JP3837583B2 - Heat transfer tube cover structure of fluidized bed boiler - Google Patents

Heat transfer tube cover structure of fluidized bed boiler Download PDF

Info

Publication number
JP3837583B2
JP3837583B2 JP2000031608A JP2000031608A JP3837583B2 JP 3837583 B2 JP3837583 B2 JP 3837583B2 JP 2000031608 A JP2000031608 A JP 2000031608A JP 2000031608 A JP2000031608 A JP 2000031608A JP 3837583 B2 JP3837583 B2 JP 3837583B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
cover
fluidized bed
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000031608A
Other languages
Japanese (ja)
Other versions
JP2001221401A (en
Inventor
謙示 東川
実 長迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000031608A priority Critical patent/JP3837583B2/en
Publication of JP2001221401A publication Critical patent/JP2001221401A/en
Application granted granted Critical
Publication of JP3837583B2 publication Critical patent/JP3837583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は伝熱管カバー構造に係り、特に、流動層ボイラにおいて伝熱量の調整用および伝熱管の摩耗防止用に設けられる伝熱管カバーの構造に関するものである。
【0002】
【従来の技術】
流動層ボイラにおいては、石灰石、砂等の流動媒体中にボイラ底部の分散板から空気を均一に吹き込み、流動媒体を浮遊流動化させ、ここに小粒径に粉砕した固体燃料もしくは液体燃料を投入することにより、流動状態での効率良い燃焼を実現している。流動層ボイラの内部には複数の伝熱管が配置されており、ボイラ内で発生した熱は伝熱管により蒸気として回収される。
【0003】
上記伝熱管には、一般にカバーが設置される。このカバーを設置する第1の理由は伝熱管での伝熱量を抑制するためである。すなわち、伝熱管での伝熱量が過剰にある場合には、この伝熱量を抑制しなけばならないので、伝熱管の近傍に例えばオーステナイト系ステンレス鋼等のカバーが設置される。このようなカバーを設置すると、流動層と伝熱管との間に流動化しない固定層が形成され、カバーのある箇所での伝熱は、流動化しているカバー外部に比べて熱抵抗が大きくなり、これによって、伝熱管での伝熱量を抑制することができる。特許第1699177号には、伝熱管に着脱自在なカバーを設置して、伝熱量を抑制することが提案されている。
【0004】
また、伝熱管にカバーを設置する第2の理由は、伝熱管の摩耗を防ぐためである。すなわち、伝熱管にカバーを設置すれば、流動媒体が伝熱管に直接触れることがないので、流動媒体による伝熱管の摩耗を防ぐことができる。特許第1608697号には、伝熱管の下半分にカバーを設置して、伝熱管の摩耗防止を図ることが提案されている。
【0005】
上記のように伝熱管にカバーを設置する際に、カバーを伝熱管の外表面から僅かに離して設置し、伝熱管とカバーとの間に隙間を形成することが提案されている(例えば、特開平1−296001号公報や特公平6−3281号公報)。そして、このような隙間を形成する場合、従来は、図7に示すように円筒形状のカバー1の内面に所定厚さの当板2を溶接等によって予め取り付けておき、このカバー1内に伝熱管3を挿通するようしている。図7は初期据付時の様子を示しており、当板2は伝熱管3の外表面に接触している。
【0006】
【発明が解決しようとする課題】
ところで、上記のように当板によって隙間を確保する構成では、カバーと伝熱管との間に大きなメタル温度差が生じる。すなわち、伝熱管の内部には水又は蒸気等の流体が流れているので伝熱管は冷却されているが、カバーは流動層温度とほぼ同じメタル温度となり、カバーと伝熱管との間に隙間を設けた部分は勿論、当板(この当板は非冷却のため流動層温度とほぼ同じメタル温度となる)が伝熱管に接触した隙間の無い部分でも、伝熱管との間に大きなメタル温度差が生じる。例えば、流動層の運転中はカバーの温度は約800℃となるが、伝熱管は400〜600℃程度である。
【0007】
そのために、伝熱管よりもメタル温度の高いカバーの方が、伝熱管に比べて熱膨張量が多くなって直径が大きくなる。そうすると、図8に示すようにカバー1と伝熱管3との間に隙間を設けた部分(図7(a)のa部)は更に隙間が拡大し、当板2が設けられた隙間の無い部分(図7(a)のb部)でも隙間が生じ、流動層の運転中は流動媒体4がこれらの隙間に侵入することとなる。そして流動層を停止させたとき、カバー1と伝熱管3との隙間に侵入した流動媒体4は排出されないで、そのままこの隙間に残留する。これは、カバー1と伝熱管3との間は流動空気が流れないため固定層となっており、隙間に侵入した流動媒体4が流動していないため、および構造的にも流動媒体の機械的な排出装置を設置できないためである。
【0008】
しかし、流動層の運転を停止すると、流動層温度が低下するため、これに伴ってカバー1は元の寸法まで縮もうとする。このとき、カバー1と伝熱管3との隙間(特に当板2と伝熱管3との隙間)には流動媒体4が残留しているので、カバー1の縮みが阻害されて、カバー1は元の寸法まで縮むことができず、カバー1には縮み時の熱応力が歪みとして残ることになる。これを熱ラチェット現象と言うが、この現象は流動層の運転停止により繰り返され、カバー1に永久歪みが蓄積してカバー1が破断する恐れがある。また、当板2が溶接等で取り付けられているので、カバー1が大きく歪むと応力集中により溶接部が割れてしまう恐れもある。
【0009】
本発明の目的は、熱ラチェット現象によるカバーの歪みを抑制し、カバーの信頼性を向上させることのできる流動層ボイラの伝熱管カバー構造を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の伝熱管カバー構造は、石灰石、砂等を含んだ高温の流動層内に配置される伝熱管の外周面を円筒状部材で覆い、前記円筒状部材は前記伝熱管外周面との間に隙間を有するとともに、両端部の複数個所に前記伝熱管外周面に向かって絞り込まれ先端が伝熱管外周面に接触する絞り部が形成されていることを特徴としている。
【0011】
また、本発明の伝熱管カバー構造は、石灰石、砂等を含んだ高温の流動層内に配置される伝熱管の外周面を円筒状部材で覆い、前記円筒状部材は前記伝熱管外周面との間に隙間を有するとともに、前記伝熱管外周面に向かって絞り込まれ先端が伝熱管外表面に接触する絞り部が該円筒状部材の全長にわたって形成され、且つその形成個所が該円筒状部材の円周方向に沿って複数個であることを特徴としている。
【0012】
上記各構成によれば、流動層の運転中にはカバーは熱膨張してその直径が大きくなり、カバーと伝熱管との間の隙間に流動媒体が侵入し、流動層の停止時には流動媒体は前記隙間に残留することになるが、カバーに形成された絞り部は一種のバネ効果として作用し、そのため、カバーはその円周方向に対してフレキシビリティーとなり、カバーが温度低下により縮もうとした場合には、前記絞り部がバネとなって収縮し、カバーはほぼ元の寸法まで縮むことができる。これによって、熱ラチェット現象によるカバーの歪みを抑制でき、カバーの信頼性向上を図ることができる。
【0013】
また、上記各構成によれば、伝熱管がカバーで覆われているので、伝熱管での伝熱量を減少させることができるが、この伝熱量を更に減少させるにはカバーの絞り部の深さを調整することにより、所望の伝熱量に設定することができる。
【0014】
絞り部でのバネ効果をより一層大きくするには、絞り部の曲がり部分を丸く成形するとよい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
(実施の形態1)
図1は、本発明に係る伝熱管カバー構造を示しており、(a)は正面図、(b)は(a)のB−B線に沿った矢視図である。また、図2は図1(b)のC−C線に沿った断面図である。図に示すように、円筒形状のカバー10内には伝熱管11が挿通されている。カバー10の内径は伝熱管11の外径より僅かに大きく、そのカバー10の両端部には、伝熱管11の外周面に向かって絞り込まれた絞り部12がカバー10の円周方向に沿って4箇所に形成されている。各絞り部12の絞り込みの深さは同等であり、これによって、伝熱管11はカバー10のほぼ中心軸上に配置されている。また、絞り部12があることにより、カバー10と伝熱管11との間には隙間13が形成されている。なお、絞り部12はプレス等で加工され、その曲がり部分12Aは丸く成形されている。
【0016】
図1および図2は初期据付時における様子で、絞り部12の先端は伝熱管11の外周面に接触している。なお、絞り部12は4箇所に限らず、2箇所、3箇所、または5箇所以上でも良い。
【0017】
上記構成の伝熱管カバー構造によれば、カバー10の両端部に絞り部12が形成されているので、カバー10はその円周方向に対してフレキシビリティーとなり、例えば、一旦膨張して、その後縮んだときに、カバー10と伝熱管11との間の隙間13に流動媒体が残留していても、カバー10はほぼ元の状態に戻ることができる。以下、この点について図3〜図5を詳しく用いて説明する。
【0018】
図3は初期据付時の状態であり、絞り部12の先端は伝熱管11の外周面に接触している。また、絞り部12が形成された以外の箇所では、カバー10と伝熱管11との間には隙間13が形成されている。
【0019】
図4は運転時の状態であり、カバー10周囲の周囲には、石灰石、砂等を含んだ高温の流動媒体が存在している。このとき、カバー10自体の温度が上昇し、カバー10は熱膨張して径が大きくなる。一方、伝熱管11の内部には水又は蒸気が流れているが、流動媒体に比べればかなり温度が低いので、伝熱管11の径はさほど大きくならない。その結果、カバー10と伝熱管11との間の隙間13が更に大きくなり、この隙間13に流動媒体14が侵入してくる。
【0020】
そして、図4の状態で運転を停止すると、カバー10周囲の流動媒体の温度が低くなるので、カバー10は縮んで元の径まで戻ろうとする。しかし、隙間13に流動媒体14が残留しているために簡単には元の径まで戻ることはできないが、絞り部12がカバー10の円周方向に対してバネの作用となって収縮するため(特に、絞り部12の曲がり部分12Aが丸く成形されているので、一層収縮しやすくなっている)、図5に示すように、カバー10自体は元の状態近くまで戻ることができる。絞り部12の先端付近では、カバー10が縮むときに流動媒体14は圧縮力を受け、図5のように圧密された流動媒体15が残留する。
【0021】
上記のように、絞り部12と伝熱管11との間には圧密された流動媒体15が残留し、長期的には熱ラチェット現象により絞り部12での直径も広がることになるが、図7に示した従来例のように当板を溶接で取り付けた場合と比べて、熱ラチェットに対する耐用年数を大幅に向上させることができる。すなわち、溶接部があると、絞り部12での直径が拡がったときに、応力集中により溶接部が割れることがあるが、本実施の形態では絞り部12はプレス加工されているので、溶接による熱影響を受けておらず材料として安定しており、また形状的にも絞り部12の曲がり部分12Aが丸く成形されているので、熱による伸縮が拘束され難く、熱ラチェットに対する耐用年数の大幅な向上を図ることができる。
【0022】
また、本実施の形態によれば、絞り部12の深さを調整してカバー10と伝熱管11との間に隙間13を任意に設定することができ、これにより伝熱管11の伝熱量を所望の調整することができる。
【0023】
さらに、本実施の形態よれば、絞り部12はプレス加工等で簡単に成形できるため、従来例のような当板が不要となり、部品点数の低減および溶接等の加工費の低減を実現できる。
【0024】
(実施の形態2)
図6は、本発明の実施の形態2を示しており、(a)は伝熱管カバー構造の正面図、(b)は(a)のD−D線に沿った矢視図である。本実施の形態では、絞り部17がカバー10の全長にわたって形成されている。また、絞り部17はカバー10の円周方向に沿って4箇所に形成されている。各絞り部17の絞り込みの深さは同等であり、これによって、伝熱管11はカバー10のほぼ中心軸上に配置されている。また、絞り部17があることにより、カバー10と伝熱管11との間には隙間13が形成されている。なお、絞り部17はプレス等で加工され、その曲がり部分17Aは丸く成形されている。
【0025】
図6は初期据付時における様子で、絞り部17の先端は伝熱管11の外周面に接触している。なお、絞り部17は4箇所に限らず、2箇所、3箇所、または5箇所以上でも良い。
【0026】
上記構成の伝熱管カバー構造によれば、カバー10の全長にわたって絞り部17が形成されているので、実施の形態1と同様に、カバー10はその円周方向に対してフレキシビリティーとなり、一旦膨張して、その後縮んだときに、カバー10と伝熱管11との間の隙間13に流動媒体が残留していても、カバー10はほぼ元の状態に戻ることができる。
【0027】
本実施の形態は、カバー10が長尺の場合に効果的である。すなわち、カバー10が長尺の場合には、両端部のみに絞り部を設けた構成ではカバー10の中央部が支持されていないので、中央部が変形しやすくなるが、本実施の形態のようにカバー10の全長にわたって絞り部17が形成されていれば、カバー10の中央部での変形を抑えることができる。
【0028】
【発明の効果】
以上説明したように、本発明によれば、熱ラチェット現象によるカバーの歪みを抑制することができ、カバーの信頼性向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による伝熱管カバー構造を示しており、(a)は正面図、(b)は(a)のB−B線に沿った矢視図である。
【図2】図1(b)のC−C線に沿った断面図である。
【図3】初期据付時のカバーと伝熱管の様子を示した図である。
【図4】運転時のカバーと伝熱管の様子を示した図である。
【図5】停止時のカバーと伝熱管の様子を示した図である。
【図6】本発明の実施の形態2による伝熱管カバー構造を示しており、(a)は正面図、(b)は(a)のD−D線に沿った矢視図である。
【図7】従来技術による伝熱管カバー構造を示しており、(a)は正面図、(b)は(a)のA−A線に沿った矢視図である。
【図8】従来技術による運転時のカバーと伝熱管の様子を示した図である。
【符号の説明】
10 カバー
11 伝熱管
12 絞り部
12A 曲がり部分
13 隙間
14 流動媒体
15 圧密された流動媒体
17 絞り部
17A 曲がり部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat transfer tube cover structure, and more particularly to the structure of a heat transfer tube cover provided for adjusting the amount of heat transfer and preventing wear of the heat transfer tube in a fluidized bed boiler.
[0002]
[Prior art]
In a fluidized bed boiler, air is uniformly blown from a dispersion plate at the bottom of the boiler into a fluid medium such as limestone or sand, the fluid medium is suspended and fluidized, and solid fuel or liquid fuel pulverized to a small particle size is introduced here. By doing so, efficient combustion in a fluidized state is realized. A plurality of heat transfer tubes are arranged inside the fluidized bed boiler, and heat generated in the boiler is recovered as steam by the heat transfer tubes.
[0003]
A cover is generally installed on the heat transfer tube. The first reason for installing this cover is to suppress the amount of heat transfer in the heat transfer tube. That is, when the amount of heat transfer in the heat transfer tube is excessive, this amount of heat transfer must be suppressed, so a cover such as austenitic stainless steel is installed in the vicinity of the heat transfer tube. When such a cover is installed, a non-fluidized fixed layer is formed between the fluidized bed and the heat transfer tube, and the heat resistance at the location where the cover is located is higher than that of the fluidized cover outside. Thereby, the amount of heat transfer in the heat transfer tube can be suppressed. Japanese Patent No. 1699177 proposes to install a detachable cover on the heat transfer tube to suppress the heat transfer amount.
[0004]
Moreover, the 2nd reason which installs a cover in a heat exchanger tube is for preventing abrasion of a heat exchanger tube. In other words, if a cover is installed on the heat transfer tube, the flow medium does not directly touch the heat transfer tube, so wear of the heat transfer tube due to the flow medium can be prevented. Japanese Patent No. 1608697 proposes to install a cover on the lower half of the heat transfer tube to prevent wear of the heat transfer tube.
[0005]
When the cover is installed on the heat transfer tube as described above, it is proposed that the cover is installed slightly away from the outer surface of the heat transfer tube, and a gap is formed between the heat transfer tube and the cover (for example, JP-A-1-296001 and JP-B-6-3281). In the case of forming such a gap, conventionally, as shown in FIG. 7, a contact plate 2 having a predetermined thickness is attached in advance to the inner surface of the cylindrical cover 1 by welding or the like, and is transmitted into the cover 1. The heat pipe 3 is inserted. FIG. 7 shows a state at the time of initial installation, and the contact plate 2 is in contact with the outer surface of the heat transfer tube 3.
[0006]
[Problems to be solved by the invention]
By the way, in the structure which ensures a clearance gap by the contact plate as mentioned above, a big metal temperature difference arises between a cover and a heat exchanger tube. That is, since a fluid such as water or steam flows inside the heat transfer tube, the heat transfer tube is cooled, but the cover has a metal temperature almost the same as the fluidized bed temperature, and there is a gap between the cover and the heat transfer tube. Of course, there is a large metal temperature difference between the plate and the heat transfer tube, even if there is no gap where the plate (this plate has almost the same metal temperature as the fluidized bed temperature because it is uncooled) is in contact with the heat transfer tube. Occurs. For example, the temperature of the cover is about 800 ° C. during the operation of the fluidized bed, but the heat transfer tube is about 400 to 600 ° C.
[0007]
Therefore, the cover having a higher metal temperature than the heat transfer tube has a larger amount of thermal expansion and a larger diameter than the heat transfer tube. Then, as shown in FIG. 8, the portion where the gap is provided between the cover 1 and the heat transfer tube 3 (part a in FIG. 7A) is further enlarged, and there is no gap where the contact plate 2 is provided. A gap is also generated in the portion (b portion in FIG. 7A), and the fluid medium 4 enters the gap during the operation of the fluidized bed. When the fluidized bed is stopped, the fluid medium 4 that has entered the gap between the cover 1 and the heat transfer tube 3 is not discharged but remains in this gap. This is a fixed layer because the flowing air does not flow between the cover 1 and the heat transfer tube 3, and the fluid medium 4 that has entered the gap does not flow. This is because a simple discharge device cannot be installed.
[0008]
However, when the operation of the fluidized bed is stopped, the fluidized bed temperature decreases, and accordingly, the cover 1 attempts to shrink to the original size. At this time, since the fluidized medium 4 remains in the gap between the cover 1 and the heat transfer tube 3 (particularly, the gap between the contact plate 2 and the heat transfer tube 3), the shrinkage of the cover 1 is inhibited, and the cover 1 is Therefore, the thermal stress at the time of shrinkage remains in the cover 1 as distortion. Although this is called a thermal ratchet phenomenon, this phenomenon is repeated by stopping the operation of the fluidized bed, and there is a possibility that the cover 1 may be broken due to accumulation of permanent distortion in the cover 1. In addition, since the contact plate 2 is attached by welding or the like, if the cover 1 is greatly distorted, the welded portion may be broken due to stress concentration.
[0009]
An object of the present invention is to provide a heat transfer tube cover structure of a fluidized bed boiler that can suppress the distortion of the cover due to the thermal ratchet phenomenon and improve the reliability of the cover.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the heat transfer tube cover structure of the present invention covers the outer peripheral surface of a heat transfer tube arranged in a high-temperature fluidized bed containing limestone, sand, etc. with a cylindrical member, In addition to having a gap between the outer peripheral surface of the heat transfer tube, a constricted portion is formed at a plurality of locations on both ends toward the outer peripheral surface of the heat transfer tube and the tip is in contact with the outer peripheral surface of the heat transfer tube. Yes.
[0011]
In the heat transfer tube cover structure of the present invention, the outer peripheral surface of the heat transfer tube disposed in a high-temperature fluidized bed containing limestone, sand, etc. is covered with a cylindrical member, and the cylindrical member is connected to the outer peripheral surface of the heat transfer tube. A constricted portion that is squeezed toward the outer peripheral surface of the heat transfer tube and whose tip contacts the outer surface of the heat transfer tube is formed over the entire length of the cylindrical member. It is characterized by being plural along the circumferential direction.
[0012]
According to each of the above configurations, during operation of the fluidized bed, the cover is thermally expanded to increase its diameter, and the fluidized medium enters the gap between the cover and the heat transfer tube. Although it will remain in the gap, the throttle formed in the cover acts as a kind of spring effect, so the cover becomes flexible in its circumferential direction, and the cover tries to shrink due to temperature drop. In such a case, the throttle portion contracts as a spring, and the cover can be contracted to its original size. Thereby, the distortion of the cover due to the thermal ratchet phenomenon can be suppressed, and the reliability of the cover can be improved.
[0013]
Further, according to each of the above configurations, since the heat transfer tube is covered with the cover, the amount of heat transfer in the heat transfer tube can be reduced. To further reduce this amount of heat transfer, the depth of the throttle portion of the cover is reduced. Can be set to a desired amount of heat transfer.
[0014]
In order to further increase the spring effect at the narrowed portion, the bent portion of the narrowed portion may be formed into a round shape.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1: has shown the heat exchanger tube cover structure which concerns on this invention, (a) is a front view, (b) is an arrow line view along the BB line of (a). FIG. 2 is a cross-sectional view taken along the line CC in FIG. As shown in the figure, a heat transfer tube 11 is inserted into a cylindrical cover 10. The inner diameter of the cover 10 is slightly larger than the outer diameter of the heat transfer tube 11, and constricted portions 12 squeezed toward the outer peripheral surface of the heat transfer tube 11 are provided along the circumferential direction of the cover 10 at both ends of the cover 10. It is formed in four places. The narrowing-down depths of the respective narrowed portions 12 are the same, whereby the heat transfer tubes 11 are arranged almost on the central axis of the cover 10. Further, due to the narrowed portion 12, a gap 13 is formed between the cover 10 and the heat transfer tube 11. The narrowed portion 12 is processed by a press or the like, and the bent portion 12A is rounded.
[0016]
FIGS. 1 and 2 show the state at the time of initial installation, and the tip of the throttle portion 12 is in contact with the outer peripheral surface of the heat transfer tube 11. In addition, the aperture | diaphragm | squeeze part 12 is not restricted to four places, Two places, three places, or five places or more may be sufficient.
[0017]
According to the heat transfer tube cover structure having the above configuration, the constricted portions 12 are formed at both ends of the cover 10, so that the cover 10 becomes flexible in the circumferential direction, for example, once expanded, Even when the fluidized medium remains in the gap 13 between the cover 10 and the heat transfer tube 11 when the cover 10 is shrunk, the cover 10 can be almost returned to the original state. Hereinafter, this point will be described in detail with reference to FIGS.
[0018]
FIG. 3 shows a state at the time of initial installation, and the tip of the narrowed portion 12 is in contact with the outer peripheral surface of the heat transfer tube 11. Further, a gap 13 is formed between the cover 10 and the heat transfer tube 11 at a place other than where the throttle portion 12 is formed.
[0019]
FIG. 4 shows a state during operation, and a high-temperature fluid medium containing limestone, sand and the like is present around the cover 10. At this time, the temperature of the cover 10 itself rises, and the cover 10 is thermally expanded to increase its diameter. On the other hand, water or steam flows inside the heat transfer tube 11, but the temperature of the heat transfer tube 11 is not so large because the temperature is considerably lower than that of the fluidized medium. As a result, the gap 13 between the cover 10 and the heat transfer tube 11 is further increased, and the fluid medium 14 enters the gap 13.
[0020]
When the operation is stopped in the state of FIG. 4, the temperature of the fluid medium around the cover 10 becomes low, so the cover 10 shrinks and tries to return to the original diameter. However, since the fluid medium 14 remains in the gap 13, it cannot be easily returned to the original diameter, but the throttle portion 12 contracts as a spring action in the circumferential direction of the cover 10. (In particular, since the bent portion 12A of the narrowed portion 12 is formed in a round shape, the cover 10 is more easily contracted.) As shown in FIG. 5, the cover 10 itself can be returned to its original state. In the vicinity of the front end of the throttle part 12, the fluid medium 14 receives a compressive force when the cover 10 is contracted, and the fluid medium 15 that is consolidated as shown in FIG.
[0021]
As described above, the compacted fluid medium 15 remains between the constricted portion 12 and the heat transfer tube 11, and in the long term, the diameter of the constricted portion 12 increases due to the thermal ratchet phenomenon. Compared to the case where the plate is attached by welding as in the conventional example shown in Fig. 1, the service life against the thermal ratchet can be greatly improved. That is, if there is a welded portion, the welded portion may be cracked due to stress concentration when the diameter of the drawn portion 12 expands. However, in this embodiment, the drawn portion 12 is press-worked. Since it is not affected by heat and is stable as a material, and the bent portion 12A of the narrowed portion 12 is also formed in a round shape, it is difficult to restrain expansion and contraction due to heat, and has a long service life against a thermal ratchet. Improvements can be made.
[0022]
Further, according to the present embodiment, the gap 13 can be arbitrarily set between the cover 10 and the heat transfer tube 11 by adjusting the depth of the throttle portion 12, thereby reducing the heat transfer amount of the heat transfer tube 11. The desired adjustment can be made.
[0023]
Furthermore, according to the present embodiment, since the narrowed portion 12 can be easily formed by press working or the like, there is no need for a contact plate as in the conventional example, and it is possible to reduce the number of parts and the processing cost such as welding.
[0024]
(Embodiment 2)
6A and 6B show a second embodiment of the present invention, in which FIG. 6A is a front view of a heat transfer tube cover structure, and FIG. 6B is an arrow view along the line D-D in FIG. In the present embodiment, the throttle portion 17 is formed over the entire length of the cover 10. Further, the narrowed portion 17 is formed at four locations along the circumferential direction of the cover 10. The narrowing-down depths of the respective narrowed portions 17 are the same, whereby the heat transfer tubes 11 are arranged almost on the central axis of the cover 10. Further, due to the narrowed portion 17, a gap 13 is formed between the cover 10 and the heat transfer tube 11. The narrowed portion 17 is processed by a press or the like, and the bent portion 17A is rounded.
[0025]
FIG. 6 shows a state at the time of initial installation, and the tip of the throttle portion 17 is in contact with the outer peripheral surface of the heat transfer tube 11. It should be noted that the diaphragm portion 17 is not limited to four locations, and may be two locations, three locations, or five or more locations.
[0026]
According to the heat transfer tube cover structure having the above configuration, the constricted portion 17 is formed over the entire length of the cover 10, so that the cover 10 is flexible in the circumferential direction as in the first embodiment. Even if the fluidized medium remains in the gap 13 between the cover 10 and the heat transfer tube 11 when expanded and then contracted, the cover 10 can return almost to its original state.
[0027]
This embodiment is effective when the cover 10 is long. That is, when the cover 10 is long, the center portion of the cover 10 is not supported in the configuration in which the throttle portions are provided only at both ends, so that the center portion is easily deformed, but as in the present embodiment. If the throttle part 17 is formed over the entire length of the cover 10, deformation at the center part of the cover 10 can be suppressed.
[0028]
【The invention's effect】
As described above, according to the present invention, distortion of the cover due to the thermal ratchet phenomenon can be suppressed, and the reliability of the cover can be improved.
[Brief description of the drawings]
FIGS. 1A and 1B show a heat transfer tube cover structure according to a first embodiment of the present invention, in which FIG. 1A is a front view and FIG. 1B is a view taken along line BB in FIG.
FIG. 2 is a cross-sectional view taken along the line CC in FIG.
FIG. 3 is a view showing a state of a cover and a heat transfer tube at the time of initial installation.
FIG. 4 is a view showing a state of a cover and a heat transfer tube during operation.
FIG. 5 is a diagram showing a state of a cover and a heat transfer tube when stopped.
6A and 6B show a heat transfer tube cover structure according to a second embodiment of the present invention, in which FIG. 6A is a front view, and FIG. 6B is a view taken along line DD in FIG.
7A and 7B show a heat transfer tube cover structure according to the prior art, in which FIG. 7A is a front view, and FIG. 7B is a view taken along line AA in FIG.
FIG. 8 is a view showing a state of a cover and a heat transfer tube during operation according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Cover 11 Heat-transfer tube 12 Restriction part 12A Bending part 13 Crevice 14 Fluid medium 15 Consolidated fluid medium 17 Restriction part 17A Bending part

Claims (3)

石灰石、砂等を含んだ高温の流動層内に配置される伝熱管の外周面を円筒状部材で覆い、前記円筒状部材は前記伝熱管外周面との間に隙間を有するとともに、両端部の複数個所に前記伝熱管外周面に向かって絞り込まれ先端が伝熱管外周面に接触する絞り部が形成されている流動層ボイラの伝熱管カバー構造。The outer peripheral surface of the heat transfer tube arranged in a high-temperature fluidized bed containing limestone, sand, etc. is covered with a cylindrical member, and the cylindrical member has a gap between the outer peripheral surface of the heat transfer tube and A heat transfer tube cover structure for a fluidized bed boiler, in which a narrowed portion is formed at a plurality of locations toward the outer peripheral surface of the heat transfer tube and the tip is in contact with the outer peripheral surface of the heat transfer tube. 石灰石、砂等を含んだ高温の流動層内に配置される伝熱管の外周面を円筒状部材で覆い、前記円筒状部材は前記伝熱管外周面との間に隙間を有するとともに、前記伝熱管外周面に向かって絞り込まれ先端が伝熱管外表面に接触する絞り部が該円筒状部材の全長にわたって形成され、且つその形成個所が該円筒状部材の円周方向に沿って複数個である流動層ボイラの伝熱管カバー構造。The outer peripheral surface of the heat transfer tube disposed in a high-temperature fluidized bed containing limestone, sand and the like is covered with a cylindrical member, and the cylindrical member has a gap between the outer peripheral surface of the heat transfer tube and the heat transfer tube A constricted portion that is squeezed toward the outer peripheral surface and whose tip is in contact with the outer surface of the heat transfer tube is formed over the entire length of the cylindrical member, and there are a plurality of forming portions along the circumferential direction of the cylindrical member. Layered boiler heat transfer tube cover structure. 請求項1又は2に記載の伝熱管カバー構造において、
前記絞り部はその曲がり部分が丸く成形されていることを特徴とする流動層ボイラの伝熱管カバー構造。
In the heat exchanger tube cover structure according to claim 1 or 2,
A heat transfer tube cover structure for a fluidized bed boiler, wherein the narrowed portion of the throttle portion is formed in a round shape.
JP2000031608A 2000-02-09 2000-02-09 Heat transfer tube cover structure of fluidized bed boiler Expired - Lifetime JP3837583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000031608A JP3837583B2 (en) 2000-02-09 2000-02-09 Heat transfer tube cover structure of fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000031608A JP3837583B2 (en) 2000-02-09 2000-02-09 Heat transfer tube cover structure of fluidized bed boiler

Publications (2)

Publication Number Publication Date
JP2001221401A JP2001221401A (en) 2001-08-17
JP3837583B2 true JP3837583B2 (en) 2006-10-25

Family

ID=18556344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000031608A Expired - Lifetime JP3837583B2 (en) 2000-02-09 2000-02-09 Heat transfer tube cover structure of fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP3837583B2 (en)

Also Published As

Publication number Publication date
JP2001221401A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
US20080104838A1 (en) Anti-vibration support for steam generator heat transfer tubes and method for making same
US20160370130A1 (en) Heat exchanger with elastic element
JP4939980B2 (en) EGR cooler
JP3837583B2 (en) Heat transfer tube cover structure of fluidized bed boiler
US7464537B2 (en) Heat transfer enhancement features for a tubular wall combustion chamber
JP4692252B2 (en) Double-pipe exhaust pipe
EP1455083B1 (en) Cooling structure for fuel injection valve
KR102078907B1 (en) Nuclear fuel rod for heavy-water reactor and nuclear fuel rod assembly having the same
US8677945B2 (en) Boiler
JPH08159343A (en) Duplex pipe
JPH0735186Y2 (en) Ceramic piping joint structure
JP2003184548A (en) Exhaust double pipe
CN217056789U (en) Steam pipe network thermal compensation structure
JPH0330642Y2 (en)
JP7161366B2 (en) Small once-through boiler
JP2988363B2 (en) Boiler with smoke tube
JPH0120481Y2 (en)
JPH0639242Y2 (en) Condenser
JPH0424244Y2 (en)
JP3382760B2 (en) Exhaust pipe connection structure
JP2005164172A (en) Pendant heat exchanger tube and boiler system using the same
JP2514626Y2 (en) Penetration seal structure of heat transfer tube group for boiler furnace wall
KR100974432B1 (en) Water-cooled cyclone for circulating fluidized bed boilers
JP4134453B2 (en) Water tube boiler
EP0356735A1 (en) A heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3837583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term