JP3837729B2 - Sheet glass forming equipment - Google Patents

Sheet glass forming equipment Download PDF

Info

Publication number
JP3837729B2
JP3837729B2 JP05378798A JP5378798A JP3837729B2 JP 3837729 B2 JP3837729 B2 JP 3837729B2 JP 05378798 A JP05378798 A JP 05378798A JP 5378798 A JP5378798 A JP 5378798A JP 3837729 B2 JP3837729 B2 JP 3837729B2
Authority
JP
Japan
Prior art keywords
molded body
refractory material
support member
hole
material constituting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05378798A
Other languages
Japanese (ja)
Other versions
JPH11246230A (en
Inventor
重明 青木
英利 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP05378798A priority Critical patent/JP3837729B2/en
Publication of JPH11246230A publication Critical patent/JPH11246230A/en
Application granted granted Critical
Publication of JP3837729B2 publication Critical patent/JP3837729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フュージョンダウンドロー方式の板ガラス成形装置の改良に関するものである。
【0002】
【従来の技術】
フュージョンダウンドロー方式の板ガラス成形装置の概略構成は、図4に示すように、成形体20の頂部に溶融ガラスaを炉(図示省略)から供給管21を介して一定流量で連続的に供給し、頂部両側からオーバーフローさせて成形体20の両側壁面を分流状態で流下させ、成形体20の下端部で合流させることにより、1枚の板ガラスbとなすもので、この方式で成形される板ガラスbの表裏両面は、成形体20の両側壁面を分流させて流下させていることにより、両方ともに成形体20に非接触の清浄度の高い自由流下表面で構成されるため、高精度の平坦面が取得できる特徴がある。
【0003】
溶融ガラスaの成形温度は、例えば、1200〜1300℃とされ、このような高温下で使用される成形体20は、クリープや熱応力による変形が生じ易い。このような変形は、成形体20の溶融ガラス流の均一分配機能を損ない、製造する板ガラスbの肉厚を不均一にする。
【0004】
また、不適切な温度環境下では、成形体20の変形により崩壊等の事故を引き起こす。そのため、成形体20に用いる耐火材料として、ジルコンやアルミナ等の高強度耐火材料が用いられることが多い。
【0005】
しかしながら、これら高強度な耐火材料は、材料密度が3〜4g/cm3 と大きく、成形体20の重量が増加するために、材料強度の向上による効果を減殺させている。
【0006】
【発明が解決しようとする課題】
一般的に成形体20は、その長手方向(成形しようとする板ガラスbの幅方向)両端で支持されるもので、このように、成形体20を長手方向両端で支持する場合には、成形体20の下部の支持点間中央部分と両支持点近傍に大きな引張り応力が発生する。特に、高温下では割れや変形の発生が顕著になる。
【0007】
また、クリープ等の長期間に亘る変形のため、成形体20の中央部分が垂れ下がり、溶融ガラス流の均一分配機能を損ない、製造する板ガラスbの肉厚を不均一にする。
【0008】
さらに、一般に高温における溶融ガラスからは、ガラスを構成する種々の成分が揮発し、相対的に低温の個所で液状に凝結する。凝結したガラス蒸気成分は、金属や耐火物に対して強い浸食性を示し、これら材料の強度劣化を引き起こす。このガラス揮発成分の凝結を防ぐためには、材料を高温の炉内雰囲気に晒さず、局所的な低温部分の発生を避ける必要がある。しかし、従来では、支持部材の両端とその近傍に放熱による局所的な低温部分が発生し、これらの部分にガラス揮発成分の凝結・浸食が起こり、支持部の強度劣化を招き、成形体の長期使用を困難にしていた。しかも、成形体にまで温度むらが波及し、製造する板ガラスの厚みを不均一とする原因となっていた。
【0009】
また、従来は、成形体の支持部材として、耐熱合金等の金属を用いることが一般的であった。しかし、近年必要とされる溶融ガラス温度が1200℃を超える高い温度下では、十分な強度が得られなく、また、金属結晶成長/粗粒化による脆化が伴うので、成形体の支持部材として耐熱合金等の金属を用いることは不適切であることが分った。
【0010】
本発明は、高温下における成形体の変形や破損を防ぎ、設計時に与えた成形体によるガラス流の均一分配機能を長期間に亘り保ち得る板ガラス成形装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明は、溶融ガラスをオーバーフローさせるための上面が開口した均一分配溝を頂部に有し、前記頂部から両側へ分流して流下する溶融ガラスを下端部で合流させて1枚の板ガラスとするための幅広の両側壁面を有し、内部に板ガラスの幅方向に貫通する貫通孔を形成した耐火材料製の成形体と、前記成形体の貫通孔に貫挿され、前記成形体を上面で支持し、両端を保持台に保持させた支持部材とを具備し、前記支持部材を構成する材料を前記成形体を構成する耐火材料よりもヤング率及び曲げ強度が大きいセラミック系耐火材料で構成したものである。
【0012】
即ち、本発明は、成形体に用いる耐火材料よりも高強度の耐熱性をもつ支持部材を成形体の長手方向に貫挿し、その上面で成形体の全重量を支持させたことにより、従来の支持構造における成形体の下端部中央部分及び成形体の両端支持部分に生じていた応力が著しく緩和され、成形体の変形が減少する。特に、成形体は、支持部材の上面で支持させているため、成形体に作用する力を、成形体の長手方向に一様に保つことが可能になり、成形体に生じる変形を、ゆっくりとした一様なものに抑制できるので、成形体の使用期間を延長することができる。
【0013】
また、本発明は、前記成形体の貫通孔の両端部を前記成形体と同程度の熱膨張率を有する耐火材料製の蓋部材で閉塞し、前記支持部材を前記貫通孔内に密閉したものである。
【0014】
このように、支持部材を成形体の内部に埋設した密閉構造を採用することにより、支持部材を炉内の高温雰囲気から隔離して高温下でのガラス揮発成分による支持材料の浸食を防ぐことができる。しかも、成形体の貫通孔の両端部及びこの貫通孔から突出する支持部材の両端部を蓋部材で密閉することにより、成形体の貫通孔の両端部及び支持部材の両端部からの放熱による局所的な低温部分の発生を避けることができ、支持部材及び成形体の強度劣化並びに変形、破損を防止して、成形体の長期使用を可能とすることができる。
【0015】
さらに、本発明は、支持部材に用いる材料として、成形体に用いる耐火材料よりも高いヤング率と曲げ強度を有するセラミック系耐火材料を用いたから、近年必要とされる1200℃を超える高い溶融ガラス温度下でも、十分な強度が得られ、高温下における成形体の変形や破損を防ぎ、設計時に与えた成形体によるガラス流の均一分配機能を長期間に亘り保ち得る。特に、支持部材を構成するセラミック系耐火材料のヤング率は、成形体を構成する耐火材料に対して1.1倍以上、曲げ強度が、1.3倍以上のものを使用するものである。具体的には、前記支持部材を構成するセラミック系耐火材料は、窒化珪素、炭化珪素、ジルコニア複合体の中から選択された1の材料を基材成分として使用する。即ち、窒化珪素や炭化珪素、ジルコニア複合体等のセラミック系耐火材料は、1200℃を超える高温においても十分に高い曲げ強度とヤング率を有し、また、それらのクリープはごく僅かである。さらには、高温下での材料組織の経時変化もない。
【0016】
これらセラミック系耐火材料による支持部材を前記の如く、成形体内に埋設する構造を採用することにより、成形体形状を高温下においても正確に長期間に亘り維持させることができるようになる。また、成形体の長さに関しても、従来、1.5m程度が限界であった成形体長さを更に長くすることが可能になり、より幅広い板ガラスの製造に本発明を適用することができるようになる。
【0017】
上記したように、本発明によれば、支持部材により強度を確保できるので、成形体を構成する耐火材料として、より低密度な材料を用いることができ、成形体の変形を一層軽減することができる。具体的には、前記成形体は、2.8g/cm3 以下、より好ましくは2.5g/cm3 以下の低密度耐火材料で構成することができる。これにより、従来よりも軽量な成形体を構成することができ、30%〜50%の軽量化が可能である。
【0018】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施例を参照して説明する。図1は本発明の実施例を示す成形体及び支持部材の一部破断正面図、図2はその左側面図で蓋部材を除去した状態、図3は右側面図である。これらの図において、1は成形体、2は均一分配溝、3は貫通孔、4は支持部材、5は蓋部材、6は保持台、7は溶融ガラスの供給管を示している。
【0019】
成形体1は、成形すべき板ガラスの幅方向(長手方向)に延び、前記板ガラスの厚さ方向の両側へ溶融ガラスをオーバーフローさせるための上面が開口した均一分配溝2を頂部1aに有し、前記頂部1aから両側へ分流して流下する溶融ガラスを下端部1bで合流させて1枚の板ガラスとするために下方に向けて相互に接近させた幅広の両側壁面1c、1cを有し、前記両側壁面1c、1c間の内部に板ガラスの幅方向に貫通する貫通孔3を形成している。
【0020】
成形体1の長手方向の両端部1d、1dは、両側壁面1c、1cよりも厚く、かつ、均一分配溝2の頂部1aよりも高く形成され、両側壁面1c、1cの両端に、成形すべき板ガラスの幅寸法を設定する段差面1e、1eを形成している。
【0021】
均一分配溝2には、その一端から供給管7を介してガラス溶融炉(図示省略)で溶融された溶融ガラスが一定流量で連続的に供給される。均一分配溝2は、溝底2aが図1に示すように供給側端部から離隔するほど次第に浅く形成されており、また、両側上縁、即ち、成形体1の頂部1aも供給側端部から離隔するほど次第に低く形成されている。この構成によって、溶融ガラスを成形体1の長手方向全長に亘って均一流量でオーバーフローさせて幅方向に一様な厚さの板ガラスを成形できるようにしている。
【0022】
貫通孔3は、図1に示すように、成形体1の両側壁面1c、1c間の内部に板ガラスの幅方向に貫通して形成されており、その断面形状は、成形体1の両側壁面1c、1cの下半部分の形状に対応した相似形状、即ち、図2に示すように、略倒立二等辺三角形状をしており、各頂角部分への応力集中を避けるために各頂角部分を円弧状に丸くしている。
【0023】
支持部材4は、貫通孔3の断面形状に対応する相似形状の断面形状、具体的には、図2に示すように、上面4aが平坦面とされ、両側面の上半部分4b、4bが垂直面とされ、両側面の下半部分4c、4cが傾斜面とされている。支持部材4の長さは、材料節約のために、成形体1の長手方向全長よりも短くされているが、少なくとも板ガラスの成形に寄与する部分の長さよりも長くされている。具体的には、図1に示すように、成形体1の両側壁面1c、1cの長手方向両端を設定する段差面1e、1e間の長さよりも長くされており、支持部材4の長手方向の両端部4dは、両側面の下半部分4c、4cを切除し、上半部分4b、4bを延長して形成されている。
【0024】
図1の実施例では、成形体1の両端部1d、1dの下半部分を切除して支持部材4の両端部4dを成形体1の長手方向の全長の範囲内で蓋部材5、5を介して保持台6、6に保持させるようにした場合を示している。
【0025】
蓋部材5は、成形体1の貫通孔3の両端部を閉塞し、前記支持部材4を前記貫通孔3内に密閉するように成形体1の両端部1d、1dの下半部分に取付けられるものである。
【0026】
保持台6は、蓋部材5、5を介して支持部材4の両端部4d、4dを保持するものである。
【0027】
本発明において、成形体1は、耐火材料で構成し、また、支持部材4は、前記成形体1を構成する耐火材料よりもヤング率及び曲げ強度が大きいセラミック系耐火材料で構成するものである。また、蓋部材5は、成形体1と同程度の熱膨張率を有する耐火材料で構成するものである。さらに保持台6は、例えばアルミナージルコニアレンガで構成するものである。
【0028】
前記支持部材4を構成するセラミック系耐火材料は、成形体1を構成する耐火材料に対して、そのヤング率が、1.1倍以上、曲げ強度が、1.3倍以上のものを使用するものである。具体的には、前記支持部材4を構成するセラミック系耐火材料は、窒化珪素、炭化珪素、ジルコニア複合体の中から選択された1の材料を基材成分として使用するものである。
【0029】
また、本発明における成形体は、2.8g/cm3 以下の低密度耐火材料で構成するものである。具体的には、2.4g/cm3 程度の密度を有するムライトシリマナイト、ムライトレンガ、シリマナイト等で成形体1を構成するのが好ましい。
【0030】
なお、一般に強度が高いと言われている電鋳耐火物(例えば、アルミナ系)と緻密質焼成耐火物(例えば、アルミナ系、ジルコン系)のヤング率及び強度例を以下に示す。また、セラミック系耐火材料の参考例として、炭化珪素系耐火材料のヤング率及び強度例も併記する。
【0031】

Figure 0003837729
【0032】
【発明の効果】
本発明によれば、成形体に用いる耐火材料よりも高強度の耐熱性をもつ支持部材を成形体の長手方向に貫挿し、その上面で成形体の全重量を支持させたことにより、従来の支持構造における成形体の下端部中央部分及び成形体の両端支持部分に生じていた応力が著しく緩和され、成形体の変形が減少する。特に、成形体は、支持部材の上面で支持させているため、成形体に作用する力を、成形体の長手方向に一様に保つことが可能になり、成形体に生じる変形を、ゆっくりとした一様なものに抑制できるので、成形体の使用期間を延長することができる。支持部材を成形体の内部に埋設した密閉構造を採用することにより、支持部材を炉内の高温雰囲気から隔離して高温下でのガラス揮発成分による支持材料の浸食を防ぐことができる。しかも、成形体の貫通孔の両端部を蓋部材で閉塞し、前記支持部材を前記貫通孔内に密閉することにより、成形体の貫通孔の両端部及び支持部材の両端部からの放熱による局所的な低温部分の発生を避けることができ、支持部材及び成形体の強度劣化並びに変形、破損を防止して、成形体の長期使用を可能とすることができる。
【0033】
さらに、本発明は、支持部材に用いる材料として、成形体に用いる耐火材料よりも高いヤング率と曲げ強度を有するセラミック系耐火材料を用いたから、近年必要とされる1200℃を超える高い溶融ガラス温度下でも、十分な強度が得られ、高温下における成形体の変形や破損を防ぎ、設計時に与えた成形体によるガラス流の均一分配機能を長期間に亘り保ち得る。特に、支持部材を構成するセラミック系耐火材料のヤング率は、成形体を構成する耐火材料に対して1.1倍以上、曲げ強度が、1.3倍以上のものを使用するものである。具体的には、前記支持部材を構成するセラミック系耐火材料は、窒化珪素、炭化珪素、ジルコニア複合体の中から選択された1の材料を基材成分として使用する。即ち、窒化珪素や炭化珪素、ジルコニア複合体等のセラミック系耐火材料は、1200℃を超える高温においても十分に高い曲げ強度とヤング率を有し、また、それらのクリープはごく僅かである。さらには、高温下での材料組織の経時変化もない。
【0034】
これらセラミック系耐火材料による支持部材を前記の如く、成形体内に埋設する構造を採用することにより、成形体形状を高温下においても正確に長期間に亘り維持させることができるようになる。また、成形体の長さに関しても、従来、1.5m程度が限界であった成形体長さを更に長くすることが可能になり、より幅広い板ガラスの製造に本発明を適用することができるようになる。このように、本発明によれば、支持部材により強度を確保できるので、成形体を構成する耐火材料として、より低密度な材料を用いることができ、成形体の変形を一層軽減することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す成形体及び支持部材の一部破断正面図。
【図2】図1の左側面図で蓋部材を除去した状態。
【図3】図1の右側面図。
【図4】従来の板ガラス成形装置の要部概略斜視図。
【符号の説明】
1 成形体
1a 頂部
1b 下端部
1c 両側壁面
1d 両端部
1e 段差面
2 均一分配溝
3 貫通孔
4 支持部材
5 蓋部材
6 保持台
7 溶融ガラスの供給管
a 溶融ガラス
b 板ガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a fusion downdraw type plate glass forming apparatus.
[0002]
[Prior art]
As shown in FIG. 4, the schematic configuration of the fusion downdraw type plate glass forming apparatus is such that molten glass a is continuously supplied from a furnace (not shown) to the top of the formed body 20 through a supply pipe 21 at a constant flow rate. The sheet glass b is formed by this method by overflowing from both sides of the top part to flow down both side walls of the molded body 20 in a diverted state and joining at the lower end of the molded body 20 to form one sheet glass b. Since both the front and back surfaces of the molded body 20 are made to flow down by dividing both side walls of the molded body 20, both are constituted by free flowing surfaces having high cleanliness that are non-contact with the molded body 20. There are features that can be acquired.
[0003]
The molding temperature of the molten glass a is, for example, 1200 to 1300 ° C., and the molded body 20 used at such a high temperature is likely to be deformed by creep or thermal stress. Such deformation impairs the uniform distribution function of the molten glass flow of the molded body 20 and makes the thickness of the plate glass b to be manufactured non-uniform.
[0004]
Further, under an inappropriate temperature environment, an accident such as collapse is caused by deformation of the molded body 20. Therefore, a high-strength refractory material such as zircon or alumina is often used as the refractory material used for the molded body 20.
[0005]
However, these high-strength refractory materials have a material density as high as 3 to 4 g / cm 3 and increase the weight of the molded body 20, thereby reducing the effect of improving the material strength.
[0006]
[Problems to be solved by the invention]
In general, the molded body 20 is supported at both ends in the longitudinal direction (the width direction of the plate glass b to be molded). Thus, when the molded body 20 is supported at both ends in the longitudinal direction, the molded body is A large tensile stress is generated in the central portion between the supporting points at the lower part of 20 and in the vicinity of both supporting points. In particular, the occurrence of cracks and deformation becomes significant at high temperatures.
[0007]
Further, due to deformation such as creep over a long period of time, the central portion of the molded body 20 hangs down, impairing the uniform distribution function of the molten glass flow, and making the thickness of the plate glass b to be manufactured non-uniform.
[0008]
Further, generally, various components constituting the glass are volatilized from a molten glass at a high temperature and are condensed into a liquid at a relatively low temperature. The condensed glass vapor component exhibits a strong erosion resistance to metals and refractories, and causes strength deterioration of these materials. In order to prevent the glass volatile components from condensing, it is necessary not to expose the material to a high-temperature furnace atmosphere and to avoid the occurrence of local low-temperature portions. However, in the past, local low-temperature parts due to heat dissipation occur at both ends of the support member and in the vicinity thereof, and glass volatile components condense and erode at these parts, leading to deterioration of the strength of the support part and long-term moldings. It was difficult to use. In addition, temperature unevenness has spread to the molded body, which causes the thickness of the plate glass to be manufactured to be uneven.
[0009]
Conventionally, it has been common to use a metal such as a heat-resistant alloy as the support member of the compact. However, since the molten glass temperature required in recent years is higher than 1200 ° C., sufficient strength cannot be obtained, and embrittlement is caused by metal crystal growth / coarse graining. It has been found that using metals such as heat resistant alloys is inappropriate.
[0010]
An object of the present invention is to provide a sheet glass forming apparatus that can prevent deformation and breakage of a molded body at a high temperature, and can maintain a uniform distribution function of a glass flow by a molded body given at the time of design for a long period of time.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has a uniform distribution groove with an open top surface for overflowing molten glass at the top, and the molten glass that is diverted from the top to both sides and flows down is joined at the lower end. A molded body made of a refractory material having a wide side wall surface for making a single sheet glass and having a through-hole penetrating in the width direction of the sheet glass inside, and inserted through the through-hole of the molded body, A ceramic system having a supporting member supported on the upper surface and having both ends held by holding bases, and a material constituting the supporting member having a larger Young's modulus and bending strength than a refractory material constituting the forming body It consists of refractory material.
[0012]
That is, in the present invention, a supporting member having heat resistance higher than that of the refractory material used for the molded body is inserted in the longitudinal direction of the molded body, and the entire weight of the molded body is supported by the upper surface thereof. In the support structure, the stress generated in the center portion of the lower end portion of the molded body and the both end support portions of the molded body is remarkably relieved, and deformation of the molded body is reduced. In particular, since the molded body is supported by the upper surface of the support member, the force acting on the molded body can be kept uniform in the longitudinal direction of the molded body, and the deformation that occurs in the molded body is slowly reduced. Therefore, it is possible to extend the usage period of the molded body.
[0013]
In the present invention, both end portions of the through hole of the molded body are closed with a cover member made of a refractory material having a thermal expansion coefficient comparable to that of the molded body, and the support member is sealed in the through hole. It is.
[0014]
Thus, by adopting a sealed structure in which the support member is embedded in the molded body, it is possible to isolate the support member from the high temperature atmosphere in the furnace and prevent erosion of the support material due to glass volatile components at high temperatures. it can. In addition, both ends of the through hole of the molded body and both ends of the support member protruding from the through hole are sealed with a lid member, so that local heat is generated by heat radiation from both ends of the through hole of the molded body and both ends of the support member. Generation of a typical low temperature part can be avoided, strength deterioration of the support member and the molded body, deformation and breakage can be prevented, and the molded body can be used for a long time.
[0015]
Furthermore, since the present invention uses a ceramic refractory material having a higher Young's modulus and bending strength than the refractory material used for the molded body as the material used for the support member, a high molten glass temperature exceeding 1200 ° C. required in recent years. Even underneath, sufficient strength can be obtained, deformation and breakage of the molded body at high temperatures can be prevented, and the uniform distribution function of the glass flow by the molded body given at the time of design can be maintained for a long period of time. In particular, the Young's modulus of the ceramic refractory material constituting the supporting member is 1.1 times or more that of the refractory material constituting the molded body, and the bending strength is 1.3 times or more. Specifically, the ceramic refractory material constituting the support member uses one material selected from silicon nitride, silicon carbide, and zirconia composite as a base material component. That is, ceramic refractory materials such as silicon nitride, silicon carbide, and zirconia composite have sufficiently high bending strength and Young's modulus even at a high temperature exceeding 1200 ° C., and their creep is very small. Furthermore, there is no change over time in the material structure at high temperatures.
[0016]
By adopting such a structure in which the support member made of the ceramic refractory material is embedded in the molded body as described above, the shape of the molded body can be accurately maintained over a long period of time even at high temperatures. Further, regarding the length of the molded body, it is possible to further increase the length of the molded body, which was conventionally about 1.5 m, so that the present invention can be applied to the production of a wider range of plate glass. Become.
[0017]
As described above, according to the present invention, since the strength can be secured by the support member, a lower density material can be used as the refractory material constituting the molded body, and deformation of the molded body can be further reduced. it can. Specifically, the molded body can be composed of a low density refractory material of 2.8 g / cm 3 or less, more preferably 2.5 g / cm 3 or less. Thereby, the molded object lighter than before can be comprised, and 30 to 50% of weight reduction is possible.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 is a partially broken front view of a molded body and a support member showing an embodiment of the present invention, FIG. 2 is a left side view of the molded body and a support member, and FIG. 3 is a right side view. In these figures, 1 is a molded body, 2 is a uniform distribution groove, 3 is a through hole, 4 is a support member, 5 is a lid member, 6 is a holding base, and 7 is a molten glass supply pipe.
[0019]
The molded body 1 has a uniform distribution groove 2 in the top portion 1a that extends in the width direction (longitudinal direction) of the plate glass to be formed and has an upper surface opened to overflow the molten glass to both sides in the thickness direction of the plate glass. Wide side wall surfaces 1c, 1c that are close to each other in the downward direction in order to join the molten glass that flows from the top portion 1a to the opposite sides and flows down at the lower end portion 1b into one sheet glass, A through hole 3 penetrating in the width direction of the plate glass is formed inside the both side wall surfaces 1c and 1c.
[0020]
Both ends 1d and 1d in the longitudinal direction of the molded body 1 are thicker than the side wall surfaces 1c and 1c and higher than the top 1a of the uniform distribution groove 2, and should be molded at both ends of the side wall surfaces 1c and 1c. Step surfaces 1e and 1e for setting the width dimension of the plate glass are formed.
[0021]
To the uniform distribution groove 2, molten glass melted in a glass melting furnace (not shown) is continuously supplied from one end thereof through a supply pipe 7 at a constant flow rate. As shown in FIG. 1, the uniform distribution groove 2 is formed so as to be gradually shallower as the groove bottom 2a is separated from the supply side end, and the upper edges on both sides, that is, the top 1a of the molded body 1 is also provided on the supply side end. The lower the distance from, the lower the height. With this configuration, the molten glass is allowed to overflow at a uniform flow rate over the entire length in the longitudinal direction of the molded body 1 so that a plate glass having a uniform thickness in the width direction can be formed.
[0022]
As shown in FIG. 1, the through-hole 3 is formed in the space between the both side wall surfaces 1 c and 1 c of the molded body 1 so as to penetrate in the width direction of the plate glass. 1c corresponding to the shape of the lower half portion of 1c, that is, as shown in FIG. 2, has a substantially inverted isosceles triangle shape, and in order to avoid stress concentration on each apex portion, each apex portion Is rounded into an arc.
[0023]
The support member 4 has a similar cross-sectional shape corresponding to the cross-sectional shape of the through-hole 3, specifically, as shown in FIG. 2, the upper surface 4 a is a flat surface, and the upper half portions 4 b and 4 b on both side surfaces are It is a vertical surface, and the lower half portions 4c and 4c of both side surfaces are inclined surfaces. The length of the support member 4 is shorter than the entire length in the longitudinal direction of the molded body 1 in order to save material, but is longer than at least the length of the portion that contributes to the forming of the plate glass. Specifically, as shown in FIG. 1, the length of the both side wall surfaces 1 c, 1 c of the molded body 1 is set longer than the length between the step surfaces 1 e, 1 e that set both ends in the longitudinal direction. Both end portions 4d are formed by cutting out lower half portions 4c and 4c on both side surfaces and extending upper half portions 4b and 4b.
[0024]
In the embodiment of FIG. 1, the lower half portions of both end portions 1 d and 1 d of the molded body 1 are cut so that both end portions 4 d of the support member 4 are covered with the lid members 5 and 5 within the entire length in the longitudinal direction of the molded body 1. The case where it is made to hold | maintain on the holding stands 6 and 6 is shown.
[0025]
The lid member 5 is attached to the lower half portions of both end portions 1d and 1d of the molded body 1 so as to close both end portions of the through hole 3 of the molded body 1 and seal the support member 4 in the through hole 3. Is.
[0026]
The holding stand 6 holds both end portions 4d and 4d of the support member 4 via the lid members 5 and 5.
[0027]
In the present invention, the molded body 1 is made of a refractory material, and the support member 4 is made of a ceramic refractory material having a Young's modulus and bending strength larger than those of the refractory material constituting the molded body 1. . The lid member 5 is made of a refractory material having a thermal expansion coefficient comparable to that of the molded body 1. Furthermore, the holding stand 6 is made of, for example, alumina-zirconia brick.
[0028]
As the ceramic refractory material constituting the support member 4, a material having a Young's modulus of 1.1 times or more and a bending strength of 1.3 times or more of the refractory material constituting the molded body 1 is used. Is. Specifically, the ceramic refractory material constituting the support member 4 uses one material selected from silicon nitride, silicon carbide, and zirconia composite as a base material component.
[0029]
Moreover, the molded object in this invention is comprised with a low density refractory material of 2.8 g / cm < 3 > or less. Specifically, the molded body 1 is preferably composed of mullite sillimanite, mullite brick, sillimanite or the like having a density of about 2.4 g / cm 3 .
[0030]
Examples of Young's modulus and strength of electrocast refractories (for example, alumina type) and dense fired refractories (for example, alumina type and zircon type), which are generally said to have high strength, are shown below. In addition, as a reference example of the ceramic refractory material, an example of Young's modulus and strength of the silicon carbide refractory material is also shown.
[0031]
Figure 0003837729
[0032]
【The invention's effect】
According to the present invention, a support member having heat resistance higher than that of the refractory material used for the molded body is inserted in the longitudinal direction of the molded body, and the entire weight of the molded body is supported by the upper surface thereof. In the support structure, the stress generated in the center portion of the lower end portion of the molded body and the both end support portions of the molded body is remarkably relieved, and deformation of the molded body is reduced. In particular, since the molded body is supported by the upper surface of the support member, the force acting on the molded body can be kept uniform in the longitudinal direction of the molded body, and the deformation that occurs in the molded body is slowly reduced. Therefore, it is possible to extend the usage period of the molded body. By adopting a sealed structure in which the support member is embedded in the molded body, it is possible to isolate the support member from the high temperature atmosphere in the furnace and prevent erosion of the support material due to glass volatile components at high temperatures. In addition, both ends of the through hole of the molded body are closed with a lid member, and the support member is sealed in the through hole, so that local heat radiation from both ends of the through hole of the molded body and both ends of the support member occurs. Generation of a typical low temperature part can be avoided, strength deterioration of the support member and the molded body, deformation and breakage can be prevented, and the molded body can be used for a long time.
[0033]
Furthermore, since the present invention uses a ceramic refractory material having a higher Young's modulus and bending strength than the refractory material used for the molded body as the material used for the support member, a high molten glass temperature exceeding 1200 ° C. required in recent years. Even underneath, sufficient strength can be obtained, deformation and breakage of the molded body at high temperatures can be prevented, and the uniform distribution function of the glass flow by the molded body given at the time of design can be maintained for a long period of time. In particular, the Young's modulus of the ceramic refractory material constituting the supporting member is 1.1 times or more that of the refractory material constituting the molded body, and the bending strength is 1.3 times or more. Specifically, the ceramic refractory material constituting the support member uses one material selected from silicon nitride, silicon carbide, and zirconia composite as a base material component. That is, ceramic refractory materials such as silicon nitride, silicon carbide, and zirconia composite have sufficiently high bending strength and Young's modulus even at a high temperature exceeding 1200 ° C., and their creep is negligible. Furthermore, there is no change over time in the material structure at high temperatures.
[0034]
By adopting such a structure in which the support member made of the ceramic refractory material is embedded in the molded body as described above, the shape of the molded body can be accurately maintained over a long period of time even at high temperatures. Further, regarding the length of the molded body, it is possible to further increase the length of the molded body, which was conventionally about 1.5 m, so that the present invention can be applied to the production of a wider range of plate glass. Become. As described above, according to the present invention, since the strength can be secured by the support member, a lower density material can be used as the refractory material constituting the molded body, and deformation of the molded body can be further reduced. .
[Brief description of the drawings]
FIG. 1 is a partially broken front view of a molded body and a support member showing an embodiment of the present invention.
2 is a state in which the lid member is removed from the left side view of FIG.
FIG. 3 is a right side view of FIG.
FIG. 4 is a schematic perspective view of a main part of a conventional sheet glass forming apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Molded body 1a Top part 1b Lower end part 1c Both side wall surface 1d Both end part 1e Step surface 2 Uniform distribution groove 3 Through hole 4 Support member 5 Lid member 6 Holding stand 7 Molten glass supply pipe a Molten glass b Plate glass

Claims (5)

溶融ガラスをオーバーフローさせるための上面が開口した均一分配溝を頂部に有し、前記頂部から両側へ分流して流下する溶融ガラスを下端部で合流させて1枚の板ガラスとするための幅広の両側壁面を有し、内部に板ガラスの幅方向に貫通する貫通孔を形成した耐火材料製の成形体と、前記成形体の貫通孔に貫挿され、前記成形体を上面で支持し、両端を保持台に保持させた支持部材とを具備し、前記支持部材を構成する材料を前記成形体を構成する耐火材料よりもヤング率及び曲げ強度が大きいセラミック系耐火材料で構成したことを特徴とする板ガラス成形装置。Wide both sides for having a uniform distribution groove with an upper surface opened for overflowing the molten glass at the top and joining the molten glass flowing down from the top to both sides to form a single sheet glass at the lower end A molded body made of a refractory material having a wall surface and having a through-hole penetrating in the width direction of the glass sheet inside, and being inserted through the through-hole of the molded body, supporting the molded body on the upper surface and holding both ends And a supporting member held on a table, wherein the material constituting the supporting member is made of a ceramic refractory material having a Young's modulus and bending strength larger than those of the refractory material constituting the molded body. Molding equipment. 前記成形体の貫通孔の両端部を前記成形体と同程度の熱膨張率を有する耐火材料製の蓋部材で閉塞し、前記支持部材を前記貫通孔内に密閉したことを特徴とする請求項1記載の板ガラス成形装置。The both ends of the through hole of the molded body are closed with a lid member made of a refractory material having a thermal expansion coefficient comparable to that of the molded body, and the support member is sealed in the through hole. The plate glass forming apparatus according to 1. 前記支持部材を構成するセラミック系耐火材料は、そのヤング率が、成形体を構成する耐火材料に対して1.1倍以上、曲げ強度が、1.3倍以上であることを特徴とする請求項1又は2記載の板ガラス成形装置。The ceramic refractory material constituting the support member has a Young's modulus 1.1 times or more that of the refractory material constituting the molded body and a bending strength 1.3 times or more. Item 3. A sheet glass forming apparatus according to item 1 or 2. 前記支持部材を構成するセラミック系耐火材料が、窒化珪素、炭化珪素、ジルコニア複合体の中から選択される1の材料を基材成分とすることを特徴とする請求項1〜3のいずれかに記載の板ガラス成形装置。The ceramic refractory material constituting the support member includes, as a base material component, one material selected from silicon nitride, silicon carbide, and zirconia composite. The plate glass forming apparatus described. 前記成形体が2.8g/cm3 以下の低密度耐火材料からなることを特徴とする請求項1〜4のいずれかに記載の板ガラス成形装置。The plate glass forming apparatus according to any one of claims 1 to 4, wherein the formed body is made of a low density refractory material of 2.8 g / cm 3 or less.
JP05378798A 1998-03-05 1998-03-05 Sheet glass forming equipment Expired - Fee Related JP3837729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05378798A JP3837729B2 (en) 1998-03-05 1998-03-05 Sheet glass forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05378798A JP3837729B2 (en) 1998-03-05 1998-03-05 Sheet glass forming equipment

Publications (2)

Publication Number Publication Date
JPH11246230A JPH11246230A (en) 1999-09-14
JP3837729B2 true JP3837729B2 (en) 2006-10-25

Family

ID=12952539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05378798A Expired - Fee Related JP3837729B2 (en) 1998-03-05 1998-03-05 Sheet glass forming equipment

Country Status (1)

Country Link
JP (1) JP3837729B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126752A1 (en) * 2015-02-04 2016-08-11 Corning Incorporated System for forming a glass article
WO2017123459A1 (en) * 2016-01-11 2017-07-20 Corning Incorporated Method and apparatuse for supporting forming bodies of glass forming apparatuses
US20210300807A1 (en) * 2018-08-10 2021-09-30 Corning Incorporated Apparatus and methods for fabricating glass ribbon

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1080926A3 (en) 1999-08-31 2001-06-20 Riso Kagaku Corporation Method of and apparatus for making stencil
JP4038751B2 (en) * 1999-10-04 2008-01-30 日本電気硝子株式会社 Sheet glass forming equipment
US6748765B2 (en) 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
WO2002044102A1 (en) * 2000-12-01 2002-06-06 Corning Incorporated Sag control of isopipes used in making sheet glass by the fusion process
US7541304B2 (en) * 2001-11-30 2009-06-02 Corning Incorporated Sag control of isopipes used in making sheet glass by the fusion process
US7681414B2 (en) 2001-08-08 2010-03-23 Corning Incorporated Overflow downdraw glass forming method and apparatus
US9233869B2 (en) 2001-08-08 2016-01-12 Corning Incorporated Overflow downdraw glass forming method and apparatus
CN100534938C (en) 2001-08-08 2009-09-02 布鲁斯科技公司 Sheet glass forming apparatus
US6895782B2 (en) 2002-08-08 2005-05-24 Richard B. Pitbladdo Overflow downdrawn glass forming method and apparatus
US7690221B2 (en) 2004-02-23 2010-04-06 Corning Incorporated Sheet width control for overflow downdraw sheet glass forming apparatus
US8042361B2 (en) 2004-07-20 2011-10-25 Corning Incorporated Overflow downdraw glass forming method and apparatus
CN101094816B (en) 2004-12-30 2012-02-29 康宁股份有限公司 Refractory materials
JP4743665B2 (en) * 2005-04-20 2011-08-10 日本電気硝子株式会社 Sheet glass forming apparatus and sheet glass forming method
US7748236B2 (en) 2005-12-27 2010-07-06 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7928029B2 (en) 2007-02-20 2011-04-19 Corning Incorporated Refractory ceramic composite and method of making
US7958748B2 (en) * 2007-02-23 2011-06-14 Corning Incorporated Isopipe design feature to reduce sag
JP5912212B2 (en) * 2007-08-03 2016-04-27 株式会社フルヤ金属 Molding part of glass manufacturing apparatus and method for manufacturing glass molded product
US8986597B2 (en) 2007-10-31 2015-03-24 Corning Incorporated Low creep refractory ceramic and method of making
US8028544B2 (en) * 2009-02-24 2011-10-04 Corning Incorporated High delivery temperature isopipe materials
US10421681B2 (en) 2010-07-12 2019-09-24 Corning Incorporated Alumina isopipes for use with tin-containing glasses
TWI537231B (en) 2010-07-12 2016-06-11 康寧公司 High static fatigue alumina isopipes
CN105776824A (en) * 2011-11-17 2016-07-20 旭硝子株式会社 Molding method for plate glass
JP6051239B2 (en) * 2015-01-27 2016-12-27 株式会社フルヤ金属 Molding part of glass manufacturing equipment
JP5936724B2 (en) * 2015-01-27 2016-06-22 株式会社フルヤ金属 Molding part of glass manufacturing equipment
CN116177853A (en) * 2018-08-10 2023-05-30 康宁公司 Apparatus and method for manufacturing glass ribbon
JP7144750B2 (en) * 2019-06-07 2022-09-30 日本電気硝子株式会社 Glass plate manufacturing apparatus and glass plate manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016126752A1 (en) * 2015-02-04 2016-08-11 Corning Incorporated System for forming a glass article
CN107428582A (en) * 2015-02-04 2017-12-01 康宁股份有限公司 System for forming glassware
US20180044215A1 (en) * 2015-02-04 2018-02-15 Corning Incorporated System for forming a glass article
US10737962B2 (en) 2015-02-04 2020-08-11 Corning Incorporated System for forming a glass article
WO2017123459A1 (en) * 2016-01-11 2017-07-20 Corning Incorporated Method and apparatuse for supporting forming bodies of glass forming apparatuses
US9840431B2 (en) 2016-01-11 2017-12-12 Corning Incorporated Methods and apparatuses for supporting forming bodies of glass forming apparatuses
US20210300807A1 (en) * 2018-08-10 2021-09-30 Corning Incorporated Apparatus and methods for fabricating glass ribbon

Also Published As

Publication number Publication date
JPH11246230A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP3837729B2 (en) Sheet glass forming equipment
TWI385129B (en) Isopipes having improved dimensional stability
US20100251774A1 (en) Creep resistant multiple layer refractory used in a glass manufacturing system
JP5122855B2 (en) Glass fiber production equipment
TW200704609A (en) Backup structure of rise tube or downcomer of vacuum degassing apparatus
JP2004284843A (en) Apparatus and method of forming plate glass
KR0134182B1 (en) Heat resistant materials
JP2004203691A (en) Apparatus and method for shaping glass sheet
JP2004315287A (en) Formation apparatus for plate glass
TW201925109A (en) Apparatus and methods for producing glass
US20060201207A1 (en) Reinforcing device for bushing used to produce filaments, such as glass-based filaments
WO2006011520A1 (en) Ceramic heater and heating iron using it
US7958928B2 (en) Method and apparatus for casting metal articles
US5947180A (en) Rising pipe for light metal melts
JP4281107B2 (en) Sheet glass forming equipment
JPH0117417Y2 (en)
JPWO2011010622A1 (en) Hanger assembly and float plate glass manufacturing equipment
JP3977965B2 (en) Heater device
KR20150058085A (en) Hanger assembly and apparatus for producing float plate glass with hanger assembly
US20210363624A1 (en) Snout for use in a hot dip coating line
US11898251B2 (en) Snout for use in a hot dip coating line
WO2021132150A1 (en) Molding device, production facility equipped with said molding device, and method for producing glass plate
JP2702631B2 (en) Hearth opening cover support members
JPS58210116A (en) Member for supporting body to be heated in heating furnace
JP2006027946A (en) Silicon carbide-based joined structure, and method and apparatus for manufacturing silicon carbide-based joined structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees