JP3837280B2 - High concentration ozone gas supply method and apparatus - Google Patents

High concentration ozone gas supply method and apparatus Download PDF

Info

Publication number
JP3837280B2
JP3837280B2 JP2000264918A JP2000264918A JP3837280B2 JP 3837280 B2 JP3837280 B2 JP 3837280B2 JP 2000264918 A JP2000264918 A JP 2000264918A JP 2000264918 A JP2000264918 A JP 2000264918A JP 3837280 B2 JP3837280 B2 JP 3837280B2
Authority
JP
Japan
Prior art keywords
ozone
adsorption
adsorption cylinder
adsorbent
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000264918A
Other languages
Japanese (ja)
Other versions
JP2002068712A (en
Inventor
国彦 小池
昌一郎 研谷
栄一 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani Corp
Original Assignee
Iwatani Industrial Gases Corp
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Iwatani Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2000264918A priority Critical patent/JP3837280B2/en
Publication of JP2002068712A publication Critical patent/JP2002068712A/en
Application granted granted Critical
Publication of JP3837280B2 publication Critical patent/JP3837280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オゾン消費設備に一定濃度のオゾンガスを供給する方法及び装置に関し、特に、オゾン発生器(オゾナイザー)で発生させたオゾンガスを精製して高濃度オゾンガスとして供給する方法及びその装置に関する。
【0002】
【従来の技術】
一般に、オゾンガスは、酸素ガスボンベからの酸素ガスや、大気分離した酸素ガスをオゾン発生器に供給して発生させているが、酸素ガスボンベからの酸素ガスでオゾンを発生させても、オゾンガスは酸素ガス中に5〜10 vol%程度の濃度にしかならない。しかも、オゾンガスは自己分解性が強いことから、オゾン供給経路中で自己分解し、オゾン消費設備に供給された段階では、もっと低濃度になるうえ、その供給濃度も安定しないという性質がある。近年、半導体製造分野では基板等での酸化膜の形成にオゾンガスの酸化力を利用することが増加している。この場合、短時間のうちに適当な厚みの酸化膜を得るためには高濃度のオゾンガスが求められ、オゾン発生器で発生したオゾンガスを濃縮精製するようにしている。
【0003】
そこで、本出願人は、先に、オゾン発生器で発生したオゾンガスを冷却されている吸着剤に選択的に吸着させ、吸着剤の冷却温度を制御することにより、吸着剤からオゾンガスを脱離させて高濃度のオゾンガスをオゾン消費設備に供給するものを提案した(特開平11−335102号)。このものは、三つの吸着筒を並列に配置し、各吸着筒で吸着工程、安定化兼昇圧工程、オゾン脱離工程、冷却工程を繰り返すようにし、吸着工程及び脱離工程での各運転時間を、安定化兼昇圧工程及び冷却工程の各運転時間の2倍に設定し、三つの吸着筒を1/3サイクルづつずらして運転するようにし、各吸着筒から脱離した高濃度オゾンガスを一旦中間貯蔵容器に受け入れて、この中間貯蔵容器からオゾン消費設備に供給する構成になっていた。
【0004】
【発明が解決しようとする課題】
ところで、温度を調整してオゾンの脱離を行うものでは、その温度によって脱離したオゾンのガス濃度や流量が刻々と変化することはよく知られている。このため、従来のものでは吸着筒から脱離したオゾンガスを一旦中間貯蔵容器に受入てオゾンガス濃度を平均化させた後、オゾン消費設備に供給するようにしていることから、安定して供給できるオゾン濃度は30 vol%程度であった。
【0005】
また、上述の安定したガス濃度のオゾンガスを得るために、三基の吸着筒と中間貯蔵容器とを要し、設備的に大規模になることから、高濃度のオゾンガスを小流量で安定供給することが望まれてる小規模オゾン消費設備には採用しにくいという問題があった。
【0006】
本発明は、このような点に着目し、小規模なオゾン消費設備にでも高濃度のオゾンガスを安定して供給することのできる高濃度オゾンガス供給方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、請求項1に記載した発明では、オゾン発生器で発生させたオゾンガスを冷凍機で冷却されている吸着剤に大気圧状態で飽和吸着させる吸着工程と、吸着剤を収容している吸着筒内を供給オゾンガスの分圧まで減圧排気する精製工程と、吸着筒内を冷却状態及び減圧状態を維持したまま、真空状態を維持しているオゾン消費設備に連通させて圧力差によって所定の流量で高濃度オゾンを供給する脱離工程とで構成したことを特徴としている。
【0008】
また、請求項2に記載した発明は、並列に配置した複数の吸着筒を一基の冷凍機で冷却するように構成し、この複数の吸着筒のうち一つの吸着筒が脱離工程にある間に他の吸着筒を吸着工程あるいは精製工程が完了するようにし、各吸着筒からのガス取出量が予め設定した積算取出し量に達すると、使用する吸着筒を切換えるようにしたことを特徴とし、請求項3に記載した発明は、請求項1又は請求項2に記載の発明において、冷凍機をパルス管冷凍機で構成したことを特徴としている。
【0009】
さら請求項4に記載した発明は、吸着剤を充填してなる吸着筒を冷凍機で冷却可能に構成し、この吸着筒とオゾン発生器とをオゾン供給路で連通接続し、吸着筒から導出した精製オゾン取出路を、流路開閉弁及びオゾン分解器を介して大気に開放している第一取出路と、流路開閉制御弁及びオゾン分解器を介して真空ポンプに連通する第二取出路と、流路開閉弁と流量計及び流量制御器を介してオゾン消費設備に連通する第三取出路とで構成し、この三つの取出路を選択的に開通させるように構成し、第一取出路のみが開通する状態では吸着筒内で吸着剤にオゾンを吸着させ、第二取出路のみが開通する状態では吸着筒内を供給オゾンガスの分圧まで減圧排気し、第三取出路及び第二取出路が開通する状態では吸着筒内で吸着剤からオゾンガスを脱離させるように構成したことを特徴としている。
【0010】
さらにまた、請求項5に記載した発明は、吸着剤を充填してなる吸着筒を複数基並列に配置し、この複数の吸着筒を1つの冷凍機で冷却可能に構成し、複数の吸着筒のうちの精製工程を終了した吸着筒 ( )を択一的にオゾン消費設備に連通させるように構成したことを特徴とし、請求項6に記載した発明は、請求項4又は請求項5に記載の発明において、冷凍機をパルス管冷凍機で構成したことを特徴としている。
【0011】
【発明の作用】
本発明では、冷却された吸着剤に大気圧下でオゾンガスを選択吸着させ、オゾンガスを吸着させた後、吸着剤を収容している吸着筒内を供給ガス中のオゾン分圧まで減圧して、オゾンガスを精製し、精製後に吸着筒内をオゾン消費設備と連通させることにより、高真空状態に維持されているオゾン消費設備とオゾン分圧に維持されている吸着筒内との圧力差で、吸着剤に吸着保持されているオゾンガスをオゾン消費設備に移送することになる。
【0012】
【発明の実施の形態】
図1は本発明の実施形態の一例を示す系統図である。このオゾンガス精製装置は、内部にオゾンを選択吸着するシリカゲル等の吸着剤(1)を充填した吸着筒(2)と、酸素ガス貯蔵容器(3)と吸着筒(2)とを連通接続するガス導入路(4)と、吸着筒(2)から導出された精製オゾン取出路(5)とを有している。
【0013】
ガス導入路(4)にはオゾン発生器(6)とマスフローコントローラ(7)とが上流側から順に配置してあり、オゾン発生器(6)で発生したオゾン−酸素混合を一定の流量で吸着筒(2)に供給するようにしてある。一方、精製オゾン取出路(5)は三系統に分岐してある。第一取出路(8)には上流側から流路開閉弁(9)とオゾン分解器(10)が順に配置してあり、この第一取出路(8)は大気に開放してある。第二取出路(11)には上流側から流路開閉制御弁(12)、オゾン分解器(13)、真空ポンプ(14)が順に配置してあり、真空ポンプ(14)の吐出口は大気に開放してある。また第三取出路(15)には流路開閉弁(16)とマスフローメータ(17)及びマスフローコントローラ(18)を介して図示を省略した半導体製造装置での真空チャンバー等の高真空状態を維持しているオゾン消費設備に連通接続させてある。
【0014】
吸着筒(2)は蓄熱体(19)を介してパルス管冷凍機(20)のコールドヘッド(21)に熱的に接続されており、これら、吸着筒(2)、蓄熱体(19)、コールドヘッド(21)は真空槽(22)に収納されている。図中符号(23)はパルス管冷凍機(20)の圧縮器ユニット、(24)はパルス管冷凍機(20)のバルブユニット、(25)は冷凍機の出力を調整するための温度制御装置、(26)ガス導入路(4)のオゾン発生器(6)よりも上流側から分岐導出し、第三取出し路(15)のマスフローコントローラ(18)よりも下流側に接続したバイパス路、(27)はバイパス路(26)に介装したマスフローコントローラである。なお、蓄熱体(19)としては、銅製ブロックや液体フロリナートを貯留した液槽で構成してあり、吸着筒(2)はこの蓄熱体(19)に埋没する状態に配置してある。
【0015】
上述の構成からなるオゾンガス精製装置を使用して、オゾン消費設備に高濃度に濃縮されたオゾンガスを供給する場合について説明する。このオゾンガス精製装置での高濃度オゾンガスの供給は、吸着工程と、精製工程、脱離工程とからなっており、全工程を通じて吸着筒(2)は所定の冷却温度(例えば173K)に維持されている。
吸着工程では、第一取出路(8)を開通させ、第二取出路(11)、第三取出路(15)をそれぞれ閉じた状態でガス導入路(4)を開通させた状態で、酸素ガス貯蔵容器(3)からの酸素ガスを原料としてオゾン発生器(6)で発生させたオゾン−酸素の混合ガスを吸着筒(2)に供給し、混合ガス中のオゾンガスを吸着剤(1)に大気圧下で飽和吸着させる。このとき、吸着剤(1)に吸着されずに酸素ガスとともに吸着筒(2)をスルーしたオゾンガスは第一取出路(8)を通過する際にオゾン分解器(10)で分解されて、外部(大気)に放出される。
【0016】
オゾンガスが吸着剤(2)に飽和吸着されると精製工程に切り換える。精製工程では、第二取出路(11)を開通させ、第一取出路(8)、第三取出路(15)を閉じるとともにガス導入路(4)を閉じた状態で、真空ポンプ(14)を作動させることにより吸着筒(2)の圧力雰囲気をオゾン発生器(6)から供給されるオゾン酸素混合ガス中のオゾン分圧を限度として減圧する。そして、この減圧操作時に流出するガス中にオゾンガスも含まれるが、そのオゾンガスは第二取出路(11)に介装したオゾン分解器(13)で分解され、真空ポンプ(14)から外部に放出される。なお、この精製工程での吸着筒(2)の圧力雰囲気はオゾン発生器(6)で発生するオゾン濃度が5 vol%である場合には5.3kPa(40torr)程度を維持する。
【0017】
吸着筒(2)内の圧力が所定圧まで降下すると、脱離工程に切り換る。この脱離工程では、第三取出路(15)を開通させ、第一取出路(8)とガス導入路(4)を閉じ、第二取出路(11)は吸着筒(2)の内圧を前記精製工程での雰囲気圧に維持するように流路開閉制御弁(12)を開閉作動させている。第三取出路(15)は、真空状態ないし真空に近い状態に保持されているオゾン消費設備に接続されることから、吸着筒(2)の内圧とオゾン消費設備の内圧との圧力差で吸着筒(2)内のガス成分がオゾン消費設備に移動し、吸着筒(2)の内圧が低下することから吸着剤(1)に吸着保持されているオゾンが脱離して順次オゾン消費設備に移動することになる。そして、この脱離工程中も第二取出路(11)は流路開閉制御弁(12)を作動させて、吸着筒(2)内が前記精製工程での設定圧力を維持するようにしてある。
【0018】
なお、バイパス路(26)から酸素を供給することにより、オゾン消費設備に供給するオゾンガス濃度を調整することができる。
そして、第三取出路(15)に介装したマスフローメータ(17)が予め設定した積算流量に達することにより、脱離工程を終了する。
【0019】
図2は、本発明の異なる実施形態を示す系統図である。この実施形態で、二基の吸着筒(2)・(2)を同一のパルス管冷凍機(20)で冷却するようにしたもので、共通する蓄熱体(19)に二基の吸着筒(2)・(2)が装着してある。そして、一方の吸着筒(2)が脱離工程にある間に、他方の吸着筒(2)は吸着工程と精製工程を終えて待機状態になっている。したがって、第三取出路(15)に介装したマスフローメータ(17)が予め設定した積算流量に達した際、使用する吸着筒(2)を切り換えることにより、連続取出しを行うことができる。
【0020】
ちなみに、内容積が0.25リットルの吸着筒(2)に175gのシリカゲル(吸着剤)を充填し、オゾン濃度5 vol%のオゾン酸素混合ガスを1.2リットル/minで供給した場合、約90分で吸着剤(1)は飽和吸着の状態となった。また、その状態から、5.3kPaまで減圧するのに約5分をかかった。吸着筒(2)内の内圧を5.3kPaに維持したままの状態で10SCCMの流量でオゾンを取出したところオゾン濃度80 vol%以上のオゾンガスを3時間継続して取出すことができた。
【0021】
上記の各実施形態では、吸着筒(2)を冷却する冷凍機としてパルス管冷凍機(20)を使用したが、冷凍機はどのような形式のものであってもよい。しかし、吸着剤(1)が振動によりゆすられてオゾンが部分分解する可能性があることから、冷凍機としては、振動の少ないパルス管冷凍機(20)を使用することが望ましい。また、吸着筒(2)から離脱したオゾンガスを希釈するガスとしては酸素ガスに限らず窒素ガスや他のガスを使用するようにしてもよい。
【0022】
【発明の効果】
本発明では、冷却状態にある吸着剤に吸着させたオゾンガスを吸着筒内の圧力制御で脱離させるようにしていることから、ガス取出し期間中安定した濃度のオゾンガスを取り出すことができる。脱離ガスの濃度を平均化させるためのバッファタンクを必要とせず、その分装置全体を小型化させることができる。
【0023】
また、吸着筒内の圧力とオゾン消費設備の内圧との圧力差で、吸着剤からオゾンガスを脱離させ、オゾンガスを移送するようにしていることから、小流量であっても安定した流量でオゾンガスを供給することができる。
【0024】
さらに本発明では、冷却状態かつ大気圧で吸着剤にオゾン酸素混合ガスからオゾンガスを選択的に吸着させるようにしていることから、吸着量を多くすることができるうえ、全工程を通じて、一定の冷却状態に維持していることから、吸着量の管理が容易であり、取出し積算流量から残量を検知して運転制御をすることができる。
【0025】
複数の吸着筒を一基の冷凍機で冷却するようにした場合には、各吸着筒の冷却状態を均一化することができるから、全ての吸着筒を同一の条件で制御することができるから、切換えて使用した場合でも、オゾン消費設備に供給するオゾンガスの状態を何らの制御を施すことなく均一化することができる。
【0026】
また、吸着剤の冷却源としてパルス管冷凍機を使用したばあいには、冷凍機運転に伴う振動がないことから、オゾンガスの部分分解を抑制することができ、より安全性を高めることができる。
【図面の簡単な説明】
【図1】 本発明の実施形態の一例を示す系統図である。
【図2】 本発明の異なる実施形態を示す系統図である。
【符号の説明】
1…吸着剤、2…吸着筒、4…ガス導入路、5…精製オゾン取出路、6…オゾン発生器、8…第一取出路、9…流路開閉弁、10…オゾン分解器、11…第二取出路、12…流路開閉制御弁、13…オゾン分解器、14…真空ポンプ、15…第三取出路、16…流路開閉弁、17…マスフローメータ、18…マスフローコントローラ、20…冷凍機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for supplying ozone gas at a constant concentration to an ozone consuming facility, and more particularly to a method and apparatus for purifying ozone gas generated by an ozone generator (ozonizer) and supplying it as high-concentration ozone gas.
[0002]
[Prior art]
Generally, ozone gas is generated by supplying oxygen gas from an oxygen gas cylinder or oxygen gas separated into the atmosphere to an ozone generator. However, even if ozone is generated with oxygen gas from an oxygen gas cylinder, ozone gas is oxygen gas. The concentration is only about 5-10 vol%. Moreover, since ozone gas has a strong self-decomposition property, it has a property that when it is self-decomposed in the ozone supply path and supplied to the ozone consuming equipment, the concentration becomes lower and the supply concentration is not stable. In recent years, in the field of semiconductor manufacturing, the use of the oxidizing power of ozone gas for forming an oxide film on a substrate or the like is increasing. In this case, in order to obtain an oxide film with an appropriate thickness within a short time, high-concentration ozone gas is required, and the ozone gas generated by the ozone generator is concentrated and purified.
[0003]
Therefore, the present applicant first desorbs ozone gas from the adsorbent by selectively adsorbing the ozone gas generated by the ozone generator to the adsorbent that has been cooled and controlling the cooling temperature of the adsorbent. Have been proposed to supply high-concentration ozone gas to ozone consuming equipment (Japanese Patent Laid-Open No. 11-335102). In this, three adsorption cylinders are arranged in parallel, and each adsorption cylinder repeats the adsorption process, the stabilization / pressurization process, the ozone desorption process, and the cooling process, and each operation time in the adsorption process and the desorption process. Is set to twice the operating time of the stabilization and pressure-increasing step and the cooling step, and the three adsorbing cylinders are operated with a shift of 1/3 cycle to temporarily remove the high-concentration ozone gas desorbed from each adsorbing cylinder. It was configured to be received by an intermediate storage container and supplied from this intermediate storage container to the ozone consuming equipment.
[0004]
[Problems to be solved by the invention]
By the way, in the case where ozone is desorbed by adjusting the temperature, it is well known that the gas concentration and flow rate of the desorbed ozone change according to the temperature. For this reason, the ozone gas that has been desorbed from the adsorption cylinder is once received in the intermediate storage container and the ozone gas concentration is averaged and then supplied to the ozone consuming equipment. The concentration was about 30 vol%.
[0005]
Moreover, in order to obtain ozone gas with the above-mentioned stable gas concentration, three adsorption cylinders and intermediate storage containers are required, and since the facility is large-scale, high concentration ozone gas is stably supplied at a small flow rate. However, there is a problem that it is difficult to adopt for small-scale ozone consuming equipment.
[0006]
This invention pays attention to such a point, and it aims at providing the high concentration ozone gas supply method and apparatus which can supply high concentration ozone gas stably also to a small-scale ozone consumption installation.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, in the invention described in claim 1, an adsorption process for adsorbing ozone gas generated by an ozone generator to an adsorbent cooled by a refrigerator in an atmospheric pressure state, and an adsorbent The purification cylinder is evacuated to the partial pressure of the supply ozone gas, and the adsorption cylinder is stored in a vacuum state while maintaining the cooled state and the reduced pressure state. And a desorption step of supplying high-concentration ozone at a predetermined flow rate by a pressure difference.
[0008]
The invention described in claim 2 is configured such that a plurality of adsorption cylinders arranged in parallel are cooled by a single refrigerator, and one of the adsorption cylinders is in the desorption process. The adsorption process or purification process is completed for other adsorption cylinders in the meantime, and the adsorption cylinder to be used is switched when the gas extraction amount from each adsorption cylinder reaches the preset integrated extraction amount. The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the refrigerator is constituted by a pulse tube refrigerator.
[0009]
Further, in the invention described in claim 4, the adsorption cylinder filled with the adsorbent is configured to be cooled by a refrigerator, and the adsorption cylinder and the ozone generator are connected to each other through an ozone supply path and are led out from the adsorption cylinder. A first extraction passage that opens the purified ozone extraction passage to the atmosphere via a flow passage opening / closing valve and an ozone decomposer, and a second extraction passage that communicates with a vacuum pump via the flow passage opening / closing control valve and the ozone decomposition device And a third take-out passage communicating with the ozone consuming equipment through the flow passage opening / closing valve, the flow meter and the flow controller, and the three take-out passages are selectively opened. In the state where only the extraction path is opened, ozone is adsorbed by the adsorbent in the adsorption cylinder. In the state where only the second extraction path is opened, the adsorption cylinder is evacuated to the partial pressure of the supplied ozone gas, and the third extraction path and the second extraction path are exhausted. In the state where the two extraction paths are open, the ozone It is characterized by being configured to so as to desorption.
[0010]
Furthermore, the invention described in claim 5 is configured such that a plurality of adsorption cylinders filled with an adsorbent are arranged in parallel, and the plurality of adsorption cylinders are configured to be cooled by a single refrigerator. Of these, the adsorption cylinder ( 2 ) that has finished the purification step is configured to communicate with an ozone consuming facility as an alternative, and the invention described in claim 6 is characterized in that in claim 4 or claim 5. In the described invention, the refrigerator is constituted by a pulse tube refrigerator.
[0011]
[Effects of the Invention]
In the present invention, ozone gas is selectively adsorbed to the cooled adsorbent under atmospheric pressure, and after adsorbing ozone gas, the inside of the adsorption cylinder containing the adsorbent is reduced to the ozone partial pressure in the supply gas, By refining ozone gas and making the inside of the adsorption cylinder communicate with the ozone consuming equipment after purification, adsorption is performed by the pressure difference between the ozone consuming equipment maintained in a high vacuum state and the adsorption cylinder maintained at the ozone partial pressure. The ozone gas adsorbed and held by the agent is transferred to the ozone consuming equipment.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing an example of an embodiment of the present invention. This ozone gas refining device is a gas that connects an adsorption cylinder (2) filled with an adsorbent (1) such as silica gel that selectively adsorbs ozone, and an oxygen gas storage container (3) and an adsorption cylinder (2). It has an introduction path (4) and a purified ozone extraction path (5) led out from the adsorption cylinder (2).
[0013]
In the gas introduction path (4), an ozone generator (6) and a mass flow controller (7) are arranged in order from the upstream side, and adsorb the ozone-oxygen mixture generated by the ozone generator (6) at a constant flow rate. The cylinder (2) is supplied. On the other hand, the purified ozone extraction path (5) is branched into three systems. A flow path opening / closing valve (9) and an ozonolysis device (10) are arranged in this order from the upstream side in the first extraction path (8), and the first extraction path (8) is open to the atmosphere. In the second extraction passage (11), a flow control valve (12), an ozonolysis device (13), and a vacuum pump (14) are arranged in this order from the upstream side, and the discharge port of the vacuum pump (14) is the atmosphere. It is open to. In addition, the third extraction path (15) is maintained in a high vacuum state such as a vacuum chamber in a semiconductor manufacturing apparatus (not shown) via a channel opening / closing valve (16), a mass flow meter (17), and a mass flow controller (18). It is connected to the ozone consuming equipment connected.
[0014]
The adsorption cylinder (2) is thermally connected to the cold head (21) of the pulse tube refrigerator (20) via the heat storage body (19). These are the adsorption cylinder (2), the heat storage body (19), The cold head (21) is accommodated in the vacuum chamber (22). In the figure, reference numeral (23) is a compressor unit of the pulse tube refrigerator (20), (24) is a valve unit of the pulse tube refrigerator (20), and (25) is a temperature control device for adjusting the output of the refrigerator. , (26) is a bypass route that branches from the upstream side of the ozone generator (6) of the gas introduction channel (4) and is connected to the downstream side of the mass flow controller (18) of the third extraction channel (15), (27) is a mass flow controller interposed in the bypass (26). In addition, as the heat storage body (19), it is comprised by the liquid tank which stored the copper block and liquid florinate, and the adsorption cylinder (2) is arrange | positioned in the state buried in this heat storage body (19).
[0015]
The case where the ozone gas refinement | purification apparatus which consists of the above-mentioned structure is used and ozone gas concentrated at high concentration is supplied to ozone consumption equipment is explained. The supply of high-concentration ozone gas in this ozone gas purification apparatus consists of an adsorption process, a purification process, and a desorption process, and the adsorption cylinder (2) is maintained at a predetermined cooling temperature (for example, 173 K) throughout the entire process. Yes.
In the adsorption step, the first extraction path (8) is opened, the second extraction path (11) and the third extraction path (15) are closed, and the gas introduction path (4) is opened, The ozone-oxygen mixed gas generated by the ozone generator (6) using oxygen gas from the gas storage container (3) as a raw material is supplied to the adsorption cylinder (2), and the ozone gas in the mixed gas is adsorbed (1). And saturated adsorption at atmospheric pressure. At this time, the ozone gas that has not been adsorbed by the adsorbent (1) and has passed through the adsorption cylinder (2) together with the oxygen gas is decomposed by the ozone decomposer (10) when passing through the first extraction passage (8), To the atmosphere.
[0016]
When the ozone gas is saturated and adsorbed on the adsorbent (2), the process is switched to the purification process. In the refining process, the second extraction path (11) is opened, the first extraction path (8) and the third extraction path (15) are closed, and the gas introduction path (4) is closed, and the vacuum pump (14) depressurizing the ozone partial pressure of oxygen in the gas mixture as a limit - ozone pressure atmosphere is supplied from the ozone generator (6) of the suction tube (2) by activating the. The gas that flows out during this decompression operation also contains ozone gas, which is decomposed by the ozone decomposer (13) interposed in the second extraction passage (11) and released to the outside from the vacuum pump (14). Is done. The pressure atmosphere in the adsorption cylinder (2) in this purification step is maintained at about 5.3 kPa (40 torr) when the ozone concentration generated in the ozone generator (6) is 5 vol%.
[0017]
When the pressure in the adsorption cylinder (2) drops to a predetermined pressure, the process switches to the desorption process. In this desorption process, the third extraction path (15) is opened, the first extraction path (8) and the gas introduction path (4) are closed, and the second extraction path (11) reduces the internal pressure of the adsorption cylinder (2). The flow path opening / closing control valve (12) is opened / closed so as to maintain the atmospheric pressure in the purification step. The third extraction path (15) is connected to the ozone consuming equipment that is maintained in a vacuum state or a state close to vacuum, so that the adsorption is performed by the pressure difference between the internal pressure of the adsorption cylinder (2) and the internal pressure of the ozone consuming equipment. The gas component in the cylinder (2) moves to the ozone consuming equipment, and the internal pressure of the adsorption cylinder (2) decreases, so the ozone adsorbed and held by the adsorbent (1) desorbs and moves to the ozone consuming equipment in sequence. Will do. During the desorption process, the second take-out path (11) operates the flow path opening / closing control valve (12) so that the inside of the adsorption cylinder (2) maintains the set pressure in the purification process. .
[0018]
Note that the concentration of ozone gas supplied to the ozone consuming equipment can be adjusted by supplying oxygen from the bypass path (26).
Then, when the mass flow meter (17) interposed in the third take-out path (15) reaches a preset integrated flow rate, the desorption process is completed.
[0019]
FIG. 2 is a system diagram showing a different embodiment of the present invention. In this embodiment, two adsorption cylinders (2) and (2) are cooled by the same pulse tube refrigerator (20), and two adsorption cylinders (19) are connected to a common heat storage body (19). 2) ・ (2) is installed. And while one adsorption cylinder (2) is in a desorption process, the other adsorption cylinder (2) is in a standby state after completing the adsorption process and the purification process. Therefore, when the mass flow meter (17) interposed in the third extraction path (15) reaches a preset integrated flow rate, continuous extraction can be performed by switching the suction cylinder (2) to be used.
[0020]
By the way, when 175 g of silica gel (adsorbent) is filled in an adsorption cylinder (2) having an internal volume of 0.25 liter and an ozone - oxygen mixed gas having an ozone concentration of 5 vol% is supplied at 1.2 liter / min, In about 90 minutes, the adsorbent (1) was in a saturated adsorption state. From this state, it took about 5 minutes to reduce the pressure to 5.3 kPa. When ozone was extracted at a flow rate of 10 SCCM while the internal pressure in the adsorption cylinder (2) was maintained at 5.3 kPa, ozone gas having an ozone concentration of 80 vol% or more could be continuously extracted for 3 hours.
[0021]
In each of the above embodiments, the pulse tube refrigerator (20) is used as a refrigerator for cooling the adsorption cylinder (2), but the refrigerator may be of any type. However, since the adsorbent (1) may be shaken by vibration and ozone may be partially decomposed, it is desirable to use a pulse tube refrigerator (20) with less vibration as the refrigerator. Further, the gas for diluting the ozone gas separated from the adsorption cylinder (2) is not limited to oxygen gas, and nitrogen gas or other gas may be used.
[0022]
【The invention's effect】
In the present invention, since ozone gas adsorbed by the adsorbent in the cooled state is desorbed by pressure control in the adsorption cylinder, ozone gas having a stable concentration can be extracted during the gas extraction period. A buffer tank for averaging the concentration of desorbed gas is not required, and the entire apparatus can be reduced in size accordingly.
[0023]
In addition, the ozone gas is desorbed from the adsorbent and the ozone gas is transferred by the pressure difference between the pressure in the adsorption cylinder and the internal pressure of the ozone consuming equipment. Can be supplied.
[0024]
Further, in the present invention, the cooling conditions and ozone adsorbent at atmospheric pressure - because it is so as to selectively adsorb ozone gas from oxygen gas mixture, after which it is possible to increase the adsorption amount throughout the entire process, the constant Since the cooling state is maintained, the amount of adsorption can be easily managed, and the operation can be controlled by detecting the remaining amount from the integrated flow rate.
[0025]
When a plurality of adsorption cylinders are cooled by a single refrigerator, the cooling state of each adsorption cylinder can be made uniform, so that all the adsorption cylinders can be controlled under the same conditions. Even when switched and used, the state of the ozone gas supplied to the ozone consuming equipment can be made uniform without any control.
[0026]
In addition, when a pulse tube refrigerator is used as a cooling source for the adsorbent, since there is no vibration associated with the operation of the refrigerator, partial decomposition of ozone gas can be suppressed, and safety can be further improved. .
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of an embodiment of the present invention.
FIG. 2 is a system diagram showing a different embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Adsorbent, 2 ... Adsorption cylinder, 4 ... Gas introduction path, 5 ... Purified ozone extraction path, 6 ... Ozone generator, 8 ... First extraction path, 9 ... Flow path opening / closing valve, 10 ... Ozone decomposer, 11 ... 2nd extraction path, 12 ... Flow path opening / closing control valve, 13 ... Ozone decomposer, 14 ... Vacuum pump, 15 ... 3rd extraction path, 16 ... Flow path opening / closing valve, 17 ... Mass flow meter, 18 ... Mass flow controller, 20 …refrigerator.

Claims (6)

オゾン発生器(6)で発生させたオゾンガスを冷凍機(20)で冷却されている吸着剤(1)に大気圧状態で飽和吸着させる吸着工程と、吸着剤(1)を収容している吸着筒(2)内を供給オゾンガスの分圧まで減圧排気する精製工程と、吸着筒(2)内を冷却状態及び減圧状態を維持したまま、真空状態を維持しているオゾン消費設備に連通させて圧力差によって所定の流量で高濃度オゾンを供給する脱離工程とで構成した高濃度オゾンガス供給方法  An adsorption process in which the ozone gas generated by the ozone generator (6) is saturated and adsorbed at the atmospheric pressure to the adsorbent (1) cooled by the refrigerator (20), and an adsorption containing the adsorbent (1) Refining process to evacuate cylinder (2) to partial pressure of supply ozone gas A high-concentration ozone gas supply method comprising a desorption step of supplying high-concentration ozone at a predetermined flow rate by a pressure difference 並列に配置した複数の吸着筒(2)を一基の冷凍機(20)で冷却するように構成し、この複数の吸着筒(2)のうち一つの吸着筒(2)が脱離工程にある間に他の吸着筒(2)を吸着工程あるいは精製工程を終了させるようにし、各吸着筒(2)からのガス取出量が予め設定した積算取出し量に達すると、使用する吸着筒(2)を切換えるようにした請求項1に記載の高濃度オゾンガス供給方法。A plurality of adsorption cylinders (2) arranged in parallel are configured to be cooled by a single refrigerator (20), and one adsorption cylinder (2) of the plurality of adsorption cylinders (2) is used in the desorption process. In the meantime, the other adsorption cylinder (2) is made to finish the adsorption process or the purification process, and when the amount of gas extracted from each adsorption cylinder (2) reaches a preset integrated extraction amount, the adsorption cylinder (2 2) The high-concentration ozone gas supply method according to claim 1. 吸着剤(2)を冷却する冷凍機(20)をパルス管冷凍機で構成した請求項1又は請求項2に記載の高濃度オゾンガス供給方法。  The high-concentration ozone gas supply method according to claim 1 or 2, wherein the refrigerator (20) for cooling the adsorbent (2) is a pulse tube refrigerator. 吸着剤(1)を充填してなる吸着筒(2)を冷凍機(20)で冷却可能に構成し、この吸着筒(2)とオゾン発生器(6)とをガス導入路(4)で連通接続し、吸着筒(2)から導出した精製オゾン取出路(5)を、流路開閉弁(9)及びオゾン分解器(10)を介して大気に開放している第一取出路(8)と、流路開閉制御弁(12)及びオゾン分解器(13)を介して真空ポンプ(14)に連通する第二取出路(11)と、流路開閉弁(16)とマスフローメータ(17)及びマスフローコントローラ(18)を介してオゾン消費設備に連通する第三取出路(15)とで構成し、この三つの取出路を選択的に開通させるように構成し、第一取出路(8)のみが開通する状態では吸着筒(2)内で吸着剤(1)にオゾンを吸着させ、第二取出路(11)のみが開通する状態では吸着筒(2)内を供給オゾンガスの分圧まで減圧排気し、第三取出路(15)及び第二取出路(11)が開通する状態では吸着筒(2)内で吸着剤(1)からオゾンガスを脱離させるように構成した高濃度オゾンガス供給装置。The adsorption cylinder (2) filled with the adsorbent (1) is configured to be cooled by the refrigerator (20), and the adsorption cylinder (2) and the ozone generator (6) are connected by the gas introduction path (4). The first extraction passage (8) which is connected to the exhaust pipe and is open to the atmosphere through the flow opening / closing valve (9) and the ozone decomposer (10) through the purified ozone extraction passage (5) led out from the adsorption cylinder (2). ), A second take-out passage (11) communicating with the vacuum pump (14) via the passage opening / closing control valve (12) and the ozonolysis device (13), the passage opening / closing valve (16) and the mass flow meter (17 ) And a third extraction path (15) communicating with the ozone consuming equipment via the mass flow controller (18), and configured to selectively open these three extraction paths, the first extraction path (8 ) Is opened, ozone is adsorbed by the adsorbent (1) in the adsorption cylinder (2), and in the state where only the second extraction path (11) is opened, the partial pressure of the supply ozone gas in the adsorption cylinder (2) Evacuate to 3rd removal Road (15) and a second extraction path (11) is high-concentration ozone gas supply apparatus configured to desorb ozone from the adsorbent (1) in the suction tube (2) is in a state of opening. 吸着剤(1)を充填してなる吸着筒(2)を複数基並列に配置し、この複数の吸着筒(2)を1つの冷凍機(20)で冷却可能に構成し、複数の吸着筒(2)のうちの精製工程を終了した吸着筒 ( )を択一的にオゾン消費設備に連通させるように構成した請求項4に記載の高濃度オゾンガス供給装置。A plurality of adsorption cylinders (2) filled with the adsorbent (1) are arranged in parallel, and the plurality of adsorption cylinders (2) can be cooled by one refrigerator (20). The high-concentration ozone gas supply device according to claim 4, wherein the adsorption cylinder ( 2 ) that has completed the purification step of ( 2 ) is configured to communicate with an ozone consuming facility alternatively. 吸着筒(2)を冷却する冷凍機(20)がパルス管冷凍機である請求項4又は請求項5に記載の高濃度オゾンガス供給装置。  The high-concentration ozone gas supply device according to claim 4 or 5, wherein the refrigerator (20) for cooling the adsorption cylinder (2) is a pulse tube refrigerator.
JP2000264918A 2000-09-01 2000-09-01 High concentration ozone gas supply method and apparatus Expired - Lifetime JP3837280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264918A JP3837280B2 (en) 2000-09-01 2000-09-01 High concentration ozone gas supply method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264918A JP3837280B2 (en) 2000-09-01 2000-09-01 High concentration ozone gas supply method and apparatus

Publications (2)

Publication Number Publication Date
JP2002068712A JP2002068712A (en) 2002-03-08
JP3837280B2 true JP3837280B2 (en) 2006-10-25

Family

ID=18752259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264918A Expired - Lifetime JP3837280B2 (en) 2000-09-01 2000-09-01 High concentration ozone gas supply method and apparatus

Country Status (1)

Country Link
JP (1) JP3837280B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185708B1 (en) 2007-11-30 2012-09-24 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Apparatus for producing high-concentration ozone gas and method of producing high-concentration ozone gas
JP5481782B2 (en) * 2007-12-10 2014-04-23 株式会社明電舎 Ozone supply device
JP2009001490A (en) * 2008-09-22 2009-01-08 Meidensha Corp Liquid ozone-forming apparatus
JP5195527B2 (en) * 2009-03-03 2013-05-08 株式会社明電舎 Flow control device and process device
SG11201805604PA (en) * 2016-01-28 2018-08-30 Mitsubishi Electric Corp Ozone supply device and ozone supply method
CN108036995A (en) * 2018-01-16 2018-05-15 南京大学 A kind of smell booster based on pre-concentration principle
JP6516941B1 (en) * 2018-06-07 2019-05-22 三菱電機株式会社 Ozone supply apparatus and ozone supply method

Also Published As

Publication number Publication date
JP2002068712A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP1359120A1 (en) Ozone production methods
WO2008004321A1 (en) Apparatus and method for the concentration and dilution of specific gas
US8945278B2 (en) Method and apparatus for concentrating ozone gas
CN101878183A (en) High-concentrated ozone gas generating device and high-concentrated ozone gas generation method
JP3921203B2 (en) Gas separation method and apparatus
US6344130B1 (en) Method for continuously generating highly concentrated ozone gas
KR101339494B1 (en) Method of concentrating ozone gas and apparatus therefor
JP3837280B2 (en) High concentration ozone gas supply method and apparatus
KR101525505B1 (en) Method of concentrating ozone gas and apparatus therefor
US11130092B2 (en) Method for concentrating ozone gas and apparatus for concentrating ozone gas
JPH04265104A (en) Pressure swing type adsorbing method
JP3869831B2 (en) Gas separation method and apparatus
JP3806590B2 (en) Constant pressure supply method for high-concentration ozone gas
US20050229781A1 (en) Separation method and separation apparatus of isotopes from gaseous substances
US11123679B2 (en) Method for concentrating ozone gas and apparatus for concentrating ozone gas
JP3954371B2 (en) Ozone gas concentrator
JP7374925B2 (en) Gas separation equipment and gas separation method
JPH01184016A (en) Apparatus for gas separation
JP2020163247A (en) Carbon dioxide recovery device, hydrocarbon manufacturing device, and carbon dioxide recovery method
JPS60193520A (en) Turn down controlling method by pressure fluctuation adsorption method
JPH10287404A (en) Supply of ozone having constant concentration
JP2017202447A (en) Gas separator
JPH09173757A (en) Purifying apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3837280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term