JP3839616B2 - Surface modification method, organic thin film manufacturing method, and element substrate - Google Patents

Surface modification method, organic thin film manufacturing method, and element substrate Download PDF

Info

Publication number
JP3839616B2
JP3839616B2 JP12087599A JP12087599A JP3839616B2 JP 3839616 B2 JP3839616 B2 JP 3839616B2 JP 12087599 A JP12087599 A JP 12087599A JP 12087599 A JP12087599 A JP 12087599A JP 3839616 B2 JP3839616 B2 JP 3839616B2
Authority
JP
Japan
Prior art keywords
thin film
surface modification
plasma
modification method
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12087599A
Other languages
Japanese (ja)
Other versions
JP2000311869A (en
Inventor
敏夫 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP12087599A priority Critical patent/JP3839616B2/en
Publication of JP2000311869A publication Critical patent/JP2000311869A/en
Application granted granted Critical
Publication of JP3839616B2 publication Critical patent/JP3839616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置の技術にかかり、特に、表示装置に用いられる有機EL素子の技術分野に関する。
【0002】
【従来の技術】
有機化合物と無機化合物とを比べた場合、有機化合物の方が反応系や特性が多様であり、また、低エネルギーで表面処理できることから、近年、機能性有機薄膜が着目されている。
【0003】
機能性有機薄膜を利用するものには、有機EL素子、圧電センサ、焦電センサ、電気絶縁膜等、種々のものがあるが、これらのうち、有機EL素子はディスプレイパネルとして利用できることから非常に注目されている。
【0004】
図9の符号101に示したものは有機EL素子の概略構成図であり、ガラス基板110上に、ITO(インジウム・錫酸化物)膜(アノード電極膜)111と、ホール注入層112と、ホール輸送層113と、発光層114と、電子輸送層115と、電子注入層116と、カソード電極膜117とがこの順で形成されている。
【0005】
ホール注入層112〜電子注入層116は有機薄膜で構成されており、この有機EL素子101を形成する場合、先ず、スパッタリング法により、ガラス基板110上にITO薄膜111を形成した後、蒸着法により、ホール注入層112〜電子注入層116及びITO薄膜111をこの順序で形成し、最後に、図示しない保護膜を形成すると、有機EL素子101が得られる。
【0006】
ITO薄膜111に正電圧、カソード電極膜117に負電圧を印加すると、ホール注入層112と電子注入層116にホールと電子がそれぞれ注入される。それらのホールと電子はホール輸送層113と電子輸送層115内を輸送され、発光層114に到達すると発光層114を構成する有機化合物が発光する。
【0007】
符号118は発光層114から放射された光であり、ITO薄膜111は透明であるため、その光118はITO薄膜111とガラス基板110を透過し、外部に放射される。
【0008】
上記のような有機EL素子は、実用化に向け、多色化と高効率化と長寿命化が求められている。それらのうち、高効率化のためには、発光層を構成する有機材料に発光効率の高いものを選択すればよいと考えられる。
【0009】
しかしながら、従来の有機EL素子では、作製直後は高輝度であっても、経時変化によって発光効率が低下し、次第に低輝度になるという問題がある。
【0010】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたもので、その目的は、高輝度、長寿命の有機EL素子を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、プラズマ生成装置内で酸素のプラズマを発生させ、該プラズマ中のイオンを真空雰囲気中に放出させ、該真空雰囲気中に置かれた素子基板表面に到達させ、該素子基板上に露出するITO薄膜の表面を改質する表面改質方法であって、前記素子基板に正電圧を間欠的に印加することを特徴とする。
【0012】
請求項2記載の発明は、請求項1記載の表面改質方法であって、前記素子基板に負電圧を間欠的に印加することを特徴とする。
【0013】
請求項3記載の発明は、請求項2記載の表面改質方法であって、前記正電圧と前記負電圧とを交互に印加することを特徴とする。
【0014】
請求項4記載の発明は、前記プラズマ生成装置はコイルを有し、該コイルに交流電圧を印加し、前記プラズマ生成装置内に導入されたガスをプラズマ化する請求項3記載の表面改質方法であって、前記正電圧と前記負電圧とで構成される交流電圧の周波数を、前記コイルに印加する交流電圧の周波数よりも低くすることを特徴とする表面改質方法。
【0015】
請求項5記載の発明は、表面改質方法であって、前記素子基板表面に露出するITO薄膜表面に真空雰囲気中で紫外線を照射した後、大気に曝さずに、請求項1乃至請求項4のいずれか1項記載の表面改質方法を行うことを特徴とする。
【0016】
請求項6記載の発明は、請求項1乃至請求項5のいずれか1項記載の表面改質方法であって、前記プラズマ生成装置内に、希ガスと酸素ガスとを導入し、前記希ガスと前記酸素ガスとの混合ガスのプラズマを発生させた後、前記希ガスの導入を停止させ、前記酸素ガスのプラズマを形成させることを特徴とする。
【0017】
請求項7記載の発明は、有機薄膜製造方法であって、請求項1乃至請求項6のいずれか1項記載の表面改質方法を行った後、大気に曝さずに、ITO薄膜表面に有機薄膜を形成することを特徴とする。
【0018】
請求項8記載の発明は、ガラス基板と、前記ガラス基板上に形成されたITO薄膜と、前記ITO薄膜表面に形成された有機薄膜とを有する素子基板であって、前記ITO薄膜には、請求項1乃至請求項6記載の表面改質方法が行われたことを特徴とする。
【0019】
本発明の発明者等は、ホール注入層の仕事関数が−5.0eVであるのに対し、従来技術で形成したITO薄膜の仕事関数が−4.8eVである点に注目し、有機EL素子の発光効率が低い原因を、ホール注入層の仕事関数とITO薄膜の仕事関数との差が大きいためであると推測した。
【0020】
ホール注入層の仕事関数を変化させると、その上層のホール輸送層の仕事関数も変化させなければならない。従って、発光効率を高めるためには、ITO薄膜の仕事関数を変化させ、ホール注入層の仕事関数よりも大きくするか、少なくとも近似させればよい。
【0021】
本発明は上記予想に基いて創作されたものであり、ITO薄膜等の酸化物薄膜の仕事関数を負方向に大きくするために、酸化物薄膜を表面に有する素子基板を真空雰囲気中に配置し、プラズマ生成装置内に酸素ガスやオゾンガスを導入し、プラズマ生成装置内に設けられたコイルに交流電圧を印加して酸素プラズマを生成している。
【0022】
酸素プラズマ中ではイオンが生成されるので、そのイオンや中性分子、中性原子を真空雰囲気中に放出させ、酸化物薄膜が形成された素子基板に交流電圧を印加し、その交流電圧が形成する電界によって酸化物薄膜表面にイオンを入射させ、酸化物薄膜の表面をクリーニングすると共に酸素欠陥を修復し、酸化物薄膜の表面改質を行うことで仕事関数を変化させていいる。
【0023】
ガラス基板上に形成されたITO薄膜に対し、条件を変えてイオンを入射させ、仕事関数を測定した。
先ず、素子基板とプラズマ生成装置の間に印加する交流電圧(基板バイアス電圧)を変化させた。印加した交流電圧とITO薄膜の仕事関数との関係を図3に示す。
【0024】
この表面改質は、プラズマ生成装置内にアルゴンガスと酸素ガスを導入し、プラズマ生成装置内のコイルに交流電圧を印加し、放電が開始し、アルゴンガスと酸素ガスのプラズマが発生した後、直ちにアルゴンガスの導入を停止し、酸素だけのプラズマを形成し、ITO薄膜に照射した。真空槽内には他のガスは導入していない。プラズマ生成装置内に導入する酸素ガス流量を制御し、酸素のプラズマ形成中は真空槽内の圧力が5×10-3Torrになるようにした。
【0025】
処理時間は約20秒、素子基板に投入した電力は100Wである。使用したITO薄膜の膜厚は2000Åである。
【0026】
このグラフでは、組織板に約20Vの交流電圧(基板バイアス電圧)を印加すると最も効果が高いことが分かる。また、素子基板に印加する交流電圧は35V以上且つ65V以下の範囲が効果的であることが分かる。
【0027】
次に、素子基板に印加する電圧をAC50Vに固定し、処理時間を変化させて仕事関数を測定した。他の条件は図3の場合と同じに設定した。測定結果を図4のグラフに示す。
【0028】
このグラフから、処理時間は約20秒が最も効果が高く、10秒以上且つ30秒以下が効果的であることが分かる。
【0029】
また、処理時間を20秒に設定し、酸素ガス導入量を変化させ、仕事関数を測定した。他の条件は図3の場合と同じに設定した。測定結果を図5のグラフに示す。酸素ガスの導入量は処理中の真空槽内の圧力(全圧)で示した。
【0030】
このグラフから、酸素ガス導入量(真空槽内の酸素ガス圧力:全圧)は0.005Torrの場合が最も効果が高く、0.0025Torr以上且つ0.01Torr以下が効果的であることが分かる。
【0031】
このように、本発明によると、ITO薄膜の酸素欠陥が修復され、従来のITO薄膜では−4.8eVであった仕事関数を−5.5eV程度にすることができる。その結果、ITO薄膜の仕事関数がホール注入層の仕事関数(−5.0eV)よりも大きくなり、ホール注入層にホールが注入されやすくなる。
【0032】
素子基板に交流電圧を印加し、酸素プラズマ中のイオンを引きつける場合、酸素プラズマ中ではO-の活性性が高く、クリーニング効果が高いので、接地電位(真空槽やプラズマ生成装置の電位)に対し、素子基板側に正電圧を印加し、O-イオンを引き込み、酸素欠陥の修復と同時に表面クリーニングを行うとよい。その正電圧は間欠的に印加すると、素子基板のチャージアップが生じない。
【0033】
他方、酸素プラズマ中にはO+イオンも含まれるが、このO+にもクリーニング効果がある。O+を引きつけ場合には、素子基板に負電圧を印加するとよい。結局、素子基板には、正負の電圧が交互に印加される交流電圧を印加するのが適当である。
【0034】
その交流電圧は、真空雰囲気中に放出された酸素のイオンを移動させるためのものであるから、周波数は低い方がよい。プラズマ生成装置が13.56MHzの高周波であるのに対し、素子基板に印加する交流電圧は、5Hz〜数kH程度の低周波が適当である。
【0035】
【発明の実施の形態】
図1の符号1は、本発明方法を実施できる有機EL素子製造装置の一例である。
この有機EL素子製造装置1は、スパッタリング装置2と、表面改質装置3と、有機蒸着装置4と、金属蒸着装置5を有している。
各装置2〜5には、図示しない真空ポンプがそれぞれ接続されており、個別に真空排気できるように構成されている。
【0036】
先ず、各装置2〜5を真空排気しておき、処理対象のガラス基板を図示しない搬入室内に装着し、真空雰囲気を維持したままスパッタリング装置2内に搬入する。
【0037】
スパッタリング装置2は、基板ホルダ21とカソード22を有しており、カソード22には、ITOで構成されたターゲット23が配置されている。
【0038】
搬入したガラス基板は、成膜面がターゲット23に対向する状態で基板ホルダ21に保持させる。図1の符号12は、その状態のガラス基板を示している。ターゲット23のスパッタリングを行い、ガラス基板12表面にITO薄膜から成る酸化物薄膜を形成した後、後段に配置された表面改質装置3内に搬入する。
【0039】
この表面改質装置3は、図2に示すように、真空槽30を有しており、該真空槽30の天井側に基板ホルダ31が配置されており、底面側にプラズマ生成装置80が配置されている。
【0040】
符号9は、ガラス基板12と、該ガラス基板12上に形成されたITO薄膜から成る酸化物薄膜13とを有する素子基板である。この素子基板9は、酸化物薄膜13をプラズマ生成装置80側に向けて配置されている。
【0041】
プラズマ生成装置80は、容器81と、容器80周囲に設けられたコイル83とを有している。容器81には、ガス配管86が接続されており、バルブ87、88を操作することで、容器80内に少なくとも2種類のガスを導入できるように構成されている。ここではアルゴンガスと酸素ガスが導入できるようにされている。
【0042】
ガラス基板12は基板ホルダ31に密着配置されており、基板ホルダ31内設けられた図示しない加熱ヒータに通電し、素子基板9を215℃に加熱し、酸化物薄膜13のアニールを行う。
【0043】
容器81に設けられたコイル83には、高周波電源84が接続されており、アニール終了後、バルブ87、88を開け、容器80内にアルゴンガスと酸素ガスを流量制御しながら導入する。ここではアルゴンガスと酸素ガスの割合を流量比で2:8にした。
【0044】
次いで、高周波電源84を起動し、コイル83の一端を接地させ、他端に13.56MHzの高周波電圧を印加すると、容器81内に存在するアルゴンガス電離し、容器81内で放電する。
一旦放電が発生すると酸素ガスも電離するので、容器81内にはアルゴンガスと酸素ガスの混合プラズマが形成される。
【0045】
次いで、アルゴンガス側のバルブ87を閉じ、アルゴンガスの導入を停止すると、混合ガスのプラズマ中からアルゴンガスプラズマが消滅し、酸素から成るプラズマが形成される。
【0046】
他方、基板ホルダ31には低周波電源34が接続されており、真空槽30及びプラズマ生成装置80は接地電位に接続されている。この低周波電源34を起動し、基板ホルダ31を介して素子基板9に50Hzの交流電圧(接地電位に対して正負の交番電圧)を印加すると、素子基板9とプラズマ生成装置80の間に低周波の交流電圧が印加される。
【0047】
酸素プラズマ中では、酸素ガス(O2)の陰イオン(O-)や陽イオン(O+)、又はオゾン(O3)やそのイオンが生成されており、それらのイオンや中性分子、中性原子は容器81の開口部82から真空槽30内に放出されと、中性の分子や原子は素子基板9に印加される交流電圧の影響を受けずに酸化物薄膜13に照射されるが、陰イオンは、素子基板9に正電圧が印加されたときに酸化物薄膜13に照射され、陽イオンは負電圧が印加されたときに照射される。
【0048】
酸化物薄膜13に有機物が付着している場合、形成される有機EL素子の発光効率低下の原因になるが、容器81から放出された陰イオンや陽イオンが酸化物薄膜13に入射すると、その表面がクリーニングされる。
【0049】
また、アニールの際やクリーニングの際に、酸化物薄膜13が酸素不足になってしまうが、酸素やオゾンのイオンや中性分子、中性原子が入射すると、酸化物薄膜13の酸素欠陥が修復される。
【0050】
以上のように、酸化物薄膜の表面が改質される結果、従来のITO薄膜では−4.6eVであった仕事関数が−5.55eV程度になり、ホール注入層の仕事関数の−5.0eVよりも負方向に大きくなり、界面の障壁が低くなり、ホールの注入効率が高くなる。
【0051】
上記のような酸化物薄膜13の表面改質を所定時間行った後、素子基板9を有機蒸着装置4内に搬入する。ここでは1台の有機蒸着装置4で有機薄膜を積層させるものとすると、有機蒸着装置4は複数の有機蒸着源(図1では、2台の有機蒸着源421、422が示されている。)を有しており、搬入された素子基板9の酸化物薄膜13側を有機蒸着源421、422に向けて基板ホルダ41に保持させる。
【0052】
酸化物薄膜13表面に、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層を順番に形成した後、金属蒸着装置5内に搬入する。
【0053】
金属蒸着装置5内には、金属の蒸着材料53が納められた金属蒸着源52が配置されており、電子注入層を金属蒸着源52側に向け、基板ホルダ51に配置し、蒸着材料53を蒸発させてアノード電極膜を形成する。
【0054】
アノード電極膜が形成された素子基板9は、この有機EL素子製造装置1から取り出し、保護膜形成装置内に搬入し、アノード電極上に保護膜を形成すると有機EL素子が得られる。
【0055】
図6のグラフの符号L1は、その有機EL素子に電圧を印加し、発光させた場合の経過時間と輝度の関係を示すグラフである。符号L2は従来技術の有機EL素子の経過時間と輝度の関係を示すグラフである。従来技術の場合は、発光開始から輝度が低下した語、一定値になってているが、本発明の有機EL素子では、輝度の低下がなく、高輝度を維持できることが分かる。
【0056】
また、図7の符号L3は、本発明の有機EL素子を用い、輝度を一定にして発光させた場合の経過時間と印加電圧の関係を示すグラフである。同図符号L4は従来技術の有機EL素子の場合のグラフである。本発明の有機EL素子では、印加電圧が低くて済むことが分かる。
【0057】
なお、上記実施例では、保護膜形成装置を有機EL素子製造装置1とは別に設けた場合を説明したが、保護膜形成装置を有する有機EL素子製造装置を用いる場合は、アノード電極膜の形成語、その素子基板を金属蒸着装置から搬出し、後段に設けた保護膜形成装置内に搬入し、ITO薄膜の形成から保護膜の形成まで、大気に曝さずに一貫して真空雰囲気内で処理してもよい。
【0058】
他方、ITO薄膜が形成された素子基板を購入し、有機EL素子を作製する場合には、上記スパッタリング装置2に換え、紫外線照射装置を設け、真空雰囲気中でITO薄膜に紫外線を照射し、ITO薄膜表面に吸着している有機物をCO2ガスにして除去した後、大気に曝さずに上記の表面改質装置3内に搬入し、ITO薄膜の表面改質を行うとよい。
【0059】
以上説明したように、本発明によれば、ITO薄膜の酸素欠陥が修復され、又表面がクリーニングされるので、特に、酸化物薄膜がITO薄膜の場合は仕事関数がホール注入層の仕事関数よりも負方向に大きくなり、ホール注入効率が向上し、高輝度になる。
【0060】
また、ITO薄膜表面に吸着した有機化合物が分解除去されるため、輝度劣化が少ない。
【0061】
なお、以上の実施例では、プラズマ生成80装置内に酸素ガスを導入し、酸素プラズマを生成したが、オゾンガスを導入して酸素プラズマを生成してもよい。また、アルゴンガス等の希ガスを用いずに酸素のプラズマを発生させてもよい。
【0062】
【発明の効果】
高輝度で長寿命の有機EL素子を得られる。
【図面の簡単な説明】
【図1】本発明の表面改質方法を実施できる有機EL素子製造装置の一例
【図2】その有機EL素子製造装置に設けられた表面改質装置の一例
【図3】基板バイアスと仕事関数の値の関係を示すグラフ
【図4】処理時間と仕事関数の値の関係を示すグラフ
【図5】圧力と仕事関数の値の関係を示すグラフ
【図6】印加時間と輝度変化の関係を示すグラフ
【図7】印加時間と印加電圧の関係を示すグラフ
【図8】有機EL素子の構造
【符号の説明】
1……有機EL素子製造装置 2……表面改質装置 9……素子基板 12……ガラス基板 13……酸化物薄膜(ITO薄膜) 80……プラズマ生成装置 83……コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the technology of display devices, and more particularly to the technical field of organic EL elements used in display devices.
[0002]
[Prior art]
When organic compounds are compared with inorganic compounds, organic compounds have more diverse reaction systems and characteristics, and surface treatment can be performed with low energy, so functional organic thin films have recently attracted attention.
[0003]
There are various types that use functional organic thin films, such as organic EL elements, piezoelectric sensors, pyroelectric sensors, and electrical insulating films. Of these, organic EL elements can be used as display panels. Attention has been paid.
[0004]
9 is a schematic configuration diagram of an organic EL element. On a glass substrate 110, an ITO (indium tin oxide) film (anode electrode film) 111, a hole injection layer 112, a hole A transport layer 113, a light emitting layer 114, an electron transport layer 115, an electron injection layer 116, and a cathode electrode film 117 are formed in this order.
[0005]
The hole injection layer 112 to the electron injection layer 116 are composed of organic thin films. When the organic EL element 101 is formed, first, the ITO thin film 111 is formed on the glass substrate 110 by a sputtering method, and then by a vapor deposition method. When the hole injection layer 112 to the electron injection layer 116 and the ITO thin film 111 are formed in this order, and finally a protective film (not shown) is formed, the organic EL element 101 is obtained.
[0006]
When a positive voltage is applied to the ITO thin film 111 and a negative voltage is applied to the cathode electrode film 117, holes and electrons are injected into the hole injection layer 112 and the electron injection layer 116, respectively. These holes and electrons are transported in the hole transport layer 113 and the electron transport layer 115, and when they reach the light emitting layer 114, the organic compound constituting the light emitting layer 114 emits light.
[0007]
Reference numeral 118 denotes light emitted from the light emitting layer 114. Since the ITO thin film 111 is transparent, the light 118 passes through the ITO thin film 111 and the glass substrate 110 and is emitted to the outside.
[0008]
The organic EL element as described above is required to be multicolored, highly efficient, and have a long lifetime for practical use. Among them, in order to increase the efficiency, it is considered that an organic material constituting the light emitting layer should be selected with a high light emitting efficiency.
[0009]
However, the conventional organic EL device has a problem that even if the luminance is high immediately after fabrication, the light emission efficiency is lowered due to a change with time, and the luminance gradually decreases.
[0010]
[Problems to be solved by the invention]
The present invention was created in order to solve the disadvantages of the prior art described above, and an object of the present invention is to provide an organic EL element with high brightness and long life.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an invention according to claim 1 is an element that generates an oxygen plasma in a plasma generating device, emits ions in the plasma into a vacuum atmosphere, and is placed in the vacuum atmosphere. A surface modification method for modifying the surface of an ITO thin film exposed on the element substrate and exposing the element substrate, wherein a positive voltage is intermittently applied to the element substrate.
[0012]
According to a second aspect of the present invention, in the surface modification method according to the first aspect, a negative voltage is intermittently applied to the element substrate.
[0013]
The invention according to claim 3 is the surface modification method according to claim 2, wherein the positive voltage and the negative voltage are alternately applied.
[0014]
The invention according to claim 4 is the surface modification method according to claim 3, wherein the plasma generating device has a coil, an AC voltage is applied to the coil, and the gas introduced into the plasma generating device is turned into plasma. And the surface modification method characterized by making the frequency of the alternating voltage comprised by the said positive voltage and the said negative voltage lower than the frequency of the alternating voltage applied to the said coil.
[0015]
The invention according to claim 5 is a surface modification method, wherein the ITO thin film surface exposed on the surface of the element substrate is irradiated with ultraviolet rays in a vacuum atmosphere, and then is not exposed to the atmosphere. The surface modification method according to any one of the above is performed.
[0016]
A sixth aspect of the present invention is the surface modification method according to any one of the first to fifth aspects, wherein a rare gas and an oxygen gas are introduced into the plasma generator, and the rare gas is introduced. And after the generation of the mixed gas plasma of oxygen gas and the oxygen gas, the introduction of the rare gas is stopped to form the oxygen gas plasma.
[0017]
The invention according to claim 7 is an organic thin film manufacturing method, wherein after the surface modification method according to any one of claims 1 to 6 is performed, the surface of the ITO thin film is organically exposed without being exposed to the atmosphere. A thin film is formed.
[0018]
Invention according to claim 8, a glass substrate, and ITO thin film formed on the glass substrate, an element substrate having an organic thin film formed on the ITO thin film surface, the ITO thin film, wherein The surface modification method according to any one of Items 1 to 6 is performed.
[0019]
The inventors of the present invention pay attention to the fact that the work function of the ITO thin film formed by the prior art is −4.8 eV while the work function of the hole injection layer is −5.0 eV, and the organic EL element It was speculated that the cause of the low luminous efficiency was that the work function of the hole injection layer and the work function of the ITO thin film were large.
[0020]
When the work function of the hole injection layer is changed, the work function of the upper hole transport layer must also be changed. Therefore, in order to increase the luminous efficiency, the work function of the ITO thin film may be changed to be larger than or at least approximated to the work function of the hole injection layer.
[0021]
The present invention was created based on the above prediction, and in order to increase the work function of an oxide thin film such as an ITO thin film in the negative direction, an element substrate having an oxide thin film on its surface is placed in a vacuum atmosphere. Then, oxygen gas or ozone gas is introduced into the plasma generating apparatus, and an alternating current voltage is applied to a coil provided in the plasma generating apparatus to generate oxygen plasma.
[0022]
Since ions are generated in oxygen plasma, the ions, neutral molecules, and neutral atoms are released into a vacuum atmosphere, and an alternating voltage is applied to the element substrate on which the oxide thin film is formed. The work function is changed by making ions incident on the surface of the oxide thin film by cleaning the surface of the oxide thin film, repairing oxygen defects, and modifying the surface of the oxide thin film.
[0023]
Ions were incident on the ITO thin film formed on the glass substrate under different conditions, and the work function was measured.
First, the AC voltage (substrate bias voltage) applied between the element substrate and the plasma generation apparatus was changed. FIG. 3 shows the relationship between the applied AC voltage and the work function of the ITO thin film.
[0024]
In this surface modification, argon gas and oxygen gas are introduced into the plasma generator, an AC voltage is applied to the coil in the plasma generator, discharge starts, and argon and oxygen gas plasma is generated. Immediately, the introduction of argon gas was stopped, a plasma containing only oxygen was formed, and the ITO thin film was irradiated. No other gas is introduced into the vacuum chamber. The flow rate of oxygen gas introduced into the plasma generator was controlled so that the pressure in the vacuum chamber was 5 × 10 −3 Torr during the oxygen plasma formation.
[0025]
The processing time is about 20 seconds, and the power supplied to the element substrate is 100 W. The thickness of the ITO thin film used is 2000 mm.
[0026]
In this graph, it can be seen that applying an AC voltage (substrate bias voltage) of about 20 V to the tissue plate is most effective. It can also be seen that the AC voltage applied to the element substrate is effectively in the range of 35V to 65V.
[0027]
Next, the work function was measured by fixing the voltage applied to the element substrate to 50 VAC and changing the processing time. Other conditions were set to be the same as those in FIG. The measurement results are shown in the graph of FIG.
[0028]
From this graph, it can be seen that the processing time is most effective when the processing time is about 20 seconds, and it is effective when the processing time is 10 seconds or more and 30 seconds or less.
[0029]
The processing time was set to 20 seconds, the oxygen gas introduction amount was changed, and the work function was measured. Other conditions were set to be the same as those in FIG. The measurement results are shown in the graph of FIG. The amount of oxygen gas introduced was indicated by the pressure (total pressure) in the vacuum chamber during processing.
[0030]
From this graph, it can be seen that the oxygen gas introduction amount (oxygen gas pressure in the vacuum chamber: total pressure) is most effective when it is 0.005 Torr, and is effective when it is 0.0025 Torr or more and 0.01 Torr or less.
[0031]
As described above, according to the present invention, the oxygen defects of the ITO thin film are repaired, and the work function which was -4.8 eV in the conventional ITO thin film can be reduced to about -5.5 eV. As a result, the work function of the ITO thin film becomes larger than the work function (−5.0 eV) of the hole injection layer, and holes are easily injected into the hole injection layer.
[0032]
When an AC voltage is applied to the element substrate to attract ions in the oxygen plasma, the oxygen plasma has a high O activity and a high cleaning effect, so that the ground potential (the potential of the vacuum chamber or plasma generator) is high. It is preferable to apply a positive voltage to the element substrate side, draw O 2 - ions, and perform surface cleaning simultaneously with repair of oxygen defects. When the positive voltage is applied intermittently, the element substrate is not charged up.
[0033]
On the other hand, oxygen plasma contains O + ions, and this O + also has a cleaning effect. When attracting O + , a negative voltage may be applied to the element substrate. After all, it is appropriate to apply an alternating voltage to which positive and negative voltages are alternately applied to the element substrate.
[0034]
Since the AC voltage is for moving oxygen ions released into the vacuum atmosphere, the frequency should be low. While the plasma generator has a high frequency of 13.56 MHz, an AC voltage applied to the element substrate is suitably a low frequency of about 5 Hz to several kH.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Reference numeral 1 in FIG. 1 is an example of an organic EL element manufacturing apparatus that can implement the method of the present invention.
The organic EL element manufacturing apparatus 1 includes a sputtering apparatus 2, a surface modification apparatus 3, an organic vapor deposition apparatus 4, and a metal vapor deposition apparatus 5.
A vacuum pump (not shown) is connected to each of the devices 2 to 5 and is configured so that it can be evacuated individually.
[0036]
First, each of the devices 2 to 5 is evacuated, a glass substrate to be processed is mounted in a loading chamber (not shown), and loaded into the sputtering apparatus 2 while maintaining a vacuum atmosphere.
[0037]
The sputtering apparatus 2 has a substrate holder 21 and a cathode 22, and a target 23 made of ITO is disposed on the cathode 22.
[0038]
The loaded glass substrate is held by the substrate holder 21 with the film formation surface facing the target 23. The code | symbol 12 of FIG. 1 has shown the glass substrate of the state. Sputtering of the target 23 is performed to form an oxide thin film made of an ITO thin film on the surface of the glass substrate 12, and then carried into the surface modification device 3 disposed in the subsequent stage.
[0039]
As shown in FIG. 2, the surface modification apparatus 3 has a vacuum chamber 30, a substrate holder 31 is disposed on the ceiling side of the vacuum chamber 30, and a plasma generation device 80 is disposed on the bottom side. Has been.
[0040]
Reference numeral 9 denotes an element substrate having a glass substrate 12 and an oxide thin film 13 made of an ITO thin film formed on the glass substrate 12. The element substrate 9 is disposed with the oxide thin film 13 facing the plasma generation device 80 side.
[0041]
The plasma generation device 80 includes a container 81 and a coil 83 provided around the container 80. A gas pipe 86 is connected to the container 81, and at least two kinds of gases can be introduced into the container 80 by operating valves 87 and 88. Here, argon gas and oxygen gas can be introduced.
[0042]
The glass substrate 12 is disposed in close contact with the substrate holder 31. The heater 9 (not shown) provided in the substrate holder 31 is energized, the element substrate 9 is heated to 215 ° C., and the oxide thin film 13 is annealed.
[0043]
A high frequency power supply 84 is connected to the coil 83 provided in the container 81, and after annealing, the valves 87 and 88 are opened, and argon gas and oxygen gas are introduced into the container 80 while controlling the flow rate. Here, the ratio of argon gas to oxygen gas was set to 2: 8 in flow rate ratio.
[0044]
Next, when the high frequency power supply 84 is activated and one end of the coil 83 is grounded and a high frequency voltage of 13.56 MHz is applied to the other end, the argon gas present in the container 81 is ionized and discharged in the container 81.
Once the discharge occurs, the oxygen gas is also ionized, so that a mixed plasma of argon gas and oxygen gas is formed in the container 81.
[0045]
Next, when the argon gas side valve 87 is closed and the introduction of the argon gas is stopped, the argon gas plasma is extinguished from the plasma of the mixed gas, and a plasma composed of oxygen is formed.
[0046]
On the other hand, a low-frequency power source 34 is connected to the substrate holder 31, and the vacuum chamber 30 and the plasma generator 80 are connected to the ground potential. When the low frequency power supply 34 is activated and an AC voltage of 50 Hz (an alternating voltage positive and negative with respect to the ground potential) is applied to the element substrate 9 through the substrate holder 31, the low frequency power supply 34 is reduced between the element substrate 9 and the plasma generation device 80. A frequency alternating voltage is applied.
[0047]
In the oxygen plasma, anions (O ), cations (O + ), ozone (O 3 ) and ions of oxygen gas (O 2 ) are generated, and these ions, neutral molecules, When the active atoms are released into the vacuum chamber 30 from the opening 82 of the container 81, the neutral molecules and atoms are irradiated to the oxide thin film 13 without being affected by the AC voltage applied to the element substrate 9. The anions are irradiated to the oxide thin film 13 when a positive voltage is applied to the element substrate 9, and the cations are irradiated when a negative voltage is applied.
[0048]
When an organic substance adheres to the oxide thin film 13, it causes a reduction in luminous efficiency of the formed organic EL element. However, when an anion or a cation released from the container 81 enters the oxide thin film 13, The surface is cleaned.
[0049]
Further, the oxide thin film 13 becomes deficient in oxygen during annealing or cleaning, but when oxygen, ozone ions, neutral molecules, or neutral atoms are incident, the oxygen defects in the oxide thin film 13 are repaired. Is done.
[0050]
As described above, as a result of the modification of the surface of the oxide thin film, the work function which was -4.6 eV in the conventional ITO thin film becomes about -5.55 eV, and the work function of the hole injection layer becomes -5. It becomes larger in the negative direction than 0 eV, the interface barrier is lowered, and the hole injection efficiency is increased.
[0051]
After the surface modification of the oxide thin film 13 as described above is performed for a predetermined time, the element substrate 9 is carried into the organic vapor deposition apparatus 4. Here, when the organic thin film is laminated by one organic vapor deposition apparatus 4, the organic vapor deposition apparatus 4 has a plurality of organic vapor deposition sources (in FIG. 1, two organic vapor deposition sources 42 1 and 42 2 are shown. And the oxide thin film 13 side of the loaded element substrate 9 is held by the substrate holder 41 toward the organic vapor deposition sources 42 1 and 42 2 .
[0052]
A hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer are formed in this order on the surface of the oxide thin film 13 and then carried into the metal vapor deposition apparatus 5.
[0053]
A metal vapor deposition source 52 in which a metal vapor deposition material 53 is housed is disposed in the metal vapor deposition apparatus 5, the electron injection layer is directed toward the metal vapor deposition source 52, and is disposed on the substrate holder 51. Evaporate to form an anode electrode film.
[0054]
The element substrate 9 on which the anode electrode film is formed is taken out from the organic EL element manufacturing apparatus 1 and carried into the protective film forming apparatus, and an organic EL element is obtained by forming a protective film on the anode electrode.
[0055]
The symbol L 1 in the graph of FIG. 6 is a graph showing the relationship between the elapsed time and the luminance when a voltage is applied to the organic EL element to emit light. Symbol L 2 is a graph showing the relationship between the elapsed time and the luminance of the conventional organic EL element. In the case of the prior art, the word whose luminance has decreased since the start of light emission has a constant value, but it can be seen that the organic EL element of the present invention can maintain high luminance without a decrease in luminance.
[0056]
The sign L 3 in FIG. 7, an organic EL device of the present invention, is a graph showing the relationship between the elapsed time and the applied voltage in the case where light is emitted by the brightness constant. The symbol L 4 in the figure is a graph in the case of a conventional organic EL element. It can be seen that the applied voltage is low in the organic EL element of the present invention.
[0057]
In the above embodiment, the case where the protective film forming apparatus is provided separately from the organic EL element manufacturing apparatus 1 has been described. However, when the organic EL element manufacturing apparatus having the protective film forming apparatus is used, the anode electrode film is formed. The element substrate is unloaded from the metal deposition device, loaded into the protective film forming device provided at the later stage, and processed from the formation of the ITO thin film to the formation of the protective film in a vacuum atmosphere consistently without exposure to the atmosphere. May be.
[0058]
On the other hand, when purchasing an element substrate on which an ITO thin film is formed to produce an organic EL element, an ultraviolet irradiation device is provided in place of the sputtering device 2 to irradiate the ITO thin film with ultraviolet rays in a vacuum atmosphere. After removing the organic matter adsorbed on the thin film surface as CO 2 gas, it is preferable to carry it into the surface modification device 3 without exposing it to the atmosphere and to modify the surface of the ITO thin film.
[0059]
As described above, according to the present invention, the oxygen defects of the ITO thin film are repaired and the surface is cleaned. In particular, when the oxide thin film is an ITO thin film, the work function is higher than the work function of the hole injection layer. Increases in the negative direction, improving the hole injection efficiency and increasing the brightness.
[0060]
Moreover, since the organic compound adsorbed on the surface of the ITO thin film is decomposed and removed, there is little luminance deterioration.
[0061]
In the above embodiment, oxygen gas is introduced into the plasma generation apparatus 80 to generate oxygen plasma. However, oxygen gas may be generated by introducing ozone gas. Alternatively, oxygen plasma may be generated without using a rare gas such as argon gas.
[0062]
【The invention's effect】
An organic EL element with high brightness and long life can be obtained.
[Brief description of the drawings]
FIG. 1 shows an example of an organic EL element manufacturing apparatus that can perform the surface modification method of the present invention. FIG. 2 shows an example of a surface modification apparatus provided in the organic EL element manufacturing apparatus. FIG. 4 is a graph showing the relationship between the processing time and the work function value. FIG. 5 is a graph showing the relationship between the pressure and the work function value. FIG. 6 is a graph showing the relationship between the application time and the luminance change. [Figure 7] Graph showing the relationship between applied time and applied voltage [Figure 8] Structure of organic EL element [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Organic EL element manufacturing apparatus 2 ... Surface modification apparatus 9 ... Element substrate 12 ... Glass substrate 13 ... Oxide thin film (ITO thin film) 80 ... Plasma generator 83 ... Coil

Claims (8)

プラズマ生成装置内で酸素のプラズマを発生させ、
該プラズマ中のイオンを真空雰囲気中に放出させ、
該真空雰囲気中に置かれた素子基板表面に到達させ、該素子基板上に露出するITO薄膜の表面を改質する表面改質方法であって、
前記素子基板に正電圧を間欠的に印加することを特徴とする表面改質方法。
Generate oxygen plasma in the plasma generator,
Discharging ions in the plasma into a vacuum atmosphere;
A surface modification method for modifying the surface of an ITO thin film exposed on the element substrate by reaching the surface of the element substrate placed in the vacuum atmosphere,
A surface modification method comprising intermittently applying a positive voltage to the element substrate.
前記素子基板に負電圧を間欠的に印加することを特徴とする請求項1記載の表面改質方法。The surface modification method according to claim 1, wherein a negative voltage is intermittently applied to the element substrate. 前記正電圧と前記負電圧とを交互に印加することを特徴とする請求項2記載の表面改質方法。The surface modification method according to claim 2, wherein the positive voltage and the negative voltage are alternately applied. 前記プラズマ生成装置はコイルを有し、該コイルに交流電圧を印加し、前記プラズマ生成装置内に導入されたガスをプラズマ化する請求項3記載の表面改質方法であって、
前記正電圧と前記負電圧とで構成される交流電圧の周波数を、前記コイルに印加する交流電圧の周波数よりも低くすることを特徴とする表面改質方法。
The surface generation method according to claim 3, wherein the plasma generation device has a coil, an alternating voltage is applied to the coil, and the gas introduced into the plasma generation device is turned into plasma.
The surface modification method characterized by making the frequency of the alternating voltage comprised by the said positive voltage and the said negative voltage lower than the frequency of the alternating voltage applied to the said coil.
前記素子基板表面に露出するITO薄膜表面に真空雰囲気中で紫外線を照射した後、大気に曝さずに、請求項1乃至請求項4のいずれか1項記載の表面改質方法を行うことを特徴とする表面改質方法。The surface modification method according to any one of claims 1 to 4, wherein the surface of the ITO thin film exposed on the surface of the element substrate is irradiated with ultraviolet rays in a vacuum atmosphere, and then exposed to the atmosphere without performing exposure to the atmosphere. A surface modification method. 前記プラズマ生成装置内に、希ガスと酸素ガスとを導入し、前記希ガスと前記酸素ガスとの混合ガスのプラズマを発生させた後、前記希ガスの導入を停止させ、前記酸素ガスのプラズマを形成させることを特徴とする請求項1乃至請求項5のいずれか1項記載の表面改質方法。Introducing rare gas and oxygen gas into the plasma generator, generating a plasma of a mixed gas of the rare gas and oxygen gas, then stopping the introduction of the rare gas, and plasma of the oxygen gas The surface modification method according to claim 1, wherein the surface modification method is formed. 請求項1乃至請求項6のいずれか1項記載の表面改質方法を行った後、大気に曝さずに、ITO薄膜表面に有機薄膜を形成することを特徴とする有機薄膜製造方法。An organic thin film manufacturing method comprising: forming an organic thin film on the surface of an ITO thin film without performing exposure to the air after performing the surface modification method according to any one of claims 1 to 6. ガラス基板と、
前記ガラス基板上に形成されたITO薄膜と、
前記ITO薄膜表面に形成された有機薄膜とを有する素子基板であって、
前記ITO薄膜には、請求項1乃至請求項6記載の表面改質方法が行われたことを特徴とする素子基板。
A glass substrate;
An ITO thin film formed on the glass substrate;
An element substrate having an organic thin film formed on the surface of the ITO thin film ,
7. The element substrate according to claim 1, wherein the ITO thin film is subjected to the surface modification method according to claim 1.
JP12087599A 1999-04-28 1999-04-28 Surface modification method, organic thin film manufacturing method, and element substrate Expired - Lifetime JP3839616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12087599A JP3839616B2 (en) 1999-04-28 1999-04-28 Surface modification method, organic thin film manufacturing method, and element substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12087599A JP3839616B2 (en) 1999-04-28 1999-04-28 Surface modification method, organic thin film manufacturing method, and element substrate

Publications (2)

Publication Number Publication Date
JP2000311869A JP2000311869A (en) 2000-11-07
JP3839616B2 true JP3839616B2 (en) 2006-11-01

Family

ID=14797130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12087599A Expired - Lifetime JP3839616B2 (en) 1999-04-28 1999-04-28 Surface modification method, organic thin film manufacturing method, and element substrate

Country Status (1)

Country Link
JP (1) JP3839616B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284059A (en) * 2000-03-29 2001-10-12 Honda Motor Co Ltd Transparent electrode, organic electroluminescent element, treating device and treating method of transparent electrode
JP2003257648A (en) * 2002-03-05 2003-09-12 Seiko Epson Corp Surface treating device, organic el device manufacturing apparatus, organic el device, and electronic apparatus
JP4100011B2 (en) * 2002-03-13 2008-06-11 セイコーエプソン株式会社 Surface treatment apparatus, organic EL device manufacturing apparatus, and manufacturing method
WO2003101158A1 (en) * 2002-05-29 2003-12-04 Asahi Glass Company, Limited Substrate with transparent conductive film and organic el device
JP2005123012A (en) * 2003-10-16 2005-05-12 Pioneer Electronic Corp Organic electroluminescent display panel, and method of manufacturing the same
EP1825532B1 (en) 2004-08-27 2013-04-24 Showa Denko K.K. Organic electroliminescent device and production method thereof
JP6043506B2 (en) * 2012-05-16 2016-12-14 株式会社アルバック Hardening device and metal oxide film hardening method
US20160056409A1 (en) * 2013-03-28 2016-02-25 National Institute For Materials Science Organic el element and method for manufacturing same
JP7313929B2 (en) * 2019-06-26 2023-07-25 住友重機械工業株式会社 Negative ion irradiation device

Also Published As

Publication number Publication date
JP2000311869A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US6132280A (en) System and process for fabricating an organic electroluminescent display device
US5698039A (en) Process for cleaning a substrate using a barrier discharge
JP3839616B2 (en) Surface modification method, organic thin film manufacturing method, and element substrate
KR19980080038A (en) Method for manufacturing organic electroluminescent device
TWI494174B (en) Equipment for surface treatment of substrate
KR0167480B1 (en) Surface treating method of semiconductor film
JP2000156160A (en) Vacuum device, and manufacture of plasma display unit
JP2000277256A (en) Method and device for manufacture of organic electroluminescent element
JP2009010350A (en) Method of cleaning patterning device, method of depositing layer system on substrate, system for cleanine patterning device, and coating system for depositing layer system on substrate
US7871677B2 (en) Surface treating method for substrate
JP2002124379A (en) Manufacturing method of organic el device
KR20220072418A (en) Ionizer using excimer lamp
JP7299028B2 (en) Film forming apparatus and film forming method by magnetron sputtering
JP2005340225A (en) Organic el device
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JPH10144475A (en) El element, and forming method of cathode electrode film on organic thin film surface
JPH0722530A (en) Method and apparatus for removing static electricity
JPH09232075A (en) Manufacture of organic electroluminescence element and manufacturing device of organic electroluminescence element
JP3516821B2 (en) Organic thin film forming method using radical and organic thin film forming apparatus
JP2004095452A (en) Device and method for forming film, and protective film
RU2052538C1 (en) Method for vacuum deposition of metallized coating on dielectric substrates
US10886468B2 (en) Manufacturing method and manufacturing apparatus for organic EL display device
JP2001313168A (en) Organic electroluminescent element and manufacturing method of the same
KR100862948B1 (en) THE APPARATUS AND THE METHODE FOR MgO COATING USING ION BEAM
KR20120091643A (en) Sputtering apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060705

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term