の液面レベルに応じて変動する。
【0040】
検出回路182は、図6にて示す交流ブリッジ回路により構成されており、この検出回路182は、両電極181間に合成誘電率εに応じて発生する電圧に基づき静電容量Cを検出する。なお、静電容量Cは図7にて示す共振法により検出してもよい。上記交流ブリッジ回路や共振法によれば、100kHz程度の応答性があり、極めて感度が高い。
【0041】
噴射量演算回路140は、検出回路182の検出出力に基づき、次の数6の式でもって、噴射量Qを算出する。
【0042】
【数6】
Q=γ・C
ここで、γは両電極181間の媒体の材質、温度や湿度により変化する定数である。
なお、数6の式は、静電容量Cと噴射量Qとの関係を示しているが、Cは、鉛直筒部10d内の液体燃料の液面レベルと一定の関係を有するから、静電容量Cから変換された液面レベルの変化(燃料噴射弁120の噴射前と噴射後の両液面レベルの差)に基づき噴射量Qを算出するようにしてもよい。その他の構成は上記第1実施形態と同様である。
【0043】
このように構成した本第3実施形態では、上記投光系S及び受光系Rに代わる静電容量センサ180でもって、上記第1実施形態と同様の作用効果を達成できる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示すブロック図である。
【図2】図2のデリバリパイプの拡大断面図である。
【図3】図1の燃料補給弁の噴射タイミング、燃料噴射弁の噴射タイミング及び受光素子の受光信号のレベルの取り込みタイミングを示すタイミングチャートである。
【図4】本発明の第2実施形態の要部を示す部分破断拡大図である。
【図5】本発明の第3実施形態の要部を示す部分破断拡大図である。
【図6】上記第3実施形態における容量変化検出回路図である。
【図7】当該容量検出回路の検出特性を示すグラフである。
【符号の説明】
G…高圧ボンベ、P1乃至P6…金属配管、R…受光系、S…投光系、
10b、10c、10d…鉛直柱部、14…連通路、70…ガラス管、
90…燃料補給弁、100、110…圧力制御弁、120…燃料噴射弁、
140…噴射量演算回路、150…噴射幅演算回路、
160…補給弁駆動回路、170…超音波送受信機、
180…静電容量センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection amount measuring device employed in an intermittent liquid injection device such as a liquid fuel injection device for an internal combustion engine, and more particularly to an injection amount measuring device that measures an injection amount for each liquid injection by the liquid injection device. .
[0002]
[Prior art]
Conventionally, as a device for measuring the liquid fuel injection amount for each injection, a plurality of liquids are accumulated in a container, the weight thereof is measured with an electronic balance, and the value is divided by the number of injections to obtain an injection amount per one time. There is something to measure.
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-121288, there is an apparatus that obtains an injection amount by integrating an injection rate measured using an apparatus based on an injection momentum method.
[0003]
[Problems to be solved by the invention]
However, in a conventional apparatus for measuring the injection amount with an electronic balance, the measurement principle is feedback control so that the position of the weighing platform is constant. Accordingly, since the response time is as long as 1 to 2 seconds, measurement in the actual machine operating frequency range is impossible.
For this reason, only the method of obtaining the injection amount at the time of one injection from the average value of a plurality of injection amounts is generally used, and in this method, the injection amount for each injection is continuously accurately determined. It is difficult to measure.
[0004]
Moreover, in the apparatus by the said injection momentum method, since it measures on the exit side of a fuel injection valve, the spray shape of the fuel by a fuel injection valve will change. Therefore, when this device is mounted on a fuel injection device, a good fuel injection state cannot be ensured.
In order to deal with the above-described problems, the present invention provides an injection amount measuring device that continuously and accurately measures the injection amount for each injection of the liquid without affecting the spray shape of the liquid. Objective.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to any one of claims 1 to 4 includes a cylindrical body that extends vertically from an upstream pipe line of a liquid ejecting means that ejects liquid intermittently, and a cylindrical body and an upstream pipe. A liquid replenishing unit that intermittently replenishes the liquid in the path and a measuring unit that measures the amount of liquid in the cylinder at a liquid level .
[0006]
Then, based on the change before and after the ejection of the liquid ejecting means at the measured liquid level , the liquid replenishing means supplies the liquid to the liquid ejecting means so that the liquid amount in the cylinder becomes a predetermined amount before the ejection of the liquid ejecting means. Refill the upstream pipeline by one injection amount. Thereby, the amount of liquid ejected by the liquid ejecting means can be continuously measured for each ejection. In this case, since it is only necessary to measure the amount of liquid in the cylinder, measurement errors due to noise, vibration of the liquid surface of the liquid, and the like are small, and highly accurate measurement is possible.
[0007]
In addition, since the measurement is performed on the upstream side of the liquid ejecting unit, the liquid spray shape by the liquid ejecting unit is not adversely affected. Therefore, it is possible to perform good measurement in a state where the present invention is installed in an actual machine.
Here, as for the said effect, like the invention of Claim 2 thru | or 4, a measurement means has a light projection system and a light reception system, an ultrasonic transmitter / receiver, or has both electrodes. Can be achieved similarly.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each embodiment of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows an example in which a first embodiment of an injection amount measuring apparatus according to the present invention is applied to a four-cylinder internal combustion engine EG for a vehicle. The application object of the present invention is not limited to the above-described internal combustion engine, but various internal combustion engines (internal combustion engines for vehicles other than four cylinders, internal combustion engines for motorcycles, combined internal combustion engines, etc.), and intermittent liquids. The apparatus which injects may be sufficient.
[0009]
The injection amount measuring device includes a substantially inverted T-shaped base pillar member 10 fixed to a stationary member (not shown) of the vehicle. Here, the base column member 10 includes a horizontal column portion 10a positioned horizontally and a cylindrical vertical tube portion 10b extending vertically upward from an intermediate portion in the longitudinal direction of the horizontal column portion 10a. ing.
In addition, the injection amount measuring apparatus includes a light projecting system S and a light receiving system R attached to the vertical cylinder portion 10b. The light projecting system S has a casing 20, and the casing 20 is fitted into an opening 11 formed on the one side of the vertical center portion of the vertical cylinder portion 10 b at the transparent window portion 21. It is supported by the vertical cylinder part 10b.
[0010]
Further, the light emitting element 30 and the cylindrical lens 40 are accommodated in the casing 20. The light emitting element 30 is composed of a semiconductor-type red laser element that emits laser light having a wavelength of 670 nm. The light emitting element 30 is fixed to the lower portion 22 of the casing 20.
The cylindrical lens 40 is disposed between the light emitting element 30 and the transparent window portion 21, and this cylindrical lens 40 converts the laser light from the light emitting element 30 into parallel light, passes through the transparent window portion 21, and passes through the vertical cylinder. The light is emitted into the hollow portion of the portion 10b.
[0011]
The light receiving system R has a casing 50, and the casing 50 has an opening 12 (opposite to the opening 11) formed on the transparent window portion 51 on one side of the vertical center portion of the vertical cylinder portion 10 b. And is supported by the vertical cylinder portion 10b.
A light receiving element 60 is housed in the casing 50, and the light receiving element 60 is configured by arranging a CCD array in a one-dimensional shape in the vertical direction along the inner surface of the transparent window 51. Thereby, the light receiving element 60 receives the laser beam emitted from the transparent window portion 21 of the casing 20 through the glass tube 70 described later and generates a light reception signal.
[0012]
The glass tube 70 is supported concentrically with the vertical tube portion 10 b in the hollow portion of the vertical tube portion 10 b, and the upper end portion 71 of the glass tube 70 is connected to the outlet of the joint member 13. On the other hand, the lower end portion 72 of the glass tube 70 is connected to one end of the crank communication passage 14 in the horizontal column portion 10a.
Here, the axis of the glass tube 70, the vertical center line shown in FIG. 1 of the parallel laser light from the cylindrical lens 40, and the longitudinal center line of the light receiving element 60 are parallel to each other and located in the same vertical plane. is doing.
[0013]
The joint member 13 is connected to the high-pressure cylinder G through the metal pipe P1, the surge tank 82, the pressure relief valve 83, the pressure control valve 80, and the metal pipe P2 at the inflow port.
Thereby, compressed fluid such as nitrogen or air from the high pressure cylinder G is pumped into the glass tube 70 through the metal pipe P2, the pressure control valve 80, the metal pipe P1, and the joint member 13. However, the pressure control valve 80, the surge tank 82, and the pressure relief valve 83 serve to regulate the pressure in the vertical cylinder portion 10b to a predetermined pressure. The pressure relief valve 83 serves to relieve the pressure in the glass tube 70 that has become higher due to the fuel supply of a fuel supply valve 90 described later.
[0014]
The fuel supply valve 90 is accommodated in the recess 15 of the horizontal column portion 10a along the longitudinal direction thereof. The fuel supply valve 90 is a joint fitted at one end of the horizontal column portion 10a at the inlet 91. The outlet of the member 15 is connected. Further, the outlet 92 of the fuel supply valve 90 communicates with the intermediate passage through the communication passage 14 via the end wall of the recess 15.
Accordingly, the fuel supply valve 90 pressure-feeds the liquid fuel pumped from the fuel tank 100 into the intermediate portion of the communication passage 14 as will be described later. Thereby, the liquid fuel from the fuel supply valve 90 flows into the glass tube 70 in a closed state of the fuel injection valve 120 described later. The liquid fuel rises to a predetermined level indicated by symbol L in FIG. The set pressure of the pressure adjustment valve 110 is set to a value higher than the set pressure of the pressure adjustment valve 80.
[0015]
The joint member 15 is connected to an intermediate portion of the metal pipe P1 through the metal pipe P3, the fuel tank 100, the metal pipe P4, the pressure control valve 110, and the metal pipe P5 at the inflow port.
Thus, when the high-pressure fluid in the high-pressure cylinder G is pumped into the fuel tank 100 through the upstream portion of the metal pipe P2, the metal pipe P5, the pressure control valve 110, and the metal pipe P4, the liquid fuel in the fuel tank 100 is In response to the pressure of the pumping fluid, the pump is pumped to the fuel supply valve 90 through the metal pipe P3 and the joint member 15.
[0016]
As shown in FIG. 2, the fuel injection valve 120 is attached to the intake manifold of the internal combustion engine EG together with the other three fuel injection valves. The fuel injection valve 120 serves as a fuel injection valve for measurement by the injection amount measuring device and for fuel injection to the internal combustion engine EG, while the other fuel injection valves serve as fuel injection valves for the internal combustion engine EG. To play a role. The fuel injection valve 120 and the other fuel injection valves are opened at an appropriate drive timing (see reference numeral D1 in FIG. 3) by the fuel injection device of the internal combustion engine of the vehicle. The member 131, the delivery pipe 130, the joint member 132, the metal pipe P6, and the joint member 16 are connected to the other end of the communication path 14 of the horizontal column portion 10a. As a result, the fuel injection valve 120 pressure-feeds the liquid fuel in the communication passage 14 through the metal pipe P6 and the delivery pipe 130 and injects it into the intake manifold of the internal combustion engine EG. The pipe member 131 and the joint member 132 are connected to both opposing wall portions of the delivery pipe 130.
[0017]
A partition plate 133 is provided in the delivery pipe 130, and the partition plate 133 partitions the interior of the delivery pipe 130 into both chambers 130a and 130b. As a result, the pipe member 131 and the joint member 132 communicate with each other in the chamber 130a, while the pipe member 134 for connecting the remaining fuel injection valves and the fuel pump for the internal combustion engine EG (not shown) in the chamber 130b. ) Communicates with a fuel inflow pipe member port 134 for pressure-feeding the liquid fuel. In FIG. 2, reference numeral 136 denotes a pressure regulator connected to another fuel tank and a surge tank of the internal combustion engine EG.
[0018]
Next, the drive circuit configuration of the fuel supply valve 90 will be described. The injection amount calculation circuit 140 converts the light reception signal of the light receiving element 60 into a level (see reference numeral Vf in FIG. 3) before the injection of the fuel injection valve 120 (see reference numeral D1 in FIG. 3) and after the end of injection. The fuel injection amount Q is calculated based on the following equation 1 by taking in twice at the level (see reference numeral Va in FIG. 3).
[0019]
[Expression 1]
Q = Cross section area of glass tube 70 × (Vf−Va) × α
Here, Vf represents a level above the level V of the received light signal taken before the fuel injection valve 120 injects. Va represents a level above the level V of the received light signal taken after the fuel injection valve 120 injects. α represents a constant for converting the level of the received light signal into a length.
[0020]
Specifically, for example, the fuel injection amount Q is obtained by substituting Vf = Vf1 and Va = Va1 (see FIG. 3) into the equation (1).
The pulse width calculation circuit 150 calculates the pulse width τ according to the calculated injection amount Q of the injection amount calculation circuit 140 based on the following equation (2), and outputs it to the replenishing valve drive circuit 160 as pulse data.
[0021]
[Expression 2]
τ = β × Q
Here, β is a pulse width conversion count for injecting the fuel injection amount Q by the fuel supply valve 90.
The replenishing valve drive circuit 160 counts the cycle of the pulse data to the fuel injection valve 120 by a frequency counter (not shown), and based on this count value, the injection timing of the fuel injection valve 120 (see symbol D1 in FIG. 3). In the meantime, the fuel supply valve 90 is driven and controlled to inject at the timing indicated by the symbol D2 in FIG.
[0022]
In the first embodiment configured as described above, the internal combustion engine EG and the injection amount measuring device are operated. Here, it is assumed that the liquid fuel exists in the glass tube 70 up to a predetermined level L in FIG. In addition, the liquid level of the liquid fuel in the glass tube 70 can be accurately maintained at the predetermined level L because of the pressure regulating action of the pressure control valve 100.
[0023]
In such a state, the parallel laser light emitted from the cylindrical lens 40 based on the laser light of the light emitting element 30 passes through the transparent window portion 21 of the casing 20, the glass tube 70, and the transparent window portion 51 of the casing 50 to the light receiving element 60. Incident.
At this time, as described above, the liquid fuel exists in the glass tube 70 up to the height of the predetermined level L in FIG.
[0024]
For this reason, the laser beam emitted from the transparent window portion 21 is scattered in the portion of the glass tube 70 having no liquid fuel, and is transmitted as it is in the portion of the glass tube 70 having the liquid fuel. Note that scattering in the portion of the glass tube 70 without liquid fuel is generated by the remaining fuel portion adhering to the inner wall of the glass tube 70.
In other words, the amount of laser light transmitted through the liquid fuel in the glass tube 70 differs with the predetermined level L as a boundary. Specifically, the amount of light transmitted through a portion of the glass tube 70 above a predetermined level L is significantly reduced compared to the amount of light transmitted through a fuel portion lower than the predetermined level L. This means that the intensity of the transmitted light in the portion of the glass tube 70 above the predetermined level L is significantly lower than the intensity of the transmitted light in the fuel portion lower than the predetermined level L.
[0025]
Accordingly, the light receiving element 60 generates a light receiving signal using the difference between the two intensities as a threshold value, the injection amount calculating circuit 140 calculates the fuel injection amount Q based on the light receiving signal, and the pulse width calculating circuit 150 performs this calculation. The pulse width τ is calculated according to the injection amount Q and is output to the replenishing valve drive circuit 160 as pulse data.
For this reason, the refill valve drive circuit 160 injects fuel at the timing indicated by the symbol D2 in FIG. 3 between the injection timings of the fuel injector 120 (see the symbol D1 in FIG. 3). 90 is driven and controlled.
[0026]
As a result, the fuel supply valve 90 injects the liquid fuel in the fuel tank 100 into the communication path 14. In this case, the injection amount of the fuel supply valve 90 is set so that the liquid fuel rises to a predetermined level L in the glass tube 70.
For this reason, the liquid fuel injected into the communication path 14 flows into the glass tube 70 to a predetermined level L.
[0027]
After that, when the injection timing of the fuel injection valve 120 is reached, the fuel injection valve 120 injects the replenishment fuel of the fuel replenishment valve 90 in the glass tube 70, the communication path 14, the pipe P6 and the like. Thereafter, the above operation is repeated.
As described above, in the first embodiment, the amount of fuel in the vertical column portion 10b on the upstream side of the fuel injection valve 120 is measured at the liquid level by the light projecting system S and the light receiving system R. . Then, as described above, the fuel supply valve 90 is operated by the supply valve driving circuit 160 based on the calculation of the injection amount calculation circuit 140 and the pulse width calculation circuit 150 based on the amount of change of the measurement result before and after the injection of the fuel injection valve 120. Driven. Accordingly, the liquid fuel is replenished by one injection amount of the fuel injection valve 120 so that the fuel amount in the vertical column portion 10b becomes a predetermined level L every time before the injection of the fuel injection valve 120.
[0028]
Thereby, the amount of fuel injected from the fuel injection valve 120 can be continuously measured for each injection. In this case, since it is only necessary to measure the amount of fuel in the vertical column portion 10b, measurement errors due to noise, vibration of the fuel liquid level, and the like are small, and high-precision measurement is possible.
Further, since the measurement is performed on the upstream side of the fuel injection valve 120, the spray shape of the liquid fuel by the fuel injection valve 120 is not adversely affected. Therefore, it is possible to perform good measurement in a state where the injection amount measuring device of the present embodiment is mounted on the internal combustion engine EG.
[0029]
Since there is no need to place a tracer in the liquid fuel unlike the measurement with a laser Doppler velocimeter, there is no change in the fuel properties, and the measurement accuracy is due to the nonuniformity of the tracer particles and the change of the laser focus due to vibration of the internal combustion engine. There is no decline.
Moreover, there is no measurement error due to overheating of the liquid fuel by the hot wire, response delay due to the heat capacity of the hot wire, and influence of fuel temperature change, as in the case of the hot wire anemometer. Does not occur. In addition, there is no problem such as a decrease in measurement accuracy in the low flow velocity region of the hot wire.
(Second Embodiment)
FIG. 4 shows the main part of the second embodiment of the present invention.
[0030]
In the second embodiment, in the base column member 10 described in the first embodiment, the cylindrical vertical tube portion 10c is extended from the horizontal column portion 10a in the same manner instead of the vertical tube portion 10b. Is formed. The joint member 13 communicates with the upper end portion of the vertical cylinder portion 10c.
In the second embodiment, the ultrasonic transceiver 170 is mounted on the upper wall of the hollow portion of the vertical cylinder portion 10c instead of the light projecting system S and the light receiving system R described in the first embodiment. Yes.
[0031]
The ultrasonic transmitter / receiver 170 includes a transmitter 171 and a receiver 172. The transmitter 171 and the receiver 172 are disposed adjacent to each other on the upper wall of the hollow portion of the vertical cylindrical portion 10c. ing.
Thus, the transmitter 171 transmits ultrasonic waves toward the liquid surface of the liquid fuel in the vertical cylinder portion 10c as in the case of the vertical cylinder portion 10b. On the other hand, the receiver 172 receives the ultrasonic wave reflected by the liquid fuel surface and generates a reception signal.
[0032]
The injection amount calculation circuit 140 takes in the received signal from the receiver 172 twice at the liquid level before the start of the injection of the fuel injection valve 120 and after the end of the injection, and uses both of the following equations 3 and 4. Based on this, the fuel injection amount Q is calculated.
[0033]
[Equation 3]
R = T × α
[0034]
[Expression 4]
Q = R2-R1
Here, R is the liquid level of the liquid fuel in the vertical cylinder portion 10c. T is the time until the ultrasonic wave transmitted from the transmitter 171 is reflected by the liquid level of the liquid fuel and received by the receiver 172. R2 is the liquid level after injection of the fuel injection valve 120, while R1 is the liquid level before injection of the fuel injection valve 120. Other configurations are the same as those in the first embodiment.
[0035]
In the second embodiment configured as described above, the same effects as those of the first embodiment can be achieved by the ultrasonic transceiver 170 instead of the light projecting system S and the light receiving system R.
(Third embodiment)
FIG. 5 shows a main part of the third embodiment of the present invention.
[0036]
In the third embodiment, in the base pillar member 10 described in the first embodiment, the cylindrical vertical tube portion 10d (made of an insulating material) is replaced with the vertical tube portion 10b in the same manner as the horizontal member. It extends from the column part 10a. The joint member 13 communicates with the upper end portion of the vertical cylindrical portion 10d.
In the third embodiment, the capacitance sensor 180 is provided in the hollow portion of the vertical cylindrical portion 10d instead of the light projecting system S and the light receiving system R described in the first embodiment.
[0037]
The capacitance sensor 180 includes a pair of flat electrodes 181 and a detection circuit 182. As shown in FIG. 5, the pair of electrodes 181 are attached to the inner peripheral wall of the hollow portion of the vertical cylinder portion 10 d so as to face each other via liquid fuel. In this case, both the electrodes 181 are insulated from each other, and both the electrodes 181 are connected to the detection circuit 182 through the hermetic seal 181a and the both leads 181b. Note that these electrodes 181 may have a long shape instead of a flat shape.
[0038]
Here, when the distance between the two electrodes 181 is small, the capacitance C between the two electrodes 181 is calculated based on the following equation (5).
[0039]
[Equation 5]
C = εS / d
Here, ε is a composite dielectric constant of both air and liquid fuel in the hollow portion of the vertical cylindrical portion 10d. S is the surface area of the electrode 181, and d is the distance between the two electrodes 181. The composite dielectric constant ε varies according to the liquid level of the liquid fuel in the vertical cylinder portion 10d.
[0040]
The detection circuit 182 includes the AC bridge circuit shown in FIG. 6, and this detection circuit 182 detects the electrostatic capacitance C based on the voltage generated according to the composite dielectric constant ε between both electrodes 181. The capacitance C may be detected by the resonance method shown in FIG. According to the AC bridge circuit and the resonance method, there is a response of about 100 kHz and the sensitivity is extremely high.
[0041]
The injection amount calculation circuit 140 calculates the injection amount Q by the following equation 6 based on the detection output of the detection circuit 182.
[0042]
[Formula 6]
Q = γ · C
Here, γ is a constant that varies depending on the material, temperature, and humidity of the medium between the electrodes 181.
In addition, although the formula of Formula 6 has shown the relationship between the electrostatic capacitance C and the injection quantity Q, since C has a fixed relationship with the liquid level of the liquid fuel in the vertical cylinder part 10d, it is electrostatic. The injection amount Q may be calculated based on a change in the liquid level converted from the capacity C (difference between both liquid levels before and after the fuel injection valve 120 injection). Other configurations are the same as those in the first embodiment.
[0043]
In the third embodiment configured as described above, the same effect as that of the first embodiment can be achieved by the electrostatic capacity sensor 180 instead of the light projecting system S and the light receiving system R.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the delivery pipe of FIG.
3 is a timing chart showing the injection timing of the fuel supply valve, the injection timing of the fuel injection valve, and the timing of taking in the level of the light reception signal of the light receiving element in FIG. 1;
FIG. 4 is a partially broken enlarged view showing a main part of a second embodiment of the present invention.
FIG. 5 is a partially broken enlarged view showing a main part of a third embodiment of the present invention.
FIG. 6 is a capacitance change detection circuit diagram in the third embodiment.
FIG. 7 is a graph showing detection characteristics of the capacitance detection circuit.
[Explanation of symbols]
G: High-pressure cylinder, P1 to P6: Metal piping, R: Light receiving system, S: Light projecting system,
10b, 10c, 10d ... vertical column part, 14 ... communication path, 70 ... glass tube,
90 ... refueling valve, 100, 110 ... pressure control valve, 120 ... fuel injection valve,
140 ... injection amount calculation circuit, 150 ... injection width calculation circuit,
160 ... replenishment valve drive circuit, 170 ... ultrasonic transceiver,
180: Capacitance sensor.

Claims (4)

間欠的に液体を噴射する液体噴射手段(120)の上流側管路(P6、14)から鉛直状に延出する筒体(10b、10c、10d、70)と、
前記筒体及び上流側管路内に前記液体を間欠的に補給する液体補給手段(G、P2、P5、110、P4、100、P3、90、140乃至160)と、
前記筒体内の前記液体の量を液面レベルにて測定する測定手段(S、R、170、180)とを備え、
前記液体補給手段が、前記測定液面レベルにおける前記液体噴射手段の噴射前後の変化に基づき、前記液体噴射手段の噴射前毎に前記筒体内の液体量が所定量になるように、前記液体を前記液体噴射手段の一噴射量だけ前記上流側管路に補給する噴射量測定装置。
Cylinders (10b, 10c, 10d, 70) extending vertically from the upstream pipes (P6, 14) of the liquid ejecting means (120) for ejecting liquid intermittently;
Liquid replenishing means (G, P2, P5, 110, P4, 100, P3, 90, 140 to 160) for intermittently replenishing the liquid into the cylindrical body and the upstream pipe line;
Measuring means (S, R, 170, 180) for measuring the amount of the liquid in the cylindrical body at a liquid level ;
Based on the change before and after the liquid ejecting means ejects the liquid replenishing means at the measured liquid level , the liquid replenishing means adjusts the liquid so that the liquid amount in the cylinder becomes a predetermined amount before each ejection of the liquid ejecting means. An injection amount measuring device for replenishing the upstream pipe line by one injection amount of the liquid injection means.
間欠的に液体を噴射する液体噴射手段(120)の上流側管路(P6、14)から鉛直状に延出する筒体(10b、10c、10d、70)と、
前記筒体及び上流側管路内に前記液体を間欠的に補給する液体補給手段(G、P2、P5、110、P4、100、P3、90、140乃至160)と、
前記筒体内の前記液体の量を測定する測定手段(S、R、170、180)とを備え、
前記液体補給手段が、前記測定液体量における前記液体噴射手段の噴射前後の変化に基づき、前記液体噴射手段の噴射前毎に前記筒体内の液体量が所定量になるように、前記液体を前記液体噴射手段の一噴射量だけ前記上流側管路に補給する噴射量測定装置であって、
前記筒体が透明管(70)であり、
前記測定手段は、前記透明管に向けて光を投光する投光系(S)と、前記透明管を通り前記投光系からの光を受光する受光系(R)とを有し、この受光系の受光量に基づき前記透明管内の前記液体の量を液面レベルにて測定し、
前記液体補給手段は、前記測定液面レベルにおける前記液体噴射手段の噴射前後の変化に基づき前記液体噴射手段の一噴射量を算出する算出手段(140、150、160)を有し、この算出手段の算出噴射量だけ前記上流側管路に補給することを特徴とす噴射量測定装置。
Cylinders (10b, 10c, 10d, 70) extending vertically from the upstream pipes (P6, 14) of the liquid ejecting means (120) for ejecting liquid intermittently;
Liquid replenishing means (G, P2, P5, 110, P4, 100, P3, 90, 140 to 160) for intermittently replenishing the liquid into the cylindrical body and the upstream pipe line;
Measuring means (S, R, 170, 180) for measuring the amount of the liquid in the cylinder,
Based on the change in the measured liquid amount before and after the ejection of the liquid ejecting means, the liquid replenishing means supplies the liquid so that the liquid amount in the cylinder becomes a predetermined amount before each ejection of the liquid ejecting means. An injection amount measuring device for replenishing the upstream pipe line by one injection amount of liquid injection means,
The cylinder is a transparent tube (70);
The measuring means has a light projecting system (S) for projecting light toward the transparent tube, and a light receiving system (R) for receiving light from the light projecting system through the transparent tube, Measure the amount of the liquid in the transparent tube at the liquid level based on the amount of light received by the light receiving system,
The liquid replenishing means has calculating means (140, 150, 160) for calculating one ejection amount of the liquid ejecting means based on a change before and after the ejection of the liquid ejecting means at the measured liquid level. injection amount measuring device you characterized in that only the calculated injection quantity is supplied to the upstream pipe.
間欠的に液体を噴射する液体噴射手段(120)の上流側管路(P6、14)から鉛直状に延出する筒体(10b、10c、10d、70)と、
前記筒体及び上流側管路内に前記液体を間欠的に補給する液体補給手段(G、P2、P5、110、P4、100、P3、90、140乃至160)と、
前記筒体内の前記液体の量を測定する測定手段(S、R、170、180)とを備え、
前記液体補給手段が、前記測定液体量における前記液体噴射手段の噴射前後の変化に基づき、前記液体噴射手段の噴射前毎に前記筒体内の液体量が所定量になるように、前記液体を前記液体噴射手段の一噴射量だけ前記上流側管路に補給する噴射量測定装置であって、
前記測定手段は、前記筒体内の前記液体の液面に向けて超音波を送信し当該液面による反射超音波を受信する超音波送受信機(170)を有し、この超音波送受信機の受信超音波に基づき前記筒体内の前記液体の量を液面レベルにて測定し、
前記液体補給手段は、前記測定液面レベルにおける前記液体噴射手段の噴射前後の変化に基づき前記液体噴射手段の一噴射量を算出する算出手段(140、150、160)を有し、この算出手段の算出噴射量だけ前記上流側管路に補給することを特徴とす噴射量測定装置。
Cylinders (10b, 10c, 10d, 70) extending vertically from the upstream pipes (P6, 14) of the liquid ejecting means (120) for ejecting liquid intermittently;
Liquid replenishing means (G, P2, P5, 110, P4, 100, P3, 90, 140 to 160) for intermittently replenishing the liquid into the cylindrical body and the upstream pipe line;
Measuring means (S, R, 170, 180) for measuring the amount of the liquid in the cylinder,
Based on the change in the measured liquid amount before and after the ejection of the liquid ejecting means, the liquid replenishing means supplies the liquid so that the liquid amount in the cylinder becomes a predetermined amount before each ejection of the liquid ejecting means. An injection amount measuring device for replenishing the upstream pipe line by one injection amount of liquid injection means,
The measurement means includes an ultrasonic transceiver (170) that transmits ultrasonic waves toward the liquid level of the liquid in the cylinder and receives reflected ultrasonic waves from the liquid level. Measure the amount of the liquid in the cylinder based on ultrasound at the liquid level,
The liquid replenishing means has calculating means (140, 150, 160) for calculating one ejection amount of the liquid ejecting means based on a change before and after the ejection of the liquid ejecting means at the measured liquid level. injection amount measuring device you characterized in that only the calculated injection quantity is supplied to the upstream pipe.
間欠的に液体を噴射する液体噴射手段(120)の上流側管路(P6、14)から鉛直状に延出する筒体(10b、10c、10d、70)と、
前記筒体及び上流側管路内に前記液体を間欠的に補給する液体補給手段(G、P2、P5、110、P4、100、P3、90、140乃至160)と、
前記筒体内の前記液体の量を測定する測定手段(S、R、170、180)とを備え、
前記液体補給手段が、前記測定液体量における前記液体噴射手段の噴射前後の変化に基づき、前記液体噴射手段の噴射前毎に前記筒体内の液体量が所定量になるように、前記液 体を前記液体噴射手段の一噴射量だけ前記上流側管路に補給する噴射量測定装置であって、
前記測定手段は、前記筒体内にてその軸方向に沿い互いに対向して配置した長手状の両電極(180)を有し、これら両電極間の誘電率に応じた電圧に基づき前記筒体内の前記液体の量を測定し、
前記液体補給手段は、前記測定液体量における前記液体噴射手段の噴射前後の変化に基づき前記液体噴射手段の一噴射量を算出する算出手段(140、150、160)を有し、この算出手段の算出噴射量だけ前記上流側管路に補給することを特徴とす噴射量測定装置。
Cylinders (10b, 10c, 10d, 70) extending vertically from the upstream pipes (P6, 14) of the liquid ejecting means (120) for ejecting liquid intermittently;
Liquid replenishing means (G, P2, P5, 110, P4, 100, P3, 90, 140 to 160) for intermittently replenishing the liquid into the cylindrical body and the upstream pipe line;
Measuring means (S, R, 170, 180) for measuring the amount of the liquid in the cylinder,
Wherein the liquid supply means, based on the injection of before and after the change of the liquid ejecting means in the measuring liquid quantity, so that the liquid amount of the cylindrical body before each injection of the liquid injection means reaches a predetermined amount, the liquid body An injection amount measuring device for replenishing the upstream pipe line by one injection amount of the liquid injection means,
The measurement means has both long electrodes (180) arranged opposite to each other along the axial direction in the cylinder, and the measurement means includes a voltage corresponding to a dielectric constant between the two electrodes. Measuring the amount of the liquid;
The liquid replenishing means includes calculating means (140, 150, 160) for calculating one ejection amount of the liquid ejecting means based on a change in the measured liquid amount before and after the ejection of the liquid ejecting means. by the calculated injection quantity characterized in that supplied to the upstream pipe injection amount measuring device.
JP04409297A 1997-02-27 1997-02-27 Injection quantity measuring device Expired - Fee Related JP3841508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04409297A JP3841508B2 (en) 1997-02-27 1997-02-27 Injection quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04409297A JP3841508B2 (en) 1997-02-27 1997-02-27 Injection quantity measuring device

Publications (2)

Publication Number Publication Date
JPH10238439A JPH10238439A (en) 1998-09-08
JP3841508B2 true JP3841508B2 (en) 2006-11-01

Family

ID=12681988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04409297A Expired - Fee Related JP3841508B2 (en) 1997-02-27 1997-02-27 Injection quantity measuring device

Country Status (1)

Country Link
JP (1) JP3841508B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60211221D1 (en) 2001-10-05 2006-06-08 Dainippon Printing Co Ltd Intermediate medium for transfer recording
US7565837B2 (en) * 2005-05-25 2009-07-28 Ti Group Automotive Systems, L.L.C. Fuel level sensor variable resistor assembly

Also Published As

Publication number Publication date
JPH10238439A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US7987732B2 (en) Ultrasonic measuring unit having integrated humidity analysis
KR101095758B1 (en) Device for measuring time-resolved volumetric throughflow processes
US7252015B2 (en) Ultrasonic flow meter including guide elements
US7171847B2 (en) Method and device for measuring the injection rate of an injection valve for liquids
US8302455B2 (en) Determining delay times for ultrasonic flow meters
US10690100B2 (en) Device for measuring the injection rate, method for producing a device of said type, and measuring method
EP3011329B1 (en) A vehicle urea tank associated with a sensing chamber for acoustic quality and level sensing
WO2008101339A1 (en) Fluid level measuring method and system therefor
US20160281708A1 (en) System for measuring temporally resolved through-flow processes of fluids
CA2015486A1 (en) Ultrasonic linear meter sensor for positive displacement meter
KR101948784B1 (en) Apparatus for measuring fuel amount of fuel tank using ultrasonic sensor
US20040226362A1 (en) Device for measuring a level of fluid in a container
US9132442B2 (en) Diagnosis and controls of a fluid delivery apparatus with hydraulic buffer
JP3841508B2 (en) Injection quantity measuring device
US7168314B2 (en) Ultrasonic filling level sensor
US20090293607A1 (en) Liquid level measurement device
US20060201254A1 (en) Hydrostatic pressure determination in a high-pressure reservoir (common rail) by means of ultrasonic echo time measurement
JP2004340911A (en) Level detector for vehicle
US20040187569A1 (en) Device for measuring the level of a fluid in a container
CN105987727A (en) Liquid flow measuring device
CN112020602A (en) Adaptive high pressure fuel pump system and method of predicting pumping quality
JP4304885B2 (en) Inspection method and apparatus for measuring injection quantity
JP2006105656A (en) Flow rate measuring device and flow rate measurement method
JP3740088B2 (en) Gas concentration sensor
RU2681293C1 (en) Fuel injection characteristics recording device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees