JP3837059B2 - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
JP3837059B2
JP3837059B2 JP2001361240A JP2001361240A JP3837059B2 JP 3837059 B2 JP3837059 B2 JP 3837059B2 JP 2001361240 A JP2001361240 A JP 2001361240A JP 2001361240 A JP2001361240 A JP 2001361240A JP 3837059 B2 JP3837059 B2 JP 3837059B2
Authority
JP
Japan
Prior art keywords
lens
holding member
objective lens
moving
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001361240A
Other languages
Japanese (ja)
Other versions
JP2003161887A (en
Inventor
一博 林
吉昭 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2001361240A priority Critical patent/JP3837059B2/en
Publication of JP2003161887A publication Critical patent/JP2003161887A/en
Application granted granted Critical
Publication of JP3837059B2 publication Critical patent/JP3837059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は顕微鏡対物レンズに関し、詳しくは、対物レンズと観察物体(以下、標本と称する)との間に介在するカバーガラス、ガラスシャーレ、又はプラスチック容器等の標本を保持する媒質の厚さが異なる場合に生じる諸収差を補正可能な顕微鏡対物レンズに関する。
【0002】
【従来の技術】
一般に顕微鏡対物レンズは、厚さと屈折率とが規定されたカバーガラスを用いて標本を観察したときに、鮮明な像が得られるように設計されている。よって、厚さや屈折率が規定から大きく外れたカバーガラスを用いて観察したときには、諸収差が発生して鮮明な像が得られない。この傾向は開口数が大きな対物レンズ程、顕著に現れる。
【0003】
このため、対物レンズの中には、対物レンズを構成する一部のレンズ系を光軸に沿って移動させることができる対物レンズがある。この対物レンズは補正環付き対物レンズと呼ばれ、次のような対物レンズに用いられる。▲1▼カバーガラス厚のバラツキにより諸収差の発生が顕著となる開口数の大きな乾燥系対物レンズ。▲2▼例えば、厚さが0.17mmから2mmというように、相当に広範囲にわたる異なる厚さのカバーガラスを使用することを想定した対物レンズ。これらの補正環付き対物レンズは、一部のレンズ(あるいはレンズ群)の移動により収差を補正できる。そのため補正環なしの対物レンズに比べると、様々なカバーガラス厚に対して鮮明な像が得られる。
【0004】
【発明が解決しようとする課題】
上述のように、一部のレンズを光軸に沿って移動させることにより、様々なカバーガラス厚に対して収差補正を行う顕微鏡対物レンズは知られている。
しかし実際には、このような顕微鏡対物レンズを用いて収差補正を行うのは容易でなく、熟練者でなければ、最も像が鮮明に見える位置を見つけることは不可能である。というのは、収差補正のために、一部のレンズを移動させると、諸収差の変化と同時に、焦点位置の変化が生じる。焦点位置の変化が生じると、当然、像はボケてしまう。ボケた像では収差の補正具合は把握できないので、顕微鏡の観察者は常に、収差補正のための操作と、ピント合わせとを繰り返し行わなければない。
【0005】
なお、焦点位置とは近軸光線が光軸と交わる位置のことである。無限遠補正型の顕微鏡対物レンズでは、標本からの光は対物レンズを射出する際に平行光束になる。よって、焦点位置は近軸像の位置ということになる。
また、ピント合わせとは、像が最も鮮明に見えるように対物レンズと標本の位置を調整することである。ここで、収差がほとんど発生していない光学系では、像が鮮明に見える位置、すなわちピントが合う位置(以下、ピント位置という)は近軸像の位置に一致する。しかしながら、収差が発生している光学系では、ピントが合う位置は近軸像の位置と必ずしも一致せず、近軸像の位置とは異なる位置になることもある。したがって、ピント位置は近軸像の位置と一致する場合もあるが、一致しない場合もある。そこで、本明細書では、任意の収差が発生している状態において、観察者が像が鮮明に見えると判断した位置をピント位置とする。
【0006】
図10、11は従来の補正環付き対物レンズにおける調整方法を示した図で、図10、図11の左側は対物レンズと標本の位置関係を示す説明図、図11の右側は収差図である。図10、11中、100は先端レンズ、101は移動レンズ群、102は後方にあるレンズ、103はカバーガラスである。
移動レンズ群101は、補正環の操作によって光軸に沿って移動する。また、先端レンズ100及び後方のレンズ102は、常時固定となっている。
【0007】
図10(A)はカバーガラス103の厚みが0.17mmの場合で、移動レンズ群101の位置もカバーガラス103の厚みが0.17mmのときの収差補正位置にセットされている。この状態では、球面収差は良好に補正されている。
次に、(A)の状態で標本を交換したとする。また、このとき、新たな標本のカバーガラス103の厚みが0.5mmであるとする。すると、(B)に示すように、カバーガラス103の厚みが異なるので、レンズの位置関係が(A)に示す状態のままでは、像がぼけてしまう。ここで、カバーガラス103の厚みが0.5mmであることを観察者が知っていれば、(C)に示すように、カバーガラス103の厚みが0.5mmのときの収差補正位置に移動レンズ群101を移動させればよい。そして、(D)に示すように、標本位置を移動させて焦点位置を合わせれば良い。このようにすれば、カバーガラス103の厚みが0.5mmのときでも、(A)の場合と同じように、標本の像を観察できる。
【0008】
しかしながら、通常、観察者はカバーガラスの厚みを知ることができない。
そこで、移動レンズ群101を移動させるのではなく、図11に示すように、(B)の状態から(E)に示すように標本を移動させてピント合わせを行う。
ところが、(E)の状態では、レンズの位置関係は図10で示した(A)の状態のままである。すなわち、レンズの位置関係は、カバーガラスの厚みが0.17mmのときに最も収差が良好に補正される状態にあり、カバーガラスの厚みが0.5mmのときに最も収差が良好に補正される状態にない。したがって、鮮明な像が見えているとはいえ、この像は収差が良好に補正されていない状態における像であるから、更に鮮明な像が見えるようにする必要がある。
【0009】
そこで、観察者は次に、(F)に示すように、移動レンズ群101を移動させて、収差が良好になる位置を探すことになる。
しかしながら、移動レンズ群101を移動させると、焦点位置がずれてしまう。そのため、(G)に示すように、再び標本を移動させてピント合わせを行わなければならない。(G)の状態で更に鮮明な像が得られるという感触を得た場合、更に(H),(I)というように、(F),(G)と同様の操作を繰り返す。
【0010】
このとき、収差図を見ればわかるように、収差曲線の曲がりは少なくなっている。すなわち、収差量が減少している。
しかしながら、収差曲線の根元の位置が移動している。これは、移動レンズ群101が移動するたびに、焦点位置がずれることを示している。
このように、従来の補正環付き対物レンズによる調整では、補正環を操作して移動レンズ群を移動させるたびに像が大きくボケる。すなわち、像の鮮明度を連続的に確認できない。そのため、像の鮮明度の変化が微小になってくると、移動レンズ群101の位置関係の調整をどの時点で終了すればよいのかを判断するのが困難になる。
【0011】
このように、従来の補正環付き対物レンズでは、収差補正のための操作と、ピント合わせとを繰り返した場合、像を断続的にしか捉えることができず、どの位置が最も鮮明であるのかを正確に判断することが難しい。このため、従来の補正環付き顕微鏡対物レンズを用いた顕微鏡観察では、熟練者であっても、最も像が鮮明に見える位置を見つけることは相当な時間を要し、作業効率が悪くなっていた。或いは、中途半端に収差補正された状態で観察が行われ、対物レンズの性能が充分に発揮されない状況で使われていた。
【0012】
なお、収差補正でなく焦点位置を補正する手段としては、次の2つの方法が知られている。
1つ目の方法は、特開昭63−144317号公報に示されているような、収差補正のために移動する移動レンズ群を含めた、対物レンズの光学系全体を光軸に沿って移動させて、焦点位置を補正する方法である。
2つ目の方法は、特開平1−307717号公報に示されているような、収差補正のために移動するレンズ群とは異なるレンズ群を、収差補正のために移動するレンズ群と同時に移動させることにより常に焦点位置が一定になるようにする方法である。
【0013】
本発明は上記問題点に鑑みてなされたのであり、対物レンズと標本との間にある媒質の厚さの変化によって生じる諸収差を補正できる対物レンズにおいて、像が最も鮮明に見えるレンズの位置を容易に見付けて観察の効率を向上させることができると共に、性能を最大限に引き出すことが可能な顕微鏡対物レンズを提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明による顕微鏡対物レンズは、鏡筒である第一の保持部材と、前記第一の保持部材に保持され該第一の保持部材に対して光軸に沿って移動可能な鏡枠である第二の保持部材と、前記第二の保持部材に保持され該第二の保持部材に対して光軸に沿って移動可能なレンズ枠である第三の保持部材と、前記第二の保持部材と前記第三の保持部材の間に設置され該第三の保持部材を該第二の保持部材から離れる方向に押す第一のばねと、前記第一の保持部材と前記第二の保持部材の間に設置され該第二の保持部材を該第一の保持部材から離れる方向に押す第二のばねと、前記第三の保持部材に保持され収差の発生量を変化させるための移動レンズ群と、前記移動レンズ群を含む複数のレンズ群からなり前記第二の保持部材に該移動レンズ群以外のレンズ群が保持されていてピント位置を合わせるために移動させられるとき該第二の保持部材に保持されているレンズ群と該移動レンズ群とのレンズ間隔が変化する対物レンズ系と、前記第二の保持部材と前記第三の保持部材に連動し両保持部材を異なる移動量でそれぞれ移動させる駆動手段とを備え、前記第一のばねの装備力量F1と前記第二のばねの装備力量F2が下記の条件式(1)を満たすことを特徴とする
2 × F1 < F2 ・・・(1)
【0015】
また、本発明による顕微鏡対物レンズは、前記駆動手段が前記第三の保持部材を移動させる第一のカムと前記第二の保持部材を移動させる第二のカムとを有するカムリングであると好ましい。
【0017】
【発明の実施の形態】
実施例の説明に先立ち、本発明の原理及び作用について説明する。ここで、実施例の顕微鏡対物レンズは無限遠補正型である。したがって、焦点位置は近軸像の位置と一致している。
収差補正を困難にしている要因は、収差補正に伴う焦点位置のずれにより像が大きくボケるので、像が断続的にしか捉えられないことにある。そこで本発明では、収差補正を行うと同時に焦点位置の補正も行い、像が大きくボケるのを防止している。そして、更に追加の補正を加えることで、常にピントの合った像が得られ、収差の補正度合いが連続的に確認できるようにしている。具体的には、対物レンズを構成する一部のレンズを移動させると共に、対物レンズを構成するレンズ全体を移動させるようにした。
【0018】
本発明の顕微鏡対物レンズは、移動レンズ群が移動する点では従来の補正環付き対物レンズと同じである。しかしながら、移動レンズ群が移動する際、対物レンズ全体(対物レンズを構成するレンズ)が同時に移動する点で異なる。この様子を図1に示す。
図1は本発明の補正環付き対物レンズにおける一調整方法を示した図であり、左側は対物レンズと標本の位置関係を示す説明図、右側は収差図である。図1中、100は先端レンズ、101は移動レンズ群、102は後方にあるレンズ、103はカバーガラスである。
図1において、(B)は図11の(B)と同じである。また、(E)は図11の(E)と同じである。本発明の顕微鏡対物レンズにおいても、(E)の状態から収差補正を行う。なお、(J)は途中の状態、(K)は最終的な状態を示している。
【0019】
本発明においても、(E)の状態から収差補正を行うために、移動レンズ群101を光軸に沿って移動させるが、同時に先端レンズ100と後方のレンズ102も光軸に沿って移動させる。その結果、収差図を見るとわかるように、収差曲線の曲がりが減少しているので収差が良くなる方向に補正されたことがわかる。更に、収差曲線の根元を見ると、その位置は変化していない。すなわち、焦点位置が一定に保たれていることがわかる。同様に、(J)の状態から(K)の状態にしたときも収差が良くなる方向に補正され、かつ、収差曲線の根元の位置は変化していない。
なお、図1では、移動レンズ群101の移動と、先端レンズ100と後方のレンズ102の移動が別々に生じているように見える。しかしながら、実際は(E)の状態で▲1▼と▲2▼で示した動きが同時に生じ、その結果(J)の状態になる。同様に、(J)の状態で▲1▼’と▲2▼’で示した動きが同時に生じ、その結果(K)の状態になる。
【0020】
すなわち、本発明の顕微鏡対物レンズは、移動レンズ群101の移動によって焦点位置が移動するのを、先端レンズ100と後方のレンズ102(レンズ系全体)の移動によって防いでいる。したがって、(C)から(E)までの間の状態について図10と比べると、標本は全く移動していない。すなわち、収差補正のために補正環を回しても、ステージを上下させる必要はない。焦点位置の移動がなくなることで像の大きなボケはなくなるが、ピントの合った像を得るには、更に補正が必要である。この点については後述するが、先端レンズ101と後方のレンズ102はこの補正のためにも移動する。
なお、図1では、移動レンズ群101の移動方向と、先端レンズ100及び後方のレンズ102の移動方向とが逆になっている。ただし、このように逆向きに移動するとは限らない。
【0021】
以下、本発明を実施形態を用いて具体的に説明する。
【0022】
図2は本発明による顕微鏡対物レンズの一実施形態を示す断面図である。
収差補正のための移動レンズ群1は、レンズ枠1aに包まれて(保持されて)いる。また、移動レンズ群1を含む対物レンズの光学系全体は、鏡枠8に包まれて(保持されて)いる。そして、レンズ枠1aと鏡枠8は、それぞれ個別のばね5、6を介して図示しない標本側(紙面において左側)に押されている。レンズ枠1aは、ピン3に繋がれている。ピン3は、カムリング2に形成された所定の傾きを持つカム11に押し当てられている。また、鏡枠8は、ピン4に繋がれている。ピン4は、カムリング2に形成された、カム11とは傾きの異なるカム12に押し当てられている。
【0023】
カムリング2には、図3(a),(b)に示すように、カム11、カム12及び開口13が設けられている。
カム11の傾きは移動レンズ群1を包むレンズ枠1aの移動量を決定し、カム12の傾きは、移動レンズ群1を含む対物レンズの光学系全体を包む鏡枠8の移動量を決定する。
また、開口13は、図2に示すように、ストッパーピン10を介在させており、ストッパーピン10が開口13の端部で当接することにより、カムリング2の回転範囲を規制するように形成されている。
【0024】
このような構成においては、レンズ枠1aをピン3を介してカム11に押し当てるばね5の装備力量と、鏡枠8をピン4を介してカム12に押し当てるばね6の装備力量との関係が重要となる。
ばねの装備力量Fは、ばね常数Kとばねのたわみ量δから求められ、F=K・δの関係にある。収差補正により、レンズ枠1aや鏡枠8が移動すると、これらを押しているばね5,6のたわみ量が変化する。また、レンズ枠1aを押すばね5の装備力量F1は、移動レンズ群1とレンズ枠1aとを合わせた質量M(kg)を十分に支えることができる必要がある。同様に、鏡枠8を押すばね6の装備力量F2は、対物レンズの光学系全体と鏡枠8とを合わせた質量M’(kg)を十分に支えることができる必要がある。
そのため、ばね5,6のたわみが最も小さくなる位置においても、ばね5はM×15N(ニュートン)以上の装備力量を有し、ばね6はM’×15N(ニュートン)以上の装備力量を有している必要がある。
【0025】
また、移動レンズ群1が移動する際には、レンズ枠1aと鏡枠8との間で摩擦が生じる。そこで、常にピントが合った状態を保つためには、この摩擦によって鏡枠8が引き摺られて移動しないようにする必要がある。そのため、レンズ枠1aを押すばね5の装備力量F1に対して、鏡枠8を押すばね6の装備力量F2が充分に大きくなければはならない。このため、本発明においては、次の条件式(2)を満たす必要がある。
2×F1 < F2 …(2)
【0026】
条件式(2)を満たすと、レンズ枠1aと鏡枠8との摩擦によって、対物レンズの光学系全体を包む鏡枠8が引き摺られて移動することがない。そのため、収差補正とピント補正とを同時に機能させることが可能となる。但し、レンズ枠1aと鏡枠8とが接する表面は摩擦係数が小さく、充分に滑らかで、スムーズに摺動する摩擦係数を備えていることを前提とする。
【0027】
更に、最適なばねの装備力量について説明する。収差補正の操作は、図2に示すカムリング2に繋がれた輪状部材(環状部材)7の外周に設けられた操作部7aを、光軸を中心とした回転方向に回して行う。この際に対物レンズの光学系全体を包む鏡枠8を押しているばね6によって押し出される方向と、ばね6を押し縮める方向とでは、操作に必要な力量が異なる。この操作に必要な力量が異なることは、機能的には差し支えないが、より良好な使用感を保つためには、回転方向の違いによる操作力量の差が小さいことが望ましい。よって対物レンズの光学系全体を包む鏡枠8をカム12に押し当てるばね6の装備力量F2は小さいことが望ましく、より具体的には、8N(ニュートン)以下であることが望ましい。
【0028】
本発明では焦点位置を一定に保ったうえで、ピント位置の補正を行うことを特徴とする。そこで、ピント位置の補正を行う際の補正量を、いかに定めるかが重要になる。一般に顕微鏡システムでは、低倍率から高倍率の対物レンズまで、同焦距離が一定であることが理想的である。しかし、本発明では、あえて同焦距離を一定に保たないことを特徴としている。
ここで、同焦距離とは、対物レンズを顕微鏡本体(レボルバ)に取り付けたときの取り付け面から標本面までの距離であり、通常は対物レンズの倍率に依らず、同一の値で設計される。但し、生物観察用の対物レンズなどでは、対物レンズと標本との間にカバーガラス等の標本を保持する媒質が介在する。この場合、対物レンズは、媒質の厚みを空気換算長にして設計される。そのため、カバーガラス厚の設定が異なる対物レンズでは、同焦距離の実寸法は僅かに異なる。また、顕微鏡観察においては、特殊な例として、顕微鏡本体との取り付け面から、標本面までの距離が全く異なる(例えば45mmと60mm等の)対物レンズ同士を観察に用いることもある。
【0029】
顕微鏡使用者が実際に収差補正を行う場面を想定すると、カバーガラスの厚さが正確には判らない。そのため、上述のように、顕微鏡使用者は先ず収差補正が不十分な状態においてピント合わせを行い、その後に収差補正のための操作を行うと考えられる。しかし、収差補正が不十分な状態においては、近軸像の位置とは異なる位置でピントが合っているように見えてしまう。図5は収差補正が不十分な状態の顕微鏡対物レンズにおける収差図である。図5の収差図において符号24で示した位置は、近軸像の位置である。収差補正が十分な状態においては、ピント位置はこの近軸像の位置24とほぼ一致する。ところが、収差補正が不十分な状態においては、符号24で示した位置とは異なる位置、すなわち符号25で示す位置でピントが合っているように見える。
同焦距離が一定となる設計を行った場合には、移動レンズ群の位置がどこであっても、近軸像の位置は常に一定となる。しかしながら、収差補正が不十分なときでは、ピント位置と近軸像の位置が一致しない。しかも、移動レンズ群の各位置における収差の発生量はそれぞれ異なるので、各位置におけるピント位置と近軸像の位置のずれも異なる。そのため、同焦距離が一定となる設計を行っただけでは、収差補正に伴うピント位置のずれを完全になくすことが出来ず、収差の補正度合いを連続的に確認するという目的が充分に果たせなくなる。
【0030】
そこで、本発明においては、移動レンズ群を含む光学系全体を包む鏡枠の移動量に、次の条件式(1)で与えられる追加補正量を含ませることが望ましい。
ΔL > −(n−1)×Δd×α, α≧0.01 …(1)
但し、ΔL=追加補正量(=対物レンズの同焦距離の変化量)、nは標本と対物レンズの間に介在する透明部材の材質の屈折率、Δdは前記透明部材の厚さの変化量、αは係数である。
ここで、標本と対物レンズの間に介在する透明部材とは、カバーガラス、シャーレ等である。
【0031】
このように、本発明では、追加の補正量を加えているので、対物レンズの同焦距離は一定ではなくなる。すなわち、同焦距離を、収差補正の状態に応じてΔL分だけ変化させている。この結果、収差補正に伴う合焦位置のずれを、ほぼ問題ないレベルに抑えることができる。
なお、本発明の条件式(1)において、補正量ΔLに係数αとして0.01以上の値を掛けているが、この値は対物レンズの開口数(NA)や対物レンズの使用波長、更には設計上の収差レベルにより変化するので、一概に定めることは出来ない。この係数αはNAが大きな対物レンズである程、大きくなる傾向がある。したがって、上記係数αは開口数の大きな対物レンズになるほど大きな値を設定するのが好ましい。ただし、レンズ設計のタイプに依っても変化するので、レンズタイプごとに適切な値を設定するのが好ましい。
例えば、可視域全体にわたって良く収差補正されたNAが0.6の40倍対物レンズにおいては、約0.03の係数値が得られたが、NAが0.9の40倍対物レンズにおいては、約0.30の係数値が得られた。
このように、上記係数は、対物レンズのタイプや仕様によって様々に変化する。但し、係数が0.01より小さくなるようなケースでは、特にこの補正量ΔLを見込まなくとも、殆どピントずれの無い対物レンズが得られるので、常に同焦距離が一定となる設計であっても、充分に本発明の目的を果たすことができる。
【0032】
本発明を構成する上で、最も重要であり特徴的な構成要素が、図4に示したカムリング2である。
本実施形態では、移動レンズ群1と対物レンズの光学系全体を包む鏡枠8の移動量を決定する2つのカム11,12が、一つの輪状部材であるカムリング2にほぼ対向配置されている。そのため、本実施形態では、移動機構の部品点数を少なくすることができる。それにより、小さいスペース内で移動機構を構成することができる。
【0033】
上述のカムリング2は、対物レンズの外周に露出する輪状部材7に繋がれている。そして、その外周に露出した輪状部材7の操作部7aを、光軸を中心に回すことによりカムリング2を回転させる。これにより、カム11に接するピン3を介して、移動レンズ群1を包むレンズ枠1aに所定の移動量を与えると同時に、カム12に接するピン4を介して対物レンズの光学系全体を包む鏡枠8に別の所定の移動量を与えるようになっている。
【0034】
なお、本発明に用いるカムリング2は、2つのカム11,12を2つの異なる部材で構成しても良い。そして、それぞれが外周に露出した輪状部材7に繋がれ、この輪状部材7の操作部7aを回すことにより2つのカム11,12を回転させるように構成しても機能的には差し支えない。
【0035】
また、図4に本発明の他の実施形態として示すように、カムリング2と外周に露出する輪状部材7とを一体に構成した部材9を用いることにより、更に部品点数が少ない構成とすることも可能である。
【0036】
なお、本発明において、2つのカム11,12を円周上で対向する向きに配置する主な理由は、省スペース化のためである。スペースに充分な余裕が有る場合には、上記カムを円周上の任意の位置に設けてもよい。
なお、図2及び図4中、符号14〜23は、対物レンズを構成するレンズである。
【0037】
【実施例】
次に、本発明の具体的な実施例を示す。なお、本実施例において移動レンズ群及び鏡枠を移動させる構成は図2又は図4の構成に基づいている。
図6は本実施例における対物レンズのレンズ構成を示す光軸に沿う断面図であり、標本と対物レンズとの間に介在するガラス31の厚さが、(a)は0mm、(b)は1mm、(c)は2mmのときの状態を示している。図7は図6の対物レンズにおける標本と対物レンズとの間に介在するガラス31の球面収差が変化したときの球面収差を示すグラフであり、(a)は0mm、(b)は1mm、(c)は2mmのときの球面収差の様子を示している。図8は本実施例に用いる結像レンズのレンズ構成を示す光軸に沿う断面図である。
【0038】
本実施例では、NAが0.6で40倍の対物レンズを構成している。この対物レンズは、標本の像を無限遠方に投影し、結像レンズと適度な空気間隔を隔てて配置することにより、観察像を形成するようになっている。また、本実施例の顕微鏡においては、対物レンズと結像レンズとは90mm間隔があいている。
そして本実施例では、ガラス31の厚さがどのような厚さであっても、移動レンズ群1が移動することにより、レンズ16とレンズ17との間隔が変化して収差が補正されるようになっている。
【0039】
次に、本実施例に用いる対物レンズ及び結像レンズのそれぞれについて、構成する光学部材のレンズデータを示す。
なお、本実施例の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッべ数を表している。
また、D19はピント補正量であって、ガラス31の厚さが0mmのときのレンズ最終面の位置を基準位置としたとき、この基準位置から厚さの変化に伴ってレンズが移動した際のレンズ最終面までの距離である(図9)。
【0040】

Figure 0003837059
Figure 0003837059
【0041】
Figure 0003837059
【0042】
上述の本発明の対物レンズでは、ΔL =(n−1)×Δd×0.03 の追加補正を行うと収差補正に伴うピントずれが生じない。また、ガラス厚の変化に伴う作動距離の変化が、ガラス厚変化の空気換算光路長(=厚さ変化量/ガラスの屈折率)と近いことも、このレンズタイプの特徴である。本実施例では、上記レンズデータより、ガラス31の厚さの変化量が2mmの時、空気換算光路長が1.313mm(=2/1.523mm)変化するのに対して、作動距離の変化量は1.382mm(=4.698−3.316)となる。これはピント補正を行わない場合でも、収差補正を行った際に生じるピントずれが小さいことを意味している。従って、本実施例の対物レンズによれば、何らかの理由により、ピント補正が正確に作動しない場合でも、急激にピントがずれることが無いというメリットがある。
【0043】
また、ピント補正量は以下のようになる。
ピント補正量=カバーガラス厚の変化量(空気換算長)−作動距離の変化量+追加補正量
したがって、本実施例では対物レンズのカバーガラス厚の補正範囲が0mmから2mmなので、例えば、カバーガラス厚が0mmから2mmに変化した時のピント補正量は以下のようになる。
カバーガラス厚の変化量(空気換算長)=1.313mm
作動距離の変化量=1.382mm
追加補正量=−(1.523−1)×2×0.03=−0.031mm
Figure 0003837059
【0044】
以上説明したように、本発明の顕微鏡対物レンズは、特許請求の範囲に記載された発明の他に、次に示すような特徴も備えている。
【0045】
(1)前記移動レンズ群を包むレンズ枠を押すばねの力量をF1、前記光学系全体を包む鏡枠を押すばねの力量をF2としたとき、次の条件式を満足することを特徴とする請求項1に記載の顕微鏡対物レンズ。
2×F1 < F2
【0046】
(2)前記各々のカムは、前記輪状部材の円周上で対向配置されていることを特徴とする請求項3に記載の顕微鏡対物レンズ。
【0047】
(3)前記移動レンズ群を含む光学系全体を包む鏡筒の移動量が、標本と対物レンズの間に介在する透明部材の厚みの変化量(空気換算長)−作動距離の変化量+追加補正量で設定されていることを特徴とする請求項1又は3に記載の顕微鏡対物レンズ。
【0048】
(4)前記追加補正量は、所定の係数を乗じて得られる量であって、対物レンズの開口数が大きくなるほど該係数の値を大きくして得られることを特徴とする上記(3)に記載の対物レンズ。
【0049】
(5)同焦距離が変化することを特徴とする請求項1又は3に記載の顕微鏡対物レンズ。
【0050】
【発明の効果】
本発明によれば、従来の収差補正機構付き対物レンズを比べても、特別に多くの部品を要することも無く、対物レンズの大型化を招くことも無く、収差補正とピント補正とが同時に行われる対物レンズが構成可能となる。これにより、収差補正の際には、連続して収差の変化を捉えることが可能となるので、顕微鏡使用者は容易に、像が最もシャープに見える位置を見付ける事が可能となる。よって、従来の製品に比べ、格段に観察の効率が向上すると共に、対物レンズの性能を最大限に引き出すことが可能となる。
【図面の簡単な説明】
【図1】本発明の補正環付き対物レンズにおける調整方法の過程の一部を示した図であり、左側は対物レンズと標本の位置関係を示す説明図、右側は収差図である。
【図2】本発明による顕微鏡対物レンズの一実施形態を示す断面図である。
【図3】図2の顕微鏡対物レンズに用いられるカムリングの構成を示す斜視図であり、(a)は一方のカム側からみた図、(b)は他方のカム側からみた図である。
【図4】本発明による顕微鏡対物レンズの他の実施形態を示す断面図である。
【図5】収差補正が不十分な状態の顕微鏡対物レンズにおける収差図で、近軸像の位置とピント位置が異なることを示す図である。
【図6】本実施例における対物レンズのレンズ構成を示す光軸に沿う断面図であり、標本と対物レンズとの間に介在するガラス31の厚さが、(a)は0mm、(b)は1mm、(c)は2mmのときの状態を示している。
【図7】図6の対物レンズにおける標本と対物レンズとの間に介在するガラス31の球面収差が変化したときの球面収差を示すグラフであり、(a)は0mm、(b)は1mm、(c)は2mmのときの球面収差の様子を示している。
【図8】本実施例に用いる結像レンズのレンズ構成を示す光軸に沿う断面図である。
【図9】本実施例におけるピント補正量を示す説明図である。
【図10】従来の補正環付き対物レンズにおける一調整方法を示した図で、対物レンズと標本の位置関係を示す説明図である。
【図11】従来の補正環付き対物レンズにおける他の調整方法を示した図であり、左側は対物レンズと標本の位置関係を示す説明図、右側は収差図である。
【符号の説明】
1 移動レンズ群
1a 移動レンズ群を包むレンズ枠
2 カムリング
3 移動レンズ群を包むレンズ枠に繋がれたピン
4 対物レンズの光学系全体を包む鏡枠に繋がれたピン
5 移動レンズ群を包むレンズ枠を押すばね
6 対物レンズの光学系全体を包む鏡枠を押すばね
7 輪状部材
7a 操作部
8 対物レンズの光学系を包む鏡枠
9 カムリングと操作部とが一体になった部材
10 ストッパー
11 移動レンズ群を包むレンズ枠に動きを与えるカム
12 対物レンズの光学系全体を包む鏡枠に動きを与えるカム
13 開口
14,15,16,17,18,19,20,21,22,23
レンズ
24 設計上のピント位置(近軸のピント位置)
25 見かけのピント位置
31 カバーガラス
100 先端レンズ
101 移動レンズ群
102 後方にあるレンズ
103 カバーガラス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microscope objective lens, and more specifically, the thickness of a medium for holding a specimen such as a cover glass, a glass petri dish, or a plastic container interposed between the objective lens and an observation object (hereinafter referred to as a specimen) is different. The present invention relates to a microscope objective lens that can correct various aberrations that occur in some cases.
[0002]
[Prior art]
In general, a microscope objective lens is designed so that a clear image can be obtained when a specimen is observed using a cover glass having a defined thickness and refractive index. Therefore, when observed using a cover glass whose thickness and refractive index deviate greatly from the specified values, various aberrations occur and a clear image cannot be obtained. This tendency becomes more prominent as the objective lens has a larger numerical aperture.
[0003]
For this reason, among objective lenses, there is an objective lens that can move a part of the lens system constituting the objective lens along the optical axis. This objective lens is called an objective lens with a correction ring, and is used for the following objective lens. (1) A dry-type objective lens having a large numerical aperture in which various aberrations become noticeable due to variations in cover glass thickness. {Circle around (2)} An objective lens that assumes the use of a cover glass having a considerably wide range of thickness, for example, a thickness of 0.17 mm to 2 mm. These objective lenses with a correction ring can correct aberrations by moving some lenses (or lens groups). Therefore, clear images can be obtained for various cover glass thicknesses compared to an objective lens without a correction ring.
[0004]
[Problems to be solved by the invention]
As described above, microscope objective lenses that perform aberration correction for various cover glass thicknesses by moving some lenses along the optical axis are known.
However, in practice, it is not easy to perform aberration correction using such a microscope objective lens, and it is impossible to find a position where an image can be seen most clearly unless it is an expert. This is because, when a part of the lenses is moved for aberration correction, the focal position changes simultaneously with changes in various aberrations. When the focal position changes, the image naturally becomes blurred. Since a blurred image cannot grasp the degree of aberration correction, the observer of the microscope must always repeat the aberration correction operation and focus adjustment.
[0005]
The focal position is a position where the paraxial ray intersects the optical axis. In an infinitely corrected microscope objective lens, the light from the specimen becomes a parallel light beam when exiting the objective lens. Therefore, the focal position is a paraxial image position.
Further, focusing means adjusting the positions of the objective lens and the specimen so that the image can be seen most clearly. Here, in an optical system in which almost no aberration is generated, a position where an image is clearly visible, that is, a focused position (hereinafter referred to as a focused position) coincides with a paraxial image position. However, in an optical system in which aberration has occurred, the focused position does not necessarily coincide with the position of the paraxial image, and may be different from the position of the paraxial image. Therefore, the focus position may coincide with the paraxial image position, but may not coincide. Therefore, in the present specification, a position where the observer determines that the image looks clear in a state where any aberration is generated is defined as a focus position.
[0006]
10 and 11 are diagrams showing an adjustment method in a conventional objective lens with a correction ring. The left side of FIGS. 10 and 11 is an explanatory diagram showing the positional relationship between the objective lens and the specimen, and the right side of FIG. 11 is an aberration diagram. . 10 and 11, reference numeral 100 denotes a front lens, 101 denotes a moving lens group, 102 denotes a rear lens, and 103 denotes a cover glass.
The moving lens group 101 moves along the optical axis by operating the correction ring. The front lens 100 and the rear lens 102 are always fixed.
[0007]
FIG. 10A shows the case where the thickness of the cover glass 103 is 0.17 mm, and the position of the moving lens group 101 is also set at the aberration correction position when the thickness of the cover glass 103 is 0.17 mm. In this state, the spherical aberration is corrected well.
Next, it is assumed that the sample is exchanged in the state of (A). At this time, the thickness of the cover glass 103 of the new specimen is 0.5 mm. Then, since the thickness of the cover glass 103 is different as shown in (B), the image is blurred if the positional relationship between the lenses is as shown in (A). Here, if the observer knows that the thickness of the cover glass 103 is 0.5 mm, as shown in (C), the moving lens is moved to the aberration correction position when the thickness of the cover glass 103 is 0.5 mm. The group 101 may be moved. Then, as shown in (D), the focal position can be adjusted by moving the sample position. In this way, even when the cover glass 103 has a thickness of 0.5 mm, the sample image can be observed as in the case of (A).
[0008]
However, the observer usually cannot know the thickness of the cover glass.
Therefore, instead of moving the moving lens group 101, as shown in FIG. 11, the specimen is moved from the state (B) as shown in (E) to perform focusing.
However, in the state of (E), the positional relationship of the lenses remains in the state of (A) shown in FIG. In other words, the positional relationship between the lenses is such that the aberration is corrected best when the cover glass thickness is 0.17 mm, and the aberration is corrected best when the cover glass thickness is 0.5 mm. Not in state. Therefore, even though a clear image can be seen, this image is an image in a state where aberrations are not corrected well, so that a clearer image needs to be seen.
[0009]
Therefore, as shown in (F), the observer then moves the moving lens group 101 to search for a position where the aberration is good.
However, if the moving lens group 101 is moved, the focal position is shifted. Therefore, as shown in (G), the specimen must be moved again to focus. When a feeling that a clearer image can be obtained in the state of (G) is obtained, the same operations as (F) and (G) are repeated as (H) and (I).
[0010]
At this time, as shown in the aberration diagram, the curve of the aberration curve is reduced. That is, the amount of aberration is reduced.
However, the base position of the aberration curve has moved. This indicates that the focal position shifts whenever the moving lens group 101 moves.
As described above, in the adjustment using the conventional objective lens with the correction ring, the image is greatly blurred every time the movable lens group is moved by operating the correction ring. That is, the sharpness of the image cannot be confirmed continuously. For this reason, when the change in the definition of the image becomes minute, it becomes difficult to determine when the adjustment of the positional relationship of the moving lens group 101 should be finished.
[0011]
In this way, with the conventional objective lens with a correction ring, when the operation for aberration correction and focusing are repeated, the image can be captured only intermittently, and which position is the clearest. It is difficult to judge accurately. For this reason, in microscope observation using a conventional microscope objective lens with a correction ring, it takes a considerable amount of time to find a position where the image can be seen most clearly, even if it is an expert. . Alternatively, the observation is performed in a state where aberrations are corrected halfway, and the objective lens performance is not sufficiently exhibited.
[0012]
Note that the following two methods are known as means for correcting the focal position, not the aberration correction.
The first method is to move the entire optical system of the objective lens along the optical axis, including a moving lens group that moves to correct aberrations, as disclosed in JP-A-63-144317. This is a method of correcting the focal position.
The second method is to move a lens group that is different from the lens group that moves for aberration correction, as shown in JP-A-1-307717, simultaneously with the lens group that moves for aberration correction. By doing so, the focus position is always kept constant.
[0013]
The present invention has been made in view of the above problems, and in the objective lens capable of correcting various aberrations caused by changes in the thickness of the medium between the objective lens and the sample, the position of the lens where the image is most clearly seen is determined. An object of the present invention is to provide a microscope objective lens that can be easily found to improve the efficiency of observation and that can maximize performance.
[0014]
[Means for Solving the Problems]
To achieve the above object, the microscope objective lens according to the present invention comprises a first holding member is a mirror barrel along the optical axis for the first said first holding member held by the holding member a second holding member which is movable lens frame, and the second third of the holding member for the said second holding member held by the holding member is a lens frame which is movable along the optical axis of the the second and first spring pushing the installed said third retaining member between the retaining member and the third holding member in a direction away from said second holding member, the first holding member and the a second spring pushing the installed said second holding member in a direction away from said first holding member between the second holding member, the third is held in the holding member Osamu difference and moving lens group for changing the amount of generated from a plurality of lens groups becomes the second containing the moving lens group Change lens distance between the lens group and the movable lens group held in said second holding member when the lens unit other than the moving lens group to the support member is moved to adjust the focus position is held wherein the objective lens system, wherein the second holding member in conjunction with the third holding member and drive means for moving each of the two holding members at a different increment, and equipment force F1 of the first spring The second spring is characterized in that the equipment strength F2 satisfies the following conditional expression (1) .
2 × F1 <F2 (1)
[0015]
In the microscope objective according to the present invention, if it is a cam ring having a second cam for moving the first cam and the previous SL second holding member to which the driving means moves the front Symbol third holding member preferable.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Prior to the description of the embodiments, the principle and operation of the present invention will be described. Here, the microscope objective lens of the embodiment is an infinite correction type. Therefore, the focal position matches the position of the paraxial image.
The factor that makes it difficult to correct aberrations is that the image can be captured only intermittently because the image is greatly blurred due to the shift of the focal position accompanying the aberration correction. Therefore, in the present invention, the correction of the focal position is performed at the same time as the aberration correction, thereby preventing the image from being largely blurred. Further, by adding additional correction, an in-focus image is always obtained, and the correction degree of aberration can be continuously confirmed. Specifically, a part of the lenses constituting the objective lens is moved, and the entire lens constituting the objective lens is moved.
[0018]
The microscope objective lens of the present invention is the same as the conventional objective lens with a correction ring in that the moving lens group moves. However, the difference is that when the moving lens group moves, the entire objective lens (lens constituting the objective lens) moves simultaneously. This is shown in FIG.
FIG. 1 is a diagram showing one adjustment method in an objective lens with a correction ring according to the present invention, the left side is an explanatory diagram showing the positional relationship between the objective lens and the sample, and the right side is an aberration diagram. In FIG. 1, 100 is a front lens, 101 is a moving lens group, 102 is a rear lens, and 103 is a cover glass.
In FIG. 1, (B) is the same as (B) of FIG. Further, (E) is the same as (E) in FIG. In the microscope objective lens of the present invention, aberration correction is performed from the state (E). Note that (J) shows a state in the middle, and (K) shows a final state.
[0019]
Also in the present invention, in order to perform aberration correction from the state (E), the moving lens group 101 is moved along the optical axis. At the same time, the front lens 100 and the rear lens 102 are also moved along the optical axis. As a result, as can be seen from the aberration diagram, since the curve of the aberration curve is reduced, it is understood that the aberration has been corrected in the direction of improving. Further, when looking at the root of the aberration curve, the position does not change. That is, it can be seen that the focal position is kept constant. Similarly, when the state of (J) is changed to the state of (K), the aberration is corrected in a direction that improves, and the base position of the aberration curve is not changed.
In FIG. 1, the movement of the moving lens group 101 and the movement of the front lens 100 and the rear lens 102 appear to occur separately. However, in reality, the movements indicated by (1) and (2) occur simultaneously in the state (E), and the state (J) is obtained as a result. Similarly, in the state (J), the movements indicated by (1) and (2) occur simultaneously, resulting in the state (K).
[0020]
In other words, the microscope objective lens of the present invention prevents the focal position from being moved by the movement of the moving lens group 101 by the movement of the front lens 100 and the rear lens 102 (entire lens system). Therefore, the sample does not move at all compared to FIG. 10 for the state between (C) and (E). That is, even if the correction ring is rotated for aberration correction, it is not necessary to move the stage up and down. Although there is no large blurring of the image due to the movement of the focal position, further correction is necessary to obtain an in-focus image. Although this point will be described later, the front lens 101 and the rear lens 102 also move for this correction.
In FIG. 1, the moving direction of the moving lens group 101 is opposite to the moving direction of the front lens 100 and the rear lens 102. However, it does not always move in the reverse direction.
[0021]
Hereinafter, the present invention will be specifically described using embodiments.
[0022]
FIG. 2 is a sectional view showing an embodiment of a microscope objective lens according to the present invention.
The moving lens group 1 for aberration correction is wrapped (held) by a lens frame 1a. Further, the entire optical system of the objective lens including the moving lens group 1 is wrapped (held) in a lens frame 8. The lens frame 1a and the lens frame 8 are pushed to the specimen side (left side in the drawing) (not shown) via individual springs 5 and 6, respectively. The lens frame 1 a is connected to the pin 3. The pin 3 is pressed against a cam 11 having a predetermined inclination formed on the cam ring 2. The lens frame 8 is connected to the pin 4. The pin 4 is pressed against a cam 12 formed on the cam ring 2 and having a different inclination from the cam 11.
[0023]
The cam ring 2 is provided with a cam 11, a cam 12, and an opening 13 as shown in FIGS.
The inclination of the cam 11 determines the amount of movement of the lens frame 1 a that wraps the moving lens group 1, and the inclination of the cam 12 determines the amount of movement of the lens frame 8 that wraps the entire optical system of the objective lens including the moving lens group 1. .
Further, as shown in FIG. 2, the opening 13 has a stopper pin 10 interposed therebetween, and is formed so as to restrict the rotation range of the cam ring 2 when the stopper pin 10 abuts at the end of the opening 13. Yes.
[0024]
In such a configuration, the relationship between the mounting force amount of the spring 5 that presses the lens frame 1 a against the cam 11 via the pin 3 and the mounting force amount of the spring 6 that presses the lens frame 8 against the cam 12 via the pin 4. Is important.
The spring mounting force amount F is obtained from the spring constant K and the spring deflection amount δ, and has a relationship of F = K · δ. When the lens frame 1a and the lens frame 8 are moved by the aberration correction, the amount of deflection of the springs 5 and 6 that are pushing these changes. Further, the equipment strength F1 of the spring 5 that pushes the lens frame 1a needs to be able to sufficiently support the mass M (kg) of the moving lens group 1 and the lens frame 1a. Similarly, the mounting force amount F2 of the spring 6 that pushes the lens frame 8 needs to be able to sufficiently support the mass M ′ (kg) that combines the entire optical system of the objective lens and the lens frame 8.
Therefore, even at the position where the deflection of the springs 5 and 6 is minimized, the spring 5 has an equipment strength of M × 15N (Newton) or more, and the spring 6 has an equipment strength of M ′ × 15N (Newton) or more. Need to be.
[0025]
Further, when the movable lens group 1 moves, friction occurs between the lens frame 1 a and the lens frame 8. Therefore, in order to always maintain a focused state, it is necessary to prevent the lens frame 8 from being dragged and moved by this friction. Therefore, the equipment force amount F2 of the spring 6 that pushes the lens frame 8 must be sufficiently larger than the equipment force amount F1 of the spring 5 that pushes the lens frame 1a. For this reason, in the present invention, the following conditional expression (2) must be satisfied.
2 x F1 <F2 (2)
[0026]
When the conditional expression (2) is satisfied, the lens frame 8 wrapping the entire optical system of the objective lens is not dragged and moved by friction between the lens frame 1 a and the lens frame 8. For this reason, it is possible to simultaneously perform aberration correction and focus correction. However, it is assumed that the surface where the lens frame 1a and the lens frame 8 are in contact has a small friction coefficient, is sufficiently smooth, and has a friction coefficient that slides smoothly.
[0027]
Furthermore, the optimum amount of spring mounting force will be described. The aberration correction operation is performed by rotating an operation portion 7a provided on the outer periphery of a ring-shaped member (annular member) 7 connected to the cam ring 2 shown in FIG. 2 in a rotation direction around the optical axis. At this time, the force required for the operation differs between the direction pushed by the spring 6 pushing the lens frame 8 enclosing the entire optical system of the objective lens and the direction in which the spring 6 is compressed. The difference in the amount of force required for this operation is functionally satisfactory, but in order to maintain a better feeling of use, it is desirable that the difference in the amount of operation force due to the difference in the rotation direction is small. Therefore, it is desirable that the installation force amount F2 of the spring 6 that presses the lens frame 8 that wraps the entire optical system of the objective lens against the cam 12 is small, and more specifically, it is desirably 8 N (Newton) or less.
[0028]
The present invention is characterized in that the focus position is corrected while keeping the focal position constant. Therefore, how to determine the correction amount for correcting the focus position is important. In general, in a microscope system, it is ideal that the focal distance is constant from a low magnification to a high magnification objective lens. However, the present invention is characterized in that the focal distance is not kept constant.
Here, the focal distance is the distance from the mounting surface to the sample surface when the objective lens is attached to the microscope body (revolver), and is usually designed with the same value regardless of the magnification of the objective lens. . However, in a biological observation objective lens or the like, a medium for holding a specimen such as a cover glass is interposed between the objective lens and the specimen. In this case, the objective lens is designed with the thickness of the medium as the air-converted length. Therefore, the actual dimensions of the focal distance are slightly different for objective lenses having different cover glass thickness settings. In a microscopic observation, as a special example, objective lenses having completely different distances (for example, 45 mm and 60 mm) from the mounting surface to the microscope main body to the specimen surface may be used for the observation.
[0029]
Assuming that the microscope user actually corrects the aberration, the thickness of the cover glass cannot be accurately determined. Therefore, as described above, it is considered that the microscope user first performs focusing in a state where the aberration correction is insufficient, and then performs an operation for correcting the aberration. However, when aberration correction is insufficient, the image appears to be in focus at a position different from the position of the paraxial image. FIG. 5 is an aberration diagram of the microscope objective lens in a state where aberration correction is insufficient. The position indicated by reference numeral 24 in the aberration diagram of FIG. 5 is the position of the paraxial image. In a state where aberration correction is sufficient, the focus position substantially coincides with the position 24 of the paraxial image. However, in a state where aberration correction is insufficient, it appears that the focus is in a position different from the position indicated by reference numeral 24, that is, a position indicated by reference numeral 25.
When the design is such that the focal distance is constant, the position of the paraxial image is always constant regardless of the position of the moving lens group. However, when the aberration correction is insufficient, the focus position and the paraxial image position do not match. Moreover, since the amount of aberration generated at each position of the moving lens group is different, the difference between the focus position and the paraxial image position at each position is also different. For this reason, it is not possible to completely eliminate the focus position shift accompanying the aberration correction, and the purpose of continuously confirming the degree of correction of the aberration cannot be fulfilled simply by designing the focal length to be constant. .
[0030]
Therefore, in the present invention, it is desirable to include an additional correction amount given by the following conditional expression (1) in the movement amount of the lens frame that wraps the entire optical system including the moving lens group.
ΔL> − (n−1) × Δd × α, α ≧ 0.01 (1)
Where ΔL = additional correction amount (= change amount of the focal distance of the objective lens), n is the refractive index of the material of the transparent member interposed between the sample and the objective lens, and Δd is the change amount of the thickness of the transparent member. , Α is a coefficient.
Here, the transparent member interposed between the specimen and the objective lens is a cover glass, a petri dish or the like.
[0031]
Thus, in the present invention, since the additional correction amount is added, the focal distance of the objective lens is not constant. That is, the focal distance is changed by ΔL in accordance with the aberration correction state. As a result, the shift of the in-focus position accompanying the aberration correction can be suppressed to a level with no problem.
In the conditional expression (1) of the present invention, the correction amount ΔL is multiplied by a value of 0.01 or more as the coefficient α. This value is the numerical aperture (NA) of the objective lens, the wavelength used for the objective lens, Since it varies depending on the designed aberration level, it cannot be determined in general. The coefficient α tends to increase as the objective lens has a larger NA. Therefore, it is preferable that the coefficient α is set to a larger value as the objective lens has a larger numerical aperture. However, since it varies depending on the type of lens design, it is preferable to set an appropriate value for each lens type.
For example, in a 40 × objective lens with NA of 0.6 well corrected for aberrations over the entire visible range, a coefficient value of about 0.03 was obtained, but in a 40 × objective lens with NA of 0.9, A coefficient value of about 0.30 was obtained.
As described above, the coefficient varies depending on the type and specification of the objective lens. However, in a case where the coefficient is smaller than 0.01, an objective lens with almost no focus deviation can be obtained without particularly considering this correction amount ΔL. Can sufficiently fulfill the object of the present invention.
[0032]
In constituting the present invention, the most important and characteristic component is the cam ring 2 shown in FIG.
In the present embodiment, the two cams 11 and 12 that determine the amount of movement of the lens frame 8 that encloses the entire optical system of the moving lens group 1 and the objective lens are disposed substantially opposite to the cam ring 2 that is a single ring-shaped member. . Therefore, in this embodiment, the number of parts of the moving mechanism can be reduced. Thereby, a moving mechanism can be comprised in a small space.
[0033]
The cam ring 2 described above is connected to a ring-shaped member 7 exposed on the outer periphery of the objective lens. And the cam ring 2 is rotated by turning the operation part 7a of the ring-shaped member 7 exposed to the outer periphery around the optical axis. Thus, a predetermined amount of movement is given to the lens frame 1a that encloses the moving lens group 1 via the pin 3 that contacts the cam 11, and at the same time, the mirror that envelops the entire optical system of the objective lens via the pin 4 that contacts the cam 12. Another predetermined amount of movement is given to the frame 8.
[0034]
In the cam ring 2 used in the present invention, the two cams 11 and 12 may be composed of two different members. Each of the cams 11 and 12 is connected to the ring-shaped member 7 exposed on the outer periphery and the two cams 11 and 12 are rotated by turning the operation portion 7a of the ring-shaped member 7.
[0035]
Further, as shown in FIG. 4 as another embodiment of the present invention, by using a member 9 in which the cam ring 2 and the ring-shaped member 7 exposed on the outer periphery are integrally formed, the number of parts can be further reduced. Is possible.
[0036]
In the present invention, the main reason for disposing the two cams 11 and 12 in the opposite directions on the circumference is to save space. When there is a sufficient space, the cam may be provided at an arbitrary position on the circumference.
In FIGS. 2 and 4, reference numerals 14 to 23 denote lenses constituting the objective lens.
[0037]
【Example】
Next, specific examples of the present invention will be described. In the present embodiment, the configuration for moving the moving lens group and the lens frame is based on the configuration shown in FIG.
FIG. 6 is a cross-sectional view along the optical axis showing the lens configuration of the objective lens in this example. The thickness of the glass 31 interposed between the specimen and the objective lens is as follows: (a) is 0 mm, (b) is 1 mm and (c) show the state at 2 mm. FIG. 7 is a graph showing the spherical aberration when the spherical aberration of the glass 31 interposed between the specimen and the objective lens in the objective lens of FIG. 6 is changed, (a) is 0 mm, (b) is 1 mm, ( c) shows the state of spherical aberration at 2 mm. FIG. 8 is a cross-sectional view along the optical axis showing the lens configuration of the imaging lens used in this embodiment.
[0038]
In this embodiment, an objective lens with NA of 0.6 and 40 times is constructed. This objective lens projects an image of a sample at infinity, and forms an observation image by disposing it at an appropriate air interval from the imaging lens. In the microscope of this embodiment, the objective lens and the imaging lens are spaced by 90 mm.
In this embodiment, no matter what the thickness of the glass 31 is, the movement of the moving lens group 1 changes the distance between the lens 16 and the lens 17 so that the aberration is corrected. It has become.
[0039]
Next, lens data of the optical members constituting each of the objective lens and the imaging lens used in this embodiment will be shown.
In the numerical data of this embodiment, r 1 , r 2 ,... Are the curvature radii of the lens surfaces, d 1 , d 2 ,... Are the thickness or air spacing of each lens, n d1 , n d2,. The refractive index of each lens at the d-line, ν d1 , ν d2 ,... Represents the Abbe number of each lens.
D19 is a focus correction amount. When the position of the final lens surface when the thickness of the glass 31 is 0 mm is set as a reference position, the lens moves from the reference position according to the change in thickness. This is the distance to the final lens surface (FIG. 9).
[0040]
Figure 0003837059
Figure 0003837059
[0041]
Figure 0003837059
[0042]
In the above-described objective lens of the present invention, when the additional correction of ΔL = (n−1) × Δd × 0.03 is performed, the focus shift associated with the aberration correction does not occur. Another feature of this lens type is that the change in working distance accompanying the change in glass thickness is close to the air equivalent optical path length (= thickness change amount / refractive index of glass) of the glass thickness change. In this embodiment, from the lens data, when the amount of change in the thickness of the glass 31 is 2 mm, the air equivalent optical path length changes by 1.313 mm (= 2 / 1.523 mm), whereas the working distance changes. The amount is 1.382 mm (= 4.698-3.316). This means that even when the focus correction is not performed, the focus shift that occurs when the aberration correction is performed is small. Therefore, according to the objective lens of the present embodiment, there is an advantage that even if the focus correction does not operate correctly for some reason, the focus is not suddenly shifted.
[0043]
The focus correction amount is as follows.
Focus correction amount = Change amount of cover glass thickness (air equivalent length) −Change amount of working distance + Additional correction amount Therefore, in this embodiment, the correction range of the cover glass thickness of the objective lens is 0 mm to 2 mm. The focus correction amount when the thickness is changed from 0 mm to 2 mm is as follows.
Change amount of cover glass thickness (air conversion length) = 1.313mm
Change in working distance = 1.382mm
Additional correction amount = − (1.523-1) × 2 × 0.03 = −0.031 mm
Figure 0003837059
[0044]
As described above, the microscope objective lens of the present invention has the following features in addition to the invention described in the claims.
[0045]
(1) The following conditional expression is satisfied, where F1 is the force of a spring that pushes the lens frame that encloses the moving lens group, and F2 is the force of a spring that pushes the lens frame that wraps the entire optical system. The microscope objective lens according to claim 1.
2 x F1 <F2
[0046]
(2) The microscope objective lens according to (3), wherein each of the cams is disposed to face the circumference of the ring-shaped member.
[0047]
(3) The amount of movement of the lens barrel enclosing the entire optical system including the moving lens group is the amount of change in the thickness of the transparent member interposed between the sample and the objective lens (air conversion length) −the amount of change in the working distance + addition 4. The microscope objective lens according to claim 1, wherein the microscope objective lens is set with a correction amount.
[0048]
(4) The additional correction amount is an amount obtained by multiplying a predetermined coefficient, and is obtained by increasing the value of the coefficient as the numerical aperture of the objective lens increases. The objective lens described.
[0049]
(5) The microscope objective lens according to claim 1 or 3, wherein the focal distance is changed.
[0050]
【The invention's effect】
According to the present invention, even when compared with a conventional objective lens with an aberration correction mechanism, aberration correction and focus correction are performed simultaneously without requiring a large number of parts and without increasing the size of the objective lens. The objective lens can be configured. As a result, when aberration correction is performed, changes in aberration can be captured continuously, so that the user of the microscope can easily find the position where the image looks sharpest. Therefore, the efficiency of observation is significantly improved compared to conventional products, and the performance of the objective lens can be maximized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a part of a process of an adjustment method in an objective lens with a correction ring according to the present invention, the left side is an explanatory diagram showing the positional relationship between the objective lens and a sample, and the right side is an aberration diagram.
FIG. 2 is a cross-sectional view showing an embodiment of a microscope objective lens according to the present invention.
3 is a perspective view showing a configuration of a cam ring used in the microscope objective lens of FIG. 2, in which (a) is a view seen from one cam side, and (b) is a view seen from the other cam side.
FIG. 4 is a cross-sectional view showing another embodiment of the microscope objective lens according to the present invention.
FIG. 5 is an aberration diagram of the microscope objective lens in a state where aberration correction is insufficient, and shows that the position of the paraxial image and the focus position are different.
FIG. 6 is a cross-sectional view along the optical axis showing the lens configuration of the objective lens in the present embodiment, where the thickness of the glass 31 interposed between the specimen and the objective lens is (a) 0 mm, (b) Indicates the state when 1 mm and (c) is 2 mm.
7 is a graph showing the spherical aberration when the spherical aberration of the glass 31 interposed between the specimen and the objective lens in the objective lens of FIG. 6 is changed, (a) is 0 mm, (b) is 1 mm, (c) shows the state of spherical aberration at 2 mm.
FIG. 8 is a cross-sectional view along the optical axis showing the lens configuration of the imaging lens used in the present embodiment.
FIG. 9 is an explanatory diagram showing a focus correction amount in the present embodiment.
FIG. 10 is a diagram showing one adjustment method in a conventional objective lens with a correction ring, and is an explanatory diagram showing a positional relationship between the objective lens and a sample.
11A and 11B are diagrams showing another adjustment method in a conventional objective lens with a correction ring, in which the left side is an explanatory diagram showing the positional relationship between the objective lens and the sample, and the right side is an aberration diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Moving lens group 1a Lens frame 2 which wraps a moving lens group 3 Cam ring 3 Pin connected to the lens frame which wraps a moving lens group 4 Pin connected to the lens frame which wraps the whole optical system of an objective lens 5 Lens which wraps a moving lens group Spring 6 that pushes the frame Spring 7 that pushes the lens frame that wraps the entire optical system of the objective lens 7 Ring-shaped member 7a Operation part 8 Mirror frame 9 that wraps the optical system of the objective lens 10 A member in which the cam ring and the operation part are integrated 10 Stopper 11 Movement Cam 12 that gives motion to the lens frame that encloses the lens group Cam 13 that gives motion to the lens frame that envelops the entire optical system of the objective lens Apertures 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
Lens 24 Design focus position (Paraxial focus position)
25 Apparent focus position 31 Cover glass 100 Front lens 101 Moving lens group 102 Rear lens 103 Cover glass

Claims (2)

鏡筒である第一の保持部材と、
前記第一の保持部材に保持され該第一の保持部材に対して光軸に沿って移動可能な鏡枠である第二の保持部材と、
前記第二の保持部材に保持され該第二の保持部材に対して光軸に沿って移動可能なレンズ枠である第三の保持部材と、
前記第二の保持部材と前記第三の保持部材の間に設置され該第三の保持部材を該第二の保持部材から離れる方向に押す第一のばねと、
前記第一の保持部材と前記第二の保持部材の間に設置され該第二の保持部材を該第一の保持部材から離れる方向に押す第二のばねと、
前記第三の保持部材に保持され収差の発生量を変化させるための移動レンズ群と、
前記移動レンズ群を含む複数のレンズ群からなり前記第二の保持部材に該移動レンズ群以外のレンズ群が保持されていてピント位置を合わせるために移動させられるとき該第二の保持部材に保持されているレンズ群と該移動レンズ群とのレンズ間隔が変化する対物レンズ系と、
前記第二の保持部材と前記第三の保持部材に連動し両保持部材を異なる移動量でそれぞれ移動させる駆動手段とを備え、
前記第一のばねの装備力量F1と前記第二のばねの装備力量F2が下記の条件式(1)を満たすことを特徴とする顕微鏡対物レンズ
2 × F1 < F2 ・・・(1)
A first holding member that is a lens barrel ;
A second holding member which is movable lens frame along the optical axis for the first said first holding member held by the holding member,
A third holding member is movable lens frame along the optical axis for the second said second holding member held by the holding member,
A first spring pushing the said third holding member being disposed between said third retaining member and said second holding member in a direction away from said second holding member,
A second spring pushing away the installed said second retaining member from said first holding member between the second holding member and the first holding member,
And moving lens group for being held in the third holding member to change the amount of generation of revenue difference,
When the lens group other than the moving lens group is held by the second holding member and is moved to adjust the focus position, the second holding member holds the second holding member. An objective lens system in which a lens interval between the lens group being moved and the moving lens group is changed ;
Drive means for moving both the holding members in different moving amounts in conjunction with the second holding member and the third holding member;
The microscope objective lens according to claim 1 , wherein an installation force amount F1 of the first spring and an installation force amount F2 of the second spring satisfy the following conditional expression (1) .
2 × F1 <F2 (1)
前記駆動手段は前記第三の保持部材を移動させる第一のカムと前記第二の保持部材を移動させる第二のカムとを有するカムリングであることを特徴とする請求項1に記載の顕微鏡対物レンズ。Said drive means according to claim 1, characterized in that the cam ring and a second cam for moving the first cam and the previous SL second holding member for moving the pre-Symbol third holding member Microscope objective lens.
JP2001361240A 2001-11-27 2001-11-27 Microscope objective lens Expired - Fee Related JP3837059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001361240A JP3837059B2 (en) 2001-11-27 2001-11-27 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001361240A JP3837059B2 (en) 2001-11-27 2001-11-27 Microscope objective lens

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006085238A Division JP2006184929A (en) 2006-03-27 2006-03-27 Microscope objective lens

Publications (2)

Publication Number Publication Date
JP2003161887A JP2003161887A (en) 2003-06-06
JP3837059B2 true JP3837059B2 (en) 2006-10-25

Family

ID=19171936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001361240A Expired - Fee Related JP3837059B2 (en) 2001-11-27 2001-11-27 Microscope objective lens

Country Status (1)

Country Link
JP (1) JP3837059B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361912A1 (en) * 2003-12-24 2005-07-21 Carl Zeiss Jena Gmbh Microscope objective with axially adjustable correction sockets
JP4744123B2 (en) * 2004-11-18 2011-08-10 オリンパス株式会社 Infinity designed objective optical system and infinity optical unit
JP4646551B2 (en) * 2004-06-09 2011-03-09 オリンパス株式会社 Microscope objective lens
JP4685399B2 (en) * 2004-09-30 2011-05-18 オリンパス株式会社 Objective lens with correction mechanism
JP2006153851A (en) * 2004-11-08 2006-06-15 Matsushita Electric Ind Co Ltd Confocal optical device and spherical aberration correcting method
JP2008276070A (en) 2007-05-02 2008-11-13 Olympus Corp Magnifying image pickup apparatus
JP5108627B2 (en) * 2008-05-23 2012-12-26 オリンパス株式会社 Observation apparatus and observation method

Also Published As

Publication number Publication date
JP2003161887A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
CN111812910B (en) Folding camera module
JP5387588B2 (en) Imaging optical system, microscope apparatus and stereomicroscope apparatus having the imaging optical system
US7564632B2 (en) Projection zoom lens
WO2014045800A1 (en) Endoscope objective lens
JP2008107391A (en) Object optical system for endoscope
US7457049B2 (en) High magnification zoom lens
JP2008535012A (en) Image forming optical system having optical power control
US8379318B2 (en) Zoom lens, optical apparatus and method of manufacturing zoom lens
US9239449B2 (en) Anamorphic objective zoom lens
US8625203B2 (en) Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JPH05119263A (en) Microscope objective
JP2019164176A (en) Projection optical system unit, projection optical system, and projection optical device
CN115061332B (en) Conversion lens, interchangeable lens, and image pickup apparatus
JP5570171B2 (en) Imaging device and surveillance camera
JP3837059B2 (en) Microscope objective lens
US4548481A (en) Variable magnification observation optical device
KR100758291B1 (en) Refraction type small zoom lens optical system
US9841538B2 (en) Anamorphic objective zoom lens
JP2010256491A (en) Illumination apparatus and microscope with the same
US5914819A (en) Image pickup apparatus having lens holding unit and adjustment mechanism
JP2012501004A (en) Objective lens system
WO2021171030A1 (en) A camera assembly
JP2006184929A (en) Microscope objective lens
JP2006003589A (en) Variable-focus lens
JP4143170B2 (en) Zoom lens and projection apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees