JP3839556B2 - Method for producing dyed paper - Google Patents

Method for producing dyed paper Download PDF

Info

Publication number
JP3839556B2
JP3839556B2 JP17298397A JP17298397A JP3839556B2 JP 3839556 B2 JP3839556 B2 JP 3839556B2 JP 17298397 A JP17298397 A JP 17298397A JP 17298397 A JP17298397 A JP 17298397A JP 3839556 B2 JP3839556 B2 JP 3839556B2
Authority
JP
Japan
Prior art keywords
paper
dyed
dyed paper
dye
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17298397A
Other languages
Japanese (ja)
Other versions
JPH1112991A (en
Inventor
里司 福井
龍男 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokushu Paper Manufacturing Co Ltd
Original Assignee
Tokushu Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokushu Paper Manufacturing Co Ltd filed Critical Tokushu Paper Manufacturing Co Ltd
Priority to JP17298397A priority Critical patent/JP3839556B2/en
Publication of JPH1112991A publication Critical patent/JPH1112991A/en
Application granted granted Critical
Publication of JP3839556B2 publication Critical patent/JP3839556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Description

【0001】
【産業上の利用分野】
本発明は染色紙に関するものである。
【0002】
【従来の技術】
一般に染色紙は、パルプ等の紙原料を水に懸濁した紙料に、染料及び/または顔料を溶解または懸濁し染めることで得られる。染料には、直接染料、塩基性染料、酸性染料、カチオン染料等があり、顔料には有機顔料、無機顔料がある。しかしいずれの染料及び/または顔料にも、紙パルプ繊維に対する吸着量に限界があるため、染料及び/または顔料ごとに異なるある一定以上の染色濃度になるとそれ以上は濃い色の紙を得られなくなる。また、それ以下の染色濃度においても、抄紙機を用いて工業的に製造する場合、ある濃度を越えると紙パルプ繊維に吸着していない染料及び/または顔料が抄紙工程において白水と一緒に大量に流れ出し、環境への汚染や排水システムへの負荷、あるいは白水循環系においては循環した染料及び/または顔料が上紙の色濃度に影響し、安定した抄造を阻害するといった問題が生じる。したがって、濃い色の染色紙を作ることには一定の限界がある。
【0003】
一般に染色紙の色はJIS Z8721にあるように色相・明度・彩度の三属性で表される。色相は使用する染料及び/または顔料に固有のものであり、黒い染料及び/または顔料では色相はほぼ存在せず無彩色となる。明度と彩度は使用する染料及び/または顔料の量によって増減する。一般に多くの染料及び/または顔料を用いれば明度が下がり濃い色になる。彩度は、色相によっても異なるが、あるところまでは増加し鮮やかになるが、それを越えると減少し色彩感も減少する。また、実際の染料及び/または顔料による染色紙で得られる彩度は、光の正反射等のため理想値よりも小さくなっている。したがって、低い明度でかつ十分な彩度を持った染色紙を得ることにはやはり限界がある。
【0004】
一般に色の表示にはJIS Z8721にあるように三属性をマンセル値のH(色相) V(明度)/C(彩度)で表示することができる。しかし、マンセル値は精密な値を算出することが難しいので、JIS Z8730によるL*a*b*表色系によってこれに代えることが可能である。これによればL*が明度に相当し、さらにa*とb*によって表される平面座標上の点の方位は色相に相当し、原点を通るL*軸からの平面距離、すなわちa*とb*の二乗平均値C*が彩度に相当する。原点を通るL*軸上の色は無彩色である。本発明では、このL*a*b*表色系を用いて説明する。この場合、L*が小さいほど明度が低い、すなわち濃い色ということになり、a*及び/またはb*が大きいほど彩度が大きいということになり、色彩感が強いことになる。
【0005】
本発明における濃色化とは、L*が小さくなることであり、視覚的に明確に感知できる−0.5(相対値)以下を濃色効果があったとし、本発明では−2.0以下の濃色効果があることが望ましい。また有彩色においてはC*が大きくなることも望ましい。有彩色においては、C*が+0.5以上(相対値)あれば彩度が向上したとし、本発明では+2.0以上が望ましい。さらに、変色等による色相の変化が大きいと実用上問題があるため、a*b*座標平面における原点からの方位角の変化量(ラジアン)を色相の変化を表す値とし、時計回りをプラス方向として本発明では実用上±0.2以下を許容範囲とする。
【0006】
真空グロー放電スパッタによるエッチングは、スパッタエッチングとも呼ばれ、0.01〜100Pa程度の真空中にて、放電が起こる条件内で0.5cm以上の間隔を置いた電極間に数百から数千Vの電圧を印可し、陰極上またはごく近傍に目的物を置くことによって、放電によって発生したガス陽イオンが目的物に衝突して起こる。絶縁体をエッチングする場合、数十KHz以上の高周波を印可することによって放電およびスパッタが可能になる。通常は13.56MHzの高周波(RF)を用いるため、RFスパッタないしRFスパッタリングによるエッチング、またはRFスパッタエッチングとも呼ばれる。また通常、電極間の放電回路と、高周波発信器とのインピーダンス整合のために、電極の前にマッチング回路(タンク回路)が設けられる。
【0007】
従来、スパッタエッチングは、金属、半導体、セラミック、合成高分子フィルム、合成繊維、羊毛や絹などの天然繊維の分子構造や結晶構造の研究、それらの接着性や濡れ性の向上の研究、生物試料の顕微観察手法としての研究などが行われてきた。しかし、製紙用植物繊維に対しこの手法を用いて染色紙の濃色化をはかった例はない。
【0008】
【発明が解決しようとする課題】
本発明は、染色紙において通常の抄紙過程では得られないような濃い黒色、あるいは有彩色においては濃色かつ高彩度の紙を製造するための発明である。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、主として植物性繊維からなる染色紙の表面をスパッタエッチング処理することで、色の濃さすなわち低い明度、あるいは有彩色においては彩度も向上することを見出し、本発明を完成させたのである。すなわち本発明は、染料及び/又は顔料で染色した、主として植物性繊維からなる紙表面をスパッタエッチング処理することで、JIS Z 8730によるL*a*b*表色系によるL*の値を相対値で−0.5以上としたり、有彩色の染料及び/又は顔料で染色した、主として植物性繊維からなる紙表面をスパッタエッチング処理することで、C*の値を相対値で+0.5以上とし、かつ、a*b*座標平面における原点からの方位角の変化量(ラジアン)を色相の変化を表す値とし、時計回りをプラス方向として±0.2以下であることを特徴とする染色紙の製造方法である。
【0010】
次に本発明の濃色紙を製造する例について述べる。本発明では植物性繊維からなるパルプを使用する。例えば、針葉樹晒クラフトパルプ(NBKP)、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)などの木材パルプや麻、楮、雁皮、三椏などの靱皮繊維パルプや、竹、ワラ、ケナフなどの非木材パルプ等の製紙用植物パルプを適宜用いて常法に従い紙料を調製する。この紙料に、もとめる色の染料及び/又は顔料を、白水への流出や操業安定性の面で許される量を投入し、常法に従い染色紙を製造する。この際、各種填料、サイズ剤、乾燥紙力増強剤、湿潤紙力増強剤等の製紙用副資材も必要に応じて併用することが出来る。さらに、抄紙工程で型押し等の模様付けやカレンダー処理も可能である。
【0011】
このように得られた染色紙を、0.01〜100Pa望ましくは0.1〜20Paの真空中において、放電が可能なように0.5cm以上の間隔で置いた平板あるいは曲面の対抗電極の陰極側(高周波電圧の場合は面積の小さい側)の電極上、またはごく近傍に置き、数百V〜数千Vの印加によって0.04W/cm2以上、ガス圧にもよるが望ましくは0.2〜2W/cm2の電力密度にて、数十KHz以上(一般的には13.56MHz)の高周波電圧を印可し、4〜150J/cm2望ましくは10〜70J/cm2のエネルギー密度になる時間、放電処理しスパッタエッチングを行う。
【0012】
必要ならその後調湿を行う。また、サイズプレス、含浸あるいは印刷などでさらに着色を行う事も出来る。
【0013】
残存気体は、空気、酸素、窒素、アルゴン、アンモニアその他様々な気体を用いることが出来るが、望ましくは染料や紙繊維への化学的影響の少ないアルゴンまたは他の稀ガスまたは窒素が良い。具体的には真空ポンプにて吸引を連続して行いながら、使用する気体をチャンバー内に漏洩させ、一定の真空度に保つと良い。
【0014】
電極のインピーダンスと印加電圧にもよるが、電極間隔が約0.5cmより小さいと放電が起こらない。反対に、あまり遠いと発生したガスイオンが効率よく紙に到達しなかったり、やはり電極周辺部と中心部でエッチングの程度に差が出てしまう。
【0015】
エネルギー密度は、4J/cm以上でないとC*が+0.5以上の濃色化が起こらないし、150J/cm以下でないとかえって淡色化や変色が起こってしまう。ガス圧によって変わるが、望ましくは10〜70J/cmの範囲になるよう放電電力密度と処理時間を調整すると良い。
【0016】
ただし放電電力密度は0.04W/cm2より小さすぎるとエッチングが効率よく行われず、大きすぎると紙繊維の破壊や染料及び/または顔料の除去や分解が起こりやすくかえって明度L*が上がったり、変色や有彩色の彩度C*の低下を招きやすい。望ましくは0.2〜2W/cm2の範囲の放電電力密度で行うと濃色化について効率が良い。
【0017】
残存ガス圧については、5Pa以下になると放電が開始しにくくなることがあるので、一度ガス圧を5Pa程度以上にして放電を開始してから圧力を下げたり、高電圧を印加して放電を開始する必要がある。圧力が0.01Paより低すぎると、放電の維持が困難になったり、発生するガスイオンが減るためエッチング効率が極端に低下し、濃色化が起こりにくい。また、圧力が100Paより高すぎると、発生したガスイオンが他のガス分子に衝突する可能性が増し、紙の表面に到達してエッチングに寄与するイオンが減るため、エッチング効率が落ちる。さらに、発生した大量のプラズマが紙表面の組成変化や染料及び/または顔料の酸化をもたらし、かえって明度L*の上昇や、変色や有彩色の彩度C*の低下を招く。望ましくは0.1〜20Paの範囲が最も濃色化に効率が良い。
【0018】
残存ガスの種類によってもエッチング速度や状態が異なる。特に酸素や他の活性ガスを含んだ場合、繊維の破壊や変質が起こりやすく、短時間でも大きな凹凸が生成する場合もあるが、同時に吸着染料及び/または顔料の分解や除去速度も大きく、明度L*の増加、変色や有彩色の彩度C*の低下が起こりやすく条件設定が難しいため、使用できないわけではないがあまり有効ではない。
【0019】
放電用真空容器に入れる紙は、吸着ガスや水分を含んでいるために、あらかじめ出来るだけ乾燥しておき、望ましくは予備排気容器内で真空乾燥してから放電真空容器に移すと良い。また、スパッタエッチングを開始すると、予備排気や真空乾燥していても、一定の真空度を保つためには通常の真空設備より大きい容量の真空ポンプが必要である。スパッタエッチング処理後、紙の水分調整が必要ならば行う。
【0020】
適当な条件でスパッタエッチングすると、紙表面の繊維に0.1〜1μm程度の微細孔や凹凸が生成する。この微細構造によって、繊維表面に入射した可視光の正反射が抑制され、拡散反射する光が増える。これによって染料及び/または顔料によって吸光される光の量が増え、濃色化や有彩色の彩度向上が起こる。この凹凸は小さすぎても大きすぎても拡散光の増加による濃色化への寄与が小さくなってしまい、約0.1〜0.4μmの時に濃色化の効果が大きい。
【0021】
【実施例】
実施例1
使用パルプとして未叩解LBKPを用い、3%のパルプ懸濁液中に黒色の直接染料CI DIRECT BLACK19を対パルプ4%添加し、30分攪拌した後、定着剤(硫酸バンド)を4重量部加え抄紙機を使用して坪量60g/m2(絶乾重量換算)で抄紙した。その後、10Paのアルゴンガス中で、13.56MHzの高周波を用い電力密度0.4W/cm2で45秒間(18J/cm2)スパッタエッチングした。
【0022】
実施例2
処理時間を10秒間(4J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0023】
実施例3
処理時間を25秒間(10J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0024】
実施例4
処理時間を175秒間(70J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0025】
実施例5
処理時間を375秒間(150J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0026】
実施例6
電力密度0.04W/cm2で450秒間(18J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0027】
実施例7
電力密度0.2W/cm2で90秒間(18J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0028】
実施例8
電力密度2W/cm2で9秒間(18J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0029】
実施例9
電力密度3W/cm2で3秒間(9J/cm2)とした以外は実施例1と同様とした染色紙を製造した。
【0030】
実施例10
0.01Paのアルゴンガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0031】
実施例11
0.1Paのアルゴンガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0032】
実施例12
20Paのアルゴンガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0033】
実施例13
100Paのアルゴンガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0034】
実施例14
10Paの窒素ガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0035】
実施例15
10Paの酸素ガス中で処理した以外は実施例1と同様とした染色紙を製造した。
【0036】
実施例16
使用染料をCI DIRECT RED23とした以外は実施例1と同様とした染色紙を製造した。
【0037】
実施例17
使用染料をCI DIRECT RED23とした以外は実施例2と同様とした染色紙を製造した。
【0038】
実施例18
使用染料をCI DIRECT RED23とした以外は実施例3と同様とした染色紙を製造した。
【0039】
実施例19
使用染料をCI DIRECT RED23とした以外は実施例4と同様とした染色紙を製造した。
【0040】
実施例20
使用染料をCI DIRECT RED23とした以外は実施例5と同様とした染色紙を製造した。
【0041】
実施例21
使用パルプをLBKP70%、NBKP30%とし、6%パルプ懸濁液中に染料として、CI DIRECT ORANGE39を対パルプ0.44%、CIDIRECT RED23を対パルプ0.26%、CI DIRECT BLACK154を対パルプ3.5%、顔料として粉末カーボンブラックを2.33%添加し、約30分撹拌後、フリーネスを400mlC.S.Fとし、通常のロジンサイズ剤を対パルプ0.6%、カチオン化澱粉を対パルプ3%、硫酸バンドを対パルプ3.5%添加し、坪量81g/m2(絶乾重量換算)で機械漉きした。その後、10Paのアルゴンガス中で、13.56MHzの高周波を用い電力密度0.4W/cm2で45秒間スパッタエッチングした。
【0042】
実施例22
使用染料をCI DIRECT RED23を対パルプ2.1%およびCI DIRECT RED81を0.4%とした以外は実施例21と同様とした染色紙を製造した。
【0043】
実施例23
使用染料をCI DIRECT YELLOW142を対パルプ1.3%およびCI DIRECT RED23を0.05%およびCI DIRECT BLUE200を0.4%およびCI DIRECT BLUE236を0.37%とした以外は実施例21と同様とした染色紙を製造した。
【0044】
実施例24
使用染料をCI DIRECT YELLOW50を対パルプ0.07%およびCI DIRECT RED81を0.03%およびCI DIRECT BLUE200を3.7%およびCI DIRECT BLACK16を0.04%とした以外は実施例21と同様とした染色紙を製造した。
【0045】
比較例1
使用パルプとして未叩解LBKPを用い、3%のパルプ懸濁液中に黒色の直接染料CI DIRECT BLACK19を対パルプ4%添加し、30分攪拌した後、定着剤(硫酸バンド)を4重量部加え抄紙機を使用して坪量60g/m2(絶乾重量換算)で抄紙し、染色紙を製造した。
【0046】
比較例2
電力密度0.4W/cm2で400秒間(160J/cm2)スパッタエッチングした以外は実施例1と同様とした染色紙を製造した。
【0047】
比較例3
電力密度0.4W/cm2で8秒間(3J/cm2)スパッタエッチングした以外は実施例1と同様とした染色紙を製造した。
【0048】
比較例4
電力密度0.03W/cm2で600秒間(18J/cm2)スパッタエッチングした以外は実施例1と同様とした染色紙を製造した。
【0049】
比較例5
ガス圧を0.005Paとした以外は実施例1と同様とした染色紙を製造した。
【0050】
比較例6
ガス圧を110Paとした以外は実施例1と同様とした染色紙を製造した。
【0052】
比較例8
使用染料をCI DIRECT RED23とした以外は比較例1と同様とした染色紙を製造した。
【0053】
比較例9
スパッタエッチングをしない以外は実施例21と同様とした染色紙を製造した。
【0054】
比較例10
スパッタエッチングをしない以外は実施例22と同様とした染色紙を製造した。
【0055】
比較例11
スパッタエッチングをしない以外は実施例23と同様とした染色紙を製造した。
【0056】
比較例12
スパッタエッチングをしない以外は実施例24と同様とした染色紙を製造した。
【0057】
こうして製造した染色紙の評価を行った。評価は次の方法によった。
明度(色の濃さ):JIS Z8730のL*a*b*表色系のL*で評価した。L*が小さいほど濃い色である。
明度変化:本発明によるスパッタエッチング処理を行わない場合(比較例)との明度(L*)の差異(dL*)。
色相:JIS Z8730のL*a*b*表色系のa*とb*で表した。
色相変化:a*b*座標平面における原点からの方位の変化量(ラジアン)。時計回りをプラス方向とする。
彩度:JIS Z8730のL*a*b*表色系のa*とb*の二乗平均を新たにC*とし、これで評価した。C*が大きいほど彩度が高い。
彩度変化:本発明によるスパッタエッチング処理を行わない場合(比較例)との彩度(C*)の差異(dC*)。
評価結果を表1〜表3に示す。
【0058】
【表1】

Figure 0003839556
【0059】
【表2】
Figure 0003839556
【0060】
表3 各比較例の評価結果
Figure 0003839556
【0061】
表から明らかなように、リークするガスの種類によらず、0.01から100Paのガス圧で、0.04W/cm2以上の電力密度、および、4から150J/cm2のエネルギー密度に調整し、スパッタエッチングを行うことによって、−0.5以下のL*値の低下や、+0.5以上のC*値の向上が見られ、染色紙の濃色化に有効なことがわかる。また、この効果は使用する染料種や、染料の色にもよらない。すなわち、スパッタエッチングによる濃色化効果は、スパッタ条件によって異なる。−0.5以下のL*値の低下、または、+0.5以上のC*値の向上が見らた場合を有効とする。実施例2と実施例5を比較例2及び比較例3と対比させると、効果が現れるのは、エネルギー密度が4以上150J/cm2以下の範囲である事がわかる。また、実施例1と実施例6を比較例4と対比させると、同様な効果が得られる電力密度は0.04W/cm2以上であることが解る。また、実施例10と実施例13を比較例5と比較例6を対比させると、同様な効果が得られるガス圧は0.01以上、100Pa以下であることがわかる。またこれらのスパッタ条件のうち、1つでも満足しないものがあると、濃色化効果に乏しい事もわかる。また、実施例14と実施例15を比較例1と対比させると、リークするガスの種類によらないこともわかる。実施例1、実施例3、実施例4、実施例7、実施例8、実施例11、実施例12、実施例14,実施例15は、これらスパッタ条件を満足したもので、濃色化効果が現れている。また実施例16から実施例20を比較例8と対比すると、スパッタ条件を満足すれば、染料の色にもよらず、効果がある事がわかる。また、実施例21から24を比較例9から12と対比させると、複数の染料を使用し、自由な色に染めた紙にも有効な事がわかる。
【0062】
【発明の効果】
従来、濃色の染色紙を得ようとすると、染料及び/または顔料の紙パルプ繊維に対する吸着量の限界のため、染色時の染料及び/または顔料濃度を増しても一定以上の濃い色にはならない、あるいは抄紙工程の白水が着色し操業に支障が生じる等の限界があった。本発明では、通常に得られる程度の濃色紙を、真空グロー放電スパッタによるエッチングすなわちスパッタエッチング処理をすることで、従来の方法では得られなかったような濃い色や、有彩色においてはかつ彩度の高い染色紙を得ることができる。このような濃色紙は、意匠性が高く、例えば書籍の内装など様々な用途に用いることができる。[0001]
[Industrial application fields]
The present invention relates to dyed paper.
[0002]
[Prior art]
Generally, dyed paper is obtained by dissolving or suspending dyes and / or pigments in a paper stock in which paper raw materials such as pulp are suspended in water. Examples of the dye include a direct dye, a basic dye, an acid dye, and a cationic dye. Examples of the pigment include an organic pigment and an inorganic pigment. However, since any dye and / or pigment has a limited amount of adsorption to paper pulp fibers, when the dyeing density exceeds a certain level that differs for each dye and / or pigment, no more dark paper can be obtained. . In addition, in the case of industrial production using a paper machine even at a dyeing density lower than that, if a certain density is exceeded, a large amount of dye and / or pigment not adsorbed on the paper pulp fiber together with white water in the paper making process. In the case of runoff, pollution to the environment, load on the drainage system, or white water circulation system, the circulated dyes and / or pigments affect the color density of the upper paper, resulting in the problem of inhibiting stable papermaking. Therefore, there is a certain limit to making a dark colored dyed paper.
[0003]
Generally, the color of dyed paper is represented by three attributes of hue, lightness, and saturation as in JIS Z8721. The hue is specific to the dye and / or pigment used, and the black dye and / or pigment has almost no hue and is achromatic. Lightness and saturation vary depending on the amount of dye and / or pigment used. Generally, if a large number of dyes and / or pigments are used, the lightness decreases and the color becomes darker. Although the saturation varies depending on the hue, it increases up to a certain point and becomes brighter, but beyond that, it decreases and the color feeling also decreases. Further, the saturation obtained with dyed paper with actual dyes and / or pigments is smaller than the ideal value due to regular reflection of light and the like. Therefore, it is still limited to obtain a dyed paper having low brightness and sufficient saturation.
[0004]
In general, three attributes can be displayed in Munsell value H (hue) V (lightness) / C (saturation) as shown in JIS Z8721. However, since it is difficult to calculate a precise Munsell value, it can be replaced by the L * a * b * color system according to JIS Z8730. According to this, L * corresponds to lightness, and the orientation of the point on the plane coordinates represented by a * and b * corresponds to hue, and the plane distance from the L * axis passing through the origin, that is, a * and The root mean square value C * of b * corresponds to the saturation. The color on the L * axis passing through the origin is an achromatic color. In the present invention, description will be given using this L * a * b * color system. In this case, the smaller the L *, the lower the lightness, that is, the darker the color, and the greater a * and / or b *, the greater the saturation and the stronger the color.
[0005]
In the present invention, darkening means that L * is small, and it is assumed that there is a dark color effect of −0.5 (relative value) or less that can be clearly perceived visually. It is desirable to have the following dark color effect. It is also desirable for C * to be large for chromatic colors. In chromatic colors, if C * is +0.5 or more (relative value), it is assumed that the saturation is improved, and in the present invention, +2.0 or more is desirable. Furthermore, since there is a practical problem if the hue change due to discoloration or the like is large, the amount of change in azimuth (radian) from the origin in the a * b * coordinate plane is set to a value representing the hue change, and the clockwise direction is a positive direction. In the present invention, ± 0.2 or less is practically acceptable.
[0006]
Etching by vacuum glow discharge sputtering is also referred to as sputter etching, and in the vacuum of about 0.01 to 100 Pa, several hundred to several thousand V between electrodes separated by 0.5 cm or more within the conditions under which discharge occurs. When a target is placed on or near the cathode, gas cations generated by discharge collide with the target. When etching an insulator, it is possible to discharge and sputter by applying a high frequency of several tens of KHz or more. Usually, since 13.56 MHz radio frequency (RF) is used, it is also called etching by RF sputtering or RF sputtering, or RF sputter etching. In general, a matching circuit (tank circuit) is provided in front of the electrodes for impedance matching between the discharge circuit between the electrodes and the high-frequency transmitter.
[0007]
Conventionally, sputter etching has been studied on the molecular structure and crystal structure of natural fibers such as metals, semiconductors, ceramics, synthetic polymer films, synthetic fibers, wool and silk, research on improving their adhesion and wettability, biological samples Research has been conducted as a microscopic observation technique. However, there is no example in which the dyed paper is darkened using this technique for plant fiber for papermaking.
[0008]
[Problems to be solved by the invention]
The present invention is an invention for producing a dark black color paper that cannot be obtained by a normal papermaking process in dyed paper, or a dark and high chroma paper for chromatic colors.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have carried out a sputter etching process on the surface of a dyed paper mainly made of vegetable fibers, so that the color strength, that is, low brightness, or chromatic color is saturated. The present invention was completed by finding that the degree of improvement was also improved. That is, according to the present invention, the surface of a paper mainly composed of plant fibers dyed with a dye and / or pigment is subjected to a sputter etching treatment, so that the L * value according to the L * a * b * color system according to JIS Z 8730 is relatively determined. The value of C * is +0.5 or more in relative value by sputter-etching the paper surface mainly composed of plant fibers dyed with chromatic dyes and / or pigments with a value of −0.5 or more. And the amount of change in azimuth angle (radian) from the origin in the a * b * coordinate plane is a value representing a change in hue, and the clockwise direction is a plus direction, which is ± 0.2 or less. This is a paper manufacturing method.
[0010]
Next, an example of producing the dark paper of the present invention will be described. In the present invention, pulp made of vegetable fiber is used. For example, wood pulp such as softwood bleached kraft pulp (NBKP), hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), and thermomechanical pulp (TMP), and bast fiber pulp such as hemp, cocoon, husk, and trilobe A paper stock is prepared according to a conventional method using plant pulp for papermaking such as non-wood pulp such as bamboo, straw and kenaf as appropriate. A dyed paper is produced according to a conventional method by adding the dye and / or pigment of the color to be obtained to the paper stock in an amount allowed for outflow into white water and operational stability. At this time, auxiliary materials for papermaking such as various fillers, sizing agents, dry paper strength enhancers, and wet paper strength enhancers can be used together as necessary. Furthermore, patterning such as embossing and calendar processing can be performed in the paper making process.
[0011]
The cathode of the counter electrode having a flat plate or a curved surface, in which the dyed paper thus obtained is placed in a vacuum of 0.01 to 100 Pa, preferably 0.1 to 20 Pa, at intervals of 0.5 cm or more so as to enable discharge. The electrode is placed on or very close to the electrode on the side (in the case of a high-frequency voltage, on the side having a small area), and is 0.04 W / cm 2 or more by application of several hundred V to several thousand V, preferably depending on the gas pressure. at a power density of 2~2W / cm 2, by applying a high frequency voltage of several tens KHz or more (generally 13.56MHz is), 4~150J / cm 2 preferably the energy density of 10~70J / cm 2 Sputter etching is performed after the discharge treatment for a certain period of time.
[0012]
If necessary, adjust the humidity afterwards. Further, further coloring can be performed by size press, impregnation or printing.
[0013]
As the residual gas, air, oxygen, nitrogen, argon, ammonia and other various gases can be used. Desirably, argon or other rare gas or nitrogen having a small chemical influence on the dye or paper fiber is preferable. Specifically, the gas to be used may be leaked into the chamber and kept at a certain degree of vacuum while continuously performing suction with a vacuum pump.
[0014]
Depending on the impedance of the electrodes and the applied voltage, discharge does not occur if the electrode spacing is smaller than about 0.5 cm. On the other hand, if the gas ions are too far away, the generated gas ions do not efficiently reach the paper, or the difference in the degree of etching occurs between the peripheral portion of the electrode and the central portion.
[0015]
If the energy density is not 4 J / cm 2 or more, darkening with C * of +0.5 or more does not occur, and if it is not 150 J / cm 2 or less, lightening or discoloration occurs. Although it varies depending on the gas pressure, it is desirable to adjust the discharge power density and the treatment time so that it is preferably in the range of 10 to 70 J / cm 2 .
[0016]
However, if the discharge power density is less than 0.04 W / cm 2 , etching is not performed efficiently, and if it is too large, destruction of paper fibers and removal and decomposition of dyes and / or pigments are likely to occur, resulting in increased lightness L * and discoloration. And chromatic color saturation C * is likely to be lowered. If the discharge power density is desirably in the range of 0.2 to 2 W / cm 2, the efficiency of darkening is good.
[0017]
As for the residual gas pressure, discharge may become difficult to start when the pressure is 5 Pa or less, so once the gas pressure is increased to about 5 Pa or higher, the pressure is lowered or the high voltage is applied to start the discharge. There is a need to. When the pressure is lower than 0.01 Pa, it becomes difficult to maintain the discharge, or the generated gas ions are reduced, so that the etching efficiency is extremely lowered and darkening hardly occurs. On the other hand, if the pressure is higher than 100 Pa, the possibility that the generated gas ions collide with other gas molecules increases, and the ions that reach the surface of the paper and contribute to the etching decrease, so that the etching efficiency decreases. Further, the large amount of plasma generated causes a change in the composition of the paper surface and oxidation of the dye and / or pigment, which in turn leads to an increase in lightness L * and a discoloration or a decrease in chromatic color saturation C *. Desirably, the range of 0.1 to 20 Pa is most effective for darkening.
[0018]
The etching rate and state vary depending on the type of residual gas. In particular, when oxygen or other active gas is included, fiber breakage or alteration is likely to occur, and large irregularities may be generated even in a short time, but at the same time, the decomposition and removal rate of the adsorbed dye and / or pigment is large, and the lightness L * increases, discoloration, and chromatic color saturation C * tend to occur, and it is difficult to set conditions.
[0019]
Since the paper to be put into the discharge vacuum container contains adsorbed gas and moisture, it is preferable to dry it as much as possible, preferably after vacuum drying in the preliminary exhaust container, and then transfer it to the discharge vacuum container. Further, when sputter etching is started, a vacuum pump having a capacity larger than that of a normal vacuum facility is required to maintain a certain degree of vacuum even if preliminary exhaust or vacuum drying is performed. After the sputter etching process, the moisture content of the paper is adjusted if necessary.
[0020]
When sputter etching is performed under appropriate conditions, fine holes and irregularities of about 0.1 to 1 μm are formed in the fibers on the paper surface. With this fine structure, regular reflection of visible light incident on the fiber surface is suppressed, and light diffusely reflected increases. This increases the amount of light absorbed by the dyes and / or pigments, resulting in darker colors and improved chromatic saturation. If the unevenness is too small or too large, the contribution to the darkening due to the increase in diffused light is small, and the darkening effect is large when it is about 0.1 to 0.4 μm.
[0021]
【Example】
Example 1
Unpulverized LBKP was used as the pulp used, 4% black direct dye CI DIRECT BLACK19 was added to 3% pulp suspension, stirred for 30 minutes, and then 4 parts by weight of fixing agent (sulfuric acid band) was added. Paper making was performed using a paper machine at a basis weight of 60 g / m 2 (in terms of absolute dry weight). Thereafter, sputter etching was performed for 45 seconds (18 J / cm 2 ) at a power density of 0.4 W / cm 2 using a high frequency of 13.56 MHz in an argon gas of 10 Pa.
[0022]
Example 2
A dyed paper similar to Example 1 was produced except that the treatment time was 10 seconds (4 J / cm 2 ).
[0023]
Example 3
A dyed paper similar to Example 1 was produced except that the treatment time was 25 seconds (10 J / cm 2 ).
[0024]
Example 4
A dyed paper similar to Example 1 was produced except that the treatment time was 175 seconds (70 J / cm 2 ).
[0025]
Example 5
A dyed paper similar to Example 1 was produced except that the treatment time was 375 seconds (150 J / cm 2 ).
[0026]
Example 6
A dyed paper was produced in the same manner as in Example 1 except that the power density was 0.04 W / cm 2 and the time was 450 seconds (18 J / cm 2 ).
[0027]
Example 7
A dyed paper was produced in the same manner as in Example 1 except that the power density was 0.2 W / cm 2 and the time was 90 seconds (18 J / cm 2 ).
[0028]
Example 8
A dyed paper was produced in the same manner as in Example 1 except that the power density was 2 W / cm 2 for 9 seconds (18 J / cm 2 ).
[0029]
Example 9
A dyed paper was produced in the same manner as in Example 1 except that the power density was 3 W / cm 2 and the time was 3 seconds (9 J / cm 2 ).
[0030]
Example 10
A dyed paper similar to Example 1 was produced except that the treatment was performed in 0.01 Pa of argon gas.
[0031]
Example 11
A dyed paper similar to Example 1 was produced except that the treatment was performed in an argon gas of 0.1 Pa.
[0032]
Example 12
A dyed paper was produced in the same manner as in Example 1 except that the treatment was performed in 20 Pa argon gas.
[0033]
Example 13
A dyed paper similar to that of Example 1 was produced except that the treatment was performed in 100 Pa of argon gas.
[0034]
Example 14
A dyed paper was produced in the same manner as in Example 1 except that it was treated in 10 Pa of nitrogen gas.
[0035]
Example 15
A dyed paper similar to Example 1 was produced except that the treatment was performed in 10 Pa oxygen gas.
[0036]
Example 16
A dyed paper similar to Example 1 was produced except that the dye used was CI DIRECT RED23.
[0037]
Example 17
A dyed paper similar to Example 2 was produced except that the dye used was CI DIRECT RED23.
[0038]
Example 18
A dyed paper similar to Example 3 was produced except that the dye used was CI DIRECT RED23.
[0039]
Example 19
A dyed paper similar to Example 4 was produced except that the dye used was CI DIRECT RED23.
[0040]
Example 20
A dyed paper similar to Example 5 was produced except that the dye used was CI DIRECT RED23.
[0041]
Example 21
The pulp used is 70% LBKP, 30% NBKP, and as a dye in a 6% pulp suspension, CI DIRECT ORANGE39 is 0.44% pulp, CIDIRED RED23 is 0.26% pulp, and CI DIRECT BLACK154 is pulp 3. 5% and 2.33% of powdered carbon black as a pigment were added. After stirring for about 30 minutes, the freeness was 400 ml C.I. S. F, normal rosin sizing agent 0.6% pulp, cationized starch 3% pulp, sulfuric acid band 3.5% pulp, basis weight 81g / m 2 (absolute dry weight conversion) I whispered the machine. Thereafter, sputter etching was performed for 45 seconds at a power density of 0.4 W / cm 2 using a high frequency of 13.56 MHz in 10 Pa of argon gas.
[0042]
Example 22
A dyed paper was produced in the same manner as in Example 21, except that CI DIRECT RED23 was 2.1% for pulp and CI DIRECT RED81 was 0.4%.
[0043]
Example 23
The same as in Example 21, except that CI DIRECT YELLOW 142 was used with 1.3% of pulp, CI DIRECT RED 23 was 0.05%, CI DIRECT BLUE 200 was 0.4%, and CI DIRECT BLUE 236 was 0.37%. A dyed paper was produced.
[0044]
Example 24
The same as Example 21 except that CI DIRECT YELLOW50 was 0.07% to pulp, CI DIRECT RED81 was 0.03%, CI DIRECT BLUE200 was 3.7%, and CI DIRECT BLACK16 was 0.04%. A dyed paper was produced.
[0045]
Comparative Example 1
Unpulverized LBKP was used as the pulp used, 4% black direct dye CI DIRECT BLACK19 was added to 3% pulp suspension, stirred for 30 minutes, and then 4 parts by weight of fixing agent (sulfuric acid band) was added. Using a paper machine, paper was made at a basis weight of 60 g / m 2 (in terms of absolute dry weight) to produce a dyed paper.
[0046]
Comparative Example 2
A dyed paper similar to Example 1 was produced except that sputter etching was performed at a power density of 0.4 W / cm 2 for 400 seconds (160 J / cm 2 ).
[0047]
Comparative Example 3
A dyed paper was produced in the same manner as in Example 1 except that sputter etching was performed at a power density of 0.4 W / cm 2 for 8 seconds (3 J / cm 2 ).
[0048]
Comparative Example 4
A dyed paper was manufactured in the same manner as in Example 1 except that sputter etching was performed at a power density of 0.03 W / cm 2 for 600 seconds (18 J / cm 2 ).
[0049]
Comparative Example 5
A dyed paper similar to Example 1 was produced except that the gas pressure was 0.005 Pa.
[0050]
Comparative Example 6
A dyed paper similar to Example 1 was produced except that the gas pressure was 110 Pa.
[0052]
Comparative Example 8
A dyed paper similar to Comparative Example 1 was produced except that the used dye was CI DIRECT RED23.
[0053]
Comparative Example 9
A dyed paper similar to Example 21 was produced except that sputter etching was not performed.
[0054]
Comparative Example 10
A dyed paper similar to Example 22 was produced except that the sputter etching was not performed.
[0055]
Comparative Example 11
A dyed paper similar to Example 23 was produced except that the sputter etching was not performed.
[0056]
Comparative Example 12
A dyed paper similar to Example 24 was produced except that the sputter etching was not performed.
[0057]
The dyed paper thus produced was evaluated. Evaluation was based on the following method.
Lightness (color density): Evaluated by L * a * b * color system L * of JIS Z8730. The smaller L *, the darker the color.
Lightness change: difference (dL *) in lightness (L *) from the case where the sputter etching process according to the present invention is not performed (comparative example).
Hue: represented by a * and b * in the L * a * b * color system of JIS Z8730.
Hue change: Amount of change in azimuth from the origin in the a * b * coordinate plane (radians). Clockwise is the positive direction.
Saturation: The square average of a * and b * in the L * a * b * color system of JIS Z8730 was newly set as C * and evaluated. The greater the C *, the higher the saturation.
Saturation change: difference (dC *) in saturation (C *) from the case where the sputter etching process according to the present invention is not performed (comparative example).
The evaluation results are shown in Tables 1 to 3.
[0058]
[Table 1]
Figure 0003839556
[0059]
[Table 2]
Figure 0003839556
[0060]
Table 3 Evaluation results of each comparative example
Figure 0003839556
[0061]
As can be seen from the table, regardless of the type of leaking gas, the gas pressure of 0.01 to 100 Pa is adjusted to a power density of 0.04 W / cm 2 or more and an energy density of 4 to 150 J / cm 2. Then, by performing sputter etching, a decrease in L * value of −0.5 or less and an improvement in C * value of +0.5 or more are seen, and it can be seen that this is effective for darkening dyed paper. This effect does not depend on the type of dye used or the color of the dye. That is, the darkening effect by sputter etching varies depending on the sputtering conditions. Effective when a decrease in L * value of −0.5 or less or an improvement in C * value of +0.5 or more is observed. When Example 2 and Example 5 are compared with Comparative Example 2 and Comparative Example 3, it can be seen that the effect appears when the energy density is in the range of 4 to 150 J / cm 2 . Further, when Example 1 and Example 6 are compared with Comparative Example 4, it can be seen that the power density at which a similar effect is obtained is 0.04 W / cm 2 or more. Further, when Example 10 and Example 13 are compared with Comparative Example 5 and Comparative Example 6, it can be seen that the gas pressure at which a similar effect is obtained is 0.01 or more and 100 Pa or less. It can also be seen that if any one of these sputtering conditions is not satisfied, the darkening effect is poor. Moreover, when Example 14 and Example 15 are compared with the comparative example 1, it turns out that it does not depend on the kind of leaking gas. Example 1, Example 3, Example 4, Example 7, Example 8, Example 11, Example 12, Example 14, Example 14 and Example 15 satisfy these sputtering conditions and have a darkening effect. Appears. Further, when Example 16 to Example 20 are compared with Comparative Example 8, it can be seen that if the sputtering conditions are satisfied, there is an effect regardless of the color of the dye. Further, when Examples 21 to 24 are compared with Comparative Examples 9 to 12, it can be seen that it is also effective for paper dyed in a free color using a plurality of dyes.
[0062]
【The invention's effect】
Conventionally, when trying to obtain dark colored dyed paper, due to the limit of the amount of dye and / or pigment adsorbed to the paper pulp fiber, even if the dye and / or pigment concentration at the time of dyeing is increased, a dark color exceeding a certain level is obtained. There was a limit such as that it was not possible, or white water in the paper making process was colored, causing trouble in operation. In the present invention, dark paper of a degree normally obtained is etched by vacuum glow discharge sputtering, that is, sputter etching, so that it is not possible to obtain by a conventional method, and in a chromatic color and saturation. High dyed paper can be obtained. Such dark paper has high design properties and can be used for various purposes such as the interior of books.

Claims (7)

染料及び/又は顔料で染色した主として植物性繊維からなる紙表面を、0.01〜100Paのガス圧下で0.04W/cm以上の電力密度で、エネルギー密度が4〜150J/cmになるような時間で真空グロー放電スパッタによりスパッタエッチング処理することで、JIS Z 8730によるL*a*b*表色系によるL*の値を相対値で−0.5以下とすることを特徴とする染色紙の製造方法。An energy density of 4 to 150 J / cm 2 is applied to a paper surface mainly composed of plant fibers dyed with a dye and / or pigment at a power density of 0.04 W / cm 2 or more under a gas pressure of 0.01 to 100 Pa. Sputter etching is performed by vacuum glow discharge sputtering for such a time, so that the L * value according to JIS Z 8730 is set to a relative value of −0.5 or less according to L * a * b * color system. Manufacturing method of dyed paper. JIS Z 8730によるL*a*b*表色系によるL*の値を相対値で−2.0以下とすることを特徴とする請求項1記載の染色紙の製造方法。  The method for producing dyed paper according to claim 1, wherein the relative value of L * in the L * a * b * color system according to JIS Z 8730 is set to -2.0 or less. 有彩色の染料及び/又は顔料で染色した、主として植物性繊維からなる紙表面を0.01〜100Paのガス圧下で、0.04W/cm以上の電力密度で、エネルギー密度が4〜150J/cmになるような時間で真空グロー放電スパッタによりスパッタエッチング処理することで、C*の値を相対値で+0.5以上とし、かつ、a*b*座標平面における原点からの方位角の変化量(ラジアン)を色相の変化を表す値とし、時計回りをプラス方向として±0.2以下であることを特徴とする染色紙の製造方法。A paper surface mainly composed of vegetable fibers dyed with a chromatic dye and / or pigment, under a gas pressure of 0.01 to 100 Pa, at a power density of 0.04 W / cm 2 or more and an energy density of 4 to 150 J / Sputter etching is performed by vacuum glow discharge sputtering for a time such as cm 2 so that the value of C * is +0.5 or more in relative value and the azimuth angle from the origin in the a * b * coordinate plane is changed. A method for producing dyed paper, characterized in that an amount (radian) is a value representing a change in hue, and a clockwise direction is plus or minus 0.2. C*の値を相対値で+2.0以上としたことを特徴とする請求項3記載の染色紙の製造方法。  4. The method for producing dyed paper according to claim 3, wherein the value of C * is +2.0 or more in relative value. ガス圧が0.1〜20Paであることを特徴とする請求項1〜4のいずれか1項記載の染色紙の製造方法。  The method for producing a dyed paper according to any one of claims 1 to 4, wherein the gas pressure is 0.1 to 20 Pa. ガスがアルゴン等の稀ガスまたは窒素であることを特徴とする請求項1〜5のいずれか1項記載の染色紙の製造方法。  The method for producing a dyed paper according to any one of claims 1 to 5, wherein the gas is a rare gas such as argon or nitrogen. 電力密度が0.2〜2W/cmでかつエネルギー密度が10〜70J/cmであるような時間でスパッタエッチング処理することを特徴とする請求項1〜6のいずれか1項記載の染色紙の製造方法。The dyeing according to any one of claims 1 to 6, wherein the sputter etching is performed for a time such that the power density is 0.2 to 2 W / cm 2 and the energy density is 10 to 70 J / cm 2. Paper manufacturing method.
JP17298397A 1997-06-13 1997-06-13 Method for producing dyed paper Expired - Fee Related JP3839556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17298397A JP3839556B2 (en) 1997-06-13 1997-06-13 Method for producing dyed paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17298397A JP3839556B2 (en) 1997-06-13 1997-06-13 Method for producing dyed paper

Publications (2)

Publication Number Publication Date
JPH1112991A JPH1112991A (en) 1999-01-19
JP3839556B2 true JP3839556B2 (en) 2006-11-01

Family

ID=15952003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17298397A Expired - Fee Related JP3839556B2 (en) 1997-06-13 1997-06-13 Method for producing dyed paper

Country Status (1)

Country Link
JP (1) JP3839556B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5976165B2 (en) * 2015-05-26 2016-08-23 日清紡ペーパープロダクツ株式会社 Dyed paper

Also Published As

Publication number Publication date
JPH1112991A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
US4894118A (en) Recreped absorbent products and method of manufacture
FI107274B (en) Procedure for making base paper for fine paper
CN100575597C (en) The chemical activation of south pine kraft fibers and refining
CN108602971A (en) Sheet material
KR100588860B1 (en) Colour Tracing Paper
CA3036599C (en) Method for producing cellulose filaments with less refining energy
JP3839556B2 (en) Method for producing dyed paper
US3597304A (en) Dyeing of cellulosic fibers with cationic dye and montmorillonite clay and resulting product
US4966651A (en) Method of paper making using an abrasive refiner for refining bleached thermochemical hardwood pulp
CA2541819A1 (en) Printing paper
JP3457435B2 (en) Manufacturing method of fluorescent white paper
JP3252714B2 (en) Coated paper for offset printing
FI92607B (en) Method for grinding hardwood in pulp production
CN112695571B (en) High-strength permeable paperboard and preparation process thereof
Kasmani et al. BIOCHEMIMECHANICAL PULPING OF HORNBEAM CHIPS WITH PHANEROCHAETE CHRYSOSPORIUM.
CN115613393B (en) Paper with high internal bonding strength and preparation method and application thereof
CN113338067B (en) Environment-friendly color series household paper and preparation method thereof
JPH0849187A (en) Coated paper for offset printing
JPH1046495A (en) Coated paper for printing and its production
JPH1053997A (en) Production of coated paper for printing
Hossein et al. Effects of sequencing enzyme application and refining on DIP properties produced from mixed office waste paper
JPH10219596A (en) Production of raw paper used for coated paper for gravure printing
JPH0734399A (en) Dyed paper
CN105442383A (en) Method for improving coating operation efficiency and coating paper
CN115094671A (en) Water transfer base paper and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees