JP3835934B2 - Fuel pressure control device for in-cylinder direct injection internal combustion engine - Google Patents

Fuel pressure control device for in-cylinder direct injection internal combustion engine Download PDF

Info

Publication number
JP3835934B2
JP3835934B2 JP27925198A JP27925198A JP3835934B2 JP 3835934 B2 JP3835934 B2 JP 3835934B2 JP 27925198 A JP27925198 A JP 27925198A JP 27925198 A JP27925198 A JP 27925198A JP 3835934 B2 JP3835934 B2 JP 3835934B2
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
pressure
temperature
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27925198A
Other languages
Japanese (ja)
Other versions
JP2000110621A (en
Inventor
直樹 山本
芳裕 岡田
岩根 井之口
弘二 松藤
喜也 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP27925198A priority Critical patent/JP3835934B2/en
Publication of JP2000110621A publication Critical patent/JP2000110621A/en
Application granted granted Critical
Publication of JP3835934B2 publication Critical patent/JP3835934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、筒内直噴式内燃機関において燃圧を可変的に制御する燃圧制御装置に関する。
【0002】
【従来の技術】
例えばシリンダ内にガソリン等の燃料を直接噴射する筒内直噴式内燃機関においては、非常に高い燃圧が要求されるため、機関出力で駆動される機械式の高圧燃料ポンプを用いるとともに、その高圧側つまり吐出側に電子制御型の可変プレッシャレギュレータを設け、吐出された燃料の一部を低圧側へリークすることにより、目標とする燃圧に調整するようにした燃料供給系が多く採用されている(例えば特開平5−149168号公報参照)。
【0003】
ここで、上記燃圧は、従来から、機関運転条件、例えば機関回転数や機関負荷に応じて可変的に制御されている。例えば、高速域および高負荷域では、比較的高くし、低速低負荷域では比較的低くし、かつ残りの中速域および中負荷域では、中間の燃圧とするように、運転条件に応じた燃圧が与えられる。
【0004】
また、上記燃料ポンプとしては、例えば、特開平10−82353号公報に記載されている斜板型ポンプ等が用いられる。この斜板型ポンプは、回転軸に取り付けられた斜板に対向して複数のシリンダを配置し、このシリンダに組み合わされたプランジャを、斜板の回転に伴う一種のカム作用によって往復動作させるようにしたものであって、シリンダが配置される燃料室内には燃料(例えばガソリン)が満たされており、各摺動部がその燃料自体によって潤滑されるようになっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のように、ガソリン等の燃料自体で摺動部の潤滑を行う場合、そもそも燃料の粘度が低く、潤滑性能の点で不利となるが、特に、燃料温度(燃温)が異常に高くなると、燃料の粘性が低くなり、摺動部で十分な潤滑油膜が確保できなくなって、フリクションが増加し、燃費の悪化や極端な場合は摩耗の増加を招来する、という不具合があった。
【0006】
なお、ポンプ回転数が高くなる機関の高速域では、摺動速度が大となり、摩擦熱が発生して摺動部の温度が高くなることから、燃料の粘性がさらに低下し、油膜確保が困難となるが、逆に、ポンプ回転数が低くなる機関低速域では、摺動速度が小さいことから、油膜厚さを有効に確保することが困難となり易い。また、機関の低負荷域では、燃料噴射量が少なく、燃料ポンプからの熱の持ち出しが少ないので、燃料温度が一層高くなり易い。
【0007】
【課題を解決するための手段】
そこで、この発明は、請求項1のように、内燃機関の回転によって機械的に駆動される燃料ポンプと、この燃料ポンプの高圧側から吐出燃料の一部を低圧側へリークすることにより燃圧を可変に制御する燃圧制御手段と、を備えてなる筒内直噴式内燃機関の燃圧制御装置において、燃料温度を検出もしくは推定する燃料温度検出手段を備え、この燃料温度が所定温度よりも高いときに燃圧を低下させることを特徴としている。
【0008】
燃料ポンプにおいては、一般に、各摺動部の面圧は、該燃料ポンプで生成する燃圧の高低に依存する。従って、高燃温時に上記のように燃圧を低下させると、燃料ポンプの各摺動部に加わる面圧が低下し、摺動部における油膜厚さが増大する。これにより、過度のフリクションの増加が回避される。
【0009】
この請求項1の発明をさらに具体化した請求項の発明では、内燃機関の負荷および回転数をパラメータとして通常時の目標燃圧を割り付けた通常時燃圧マップと、同じく内燃機関の負荷および回転数をパラメータとして燃料温度が高いときの目標燃圧を割り付けた高燃温時燃圧マップとを有し、燃料温度が所定温度よりも高いときに通常時燃圧マップから高燃温時燃圧マップに切り換えることを特徴としている。
【0010】
上記高燃温時燃圧マップとしては、例えば、負荷および回転数の全域で一定の目標燃圧とすることも可能であり、また、通常時の目標燃圧の特性に沿って、各運転領域で通常時の目標燃圧よりも一定量づつ低い目標燃圧とすることもできる。また、通常時の目標燃圧の特性とは無関係に、高燃温時に適した特性に目標燃圧を割り付けるようにしてもよい。
【0011】
また、請求項の発明は、吸入行程において燃料を噴射する均質燃焼と、圧縮行程後半において燃料を噴射する成層燃焼と、が、機関運転条件に応じて切換制御される筒内直噴式内燃機関を前提としており、燃料温度が所定温度よりも高いときに、燃圧を低下させるとともに、成層燃焼を禁止するようになっている。
【0012】
燃焼室内に生成される混合気を成層化し、全体として希薄な空燃比の下で確実な着火燃焼を実現するためには、高い噴射圧が必要であり、また噴射時期も非常に重要である。燃温に基づいて燃圧を低下させると、噴射圧が不十分となり易く、また噴射期間も長くなってしまうことから、成層燃焼は不安定化する。そこで、この請求項3の発明では、運転条件に拘わらず、均質燃焼に強制的に維持するようにし、燃焼の不安定化を回避している。
【0013】
さらに、請求項の発明では、所定負荷以上の高負荷域および所定回転数以上の高速域では、高燃温時の燃圧低下制御を禁止するようにしている。これにより、燃圧低下に伴う高負荷域もしくは高速域での過度の排温の上昇やスモークの悪化を回避できる。
【0014】
【発明の効果】
この発明に係る筒内直噴式内燃機関の燃圧制御装置によれば、燃料温度が上昇したときの燃料の粘性低下に伴う燃料ポンプ各部の潤滑不良を防止でき、フリクションの増加、ひいては燃費の悪化や摩耗の増加を防止できる。
【0015】
特に請求項の発明によれば、燃圧低下と同時に成層燃焼を禁止することで、燃圧の低下に伴う燃焼の不安定化を未然に回避することができる。
【0016】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0017】
図1は、筒内直噴式内燃機関1の燃料系を示す構成説明図であって、燃料タンク2内に電動式の低圧燃料ポンプ3が収容されており、この低圧燃料ポンプ3から圧送される燃料が高圧燃料ポンプ4に導入されている。この高圧燃料ポンプ4は、内燃機関1のクランクシャフトもしくはカムシャフトによって駆動される機械式のものであって、ここで加圧された高圧燃料が、高圧燃料通路6を介して各気筒の燃料噴射弁5に供給されている。上記高圧燃料通路6には、燃圧を検出する燃圧センサ7が配設されている。また、燃圧制御手段として、上記高圧燃料通路6から高圧燃料の一部をリークするように、可変プレッシャレギュレータ8が設けられている。この可変プレッシャレギュレータ8は、高圧燃料ポンプ4とともに高圧ポンプユニット9として一体化されている。上記可変プレッシャレギュレータ8を介してリークした燃料は、リターン通路10によって高圧燃料ポンプ入口に戻される。
【0018】
上記可変プレッシャレギュレータ8は、コントロールユニット11から出力される駆動パルス信号によって開度が制御されるものであって、上記コントロールユニット11には、上記燃圧センサ7によって検出される燃圧信号が入力されるほか、機関運転条件を示すエアフロメータ12、クランク角センサ13、スロットル開度センサ14等の検出信号が入力されており、後述するように、機関運転条件に応じて設定される目標燃圧となるように、駆動パルス信号のデューティ比がフィードバック制御されるようになっている。なお、デューティ比は機関運転条件に応じたオープンループ制御とし、燃圧センサ7の検出値を、燃料噴射パルスの補正のみに用いるようにしてもよい。また上記燃料タンク2には、燃料温度を検出する燃料温度センサ15が設けられている。
【0019】
図2は、上記高圧燃料ポンプ4およびこれと一体化されている可変プレッシャレギュレータ8の具体的な構成を示している。上記高圧燃料ポンプ4は、例えば特開平10−82353号公報等に記載されている公知の斜板型ポンプから構成されており、ベース部21とカバー22とによってポンプハウジングが構成され、そのカバー22側に回転軸23が回転自在に支持されている。この回転軸23の先端には、斜板24が固定されており、かつ、この斜板24に、該斜板24の回転に伴って揺動する揺動板25が組み合わされている。この揺動板25の外周部に対向して、ベース部21側に複数のシリンダボア26が形成されており、このシリンダボア26に、プランジャ27が摺動可能に嵌合している。上記揺動板25は、斜板24に対し相対回転可能となっており、ベース部21に対しては回転せずに揺動運動のみを行う。上記プランジャ27は、その先端が半球状に形成されており、かつこれに対応して半球状の凹部を有するスリッパ28を介して上記揺動板25に当接している。また、揺動板25の外周縁にベローズ29A先端が連結されており、このベローズ29A内部が燃料室29として低圧燃料で満たされている。従って、斜板24が回転して揺動板25が揺動すると、シリンダボア26に嵌合したプランジャ27がストロークし、燃料室29内から燃料を吸い込むとともに加圧して、高圧室30へ吐出する。この高圧室30は、上述した高圧燃料通路6を介して各気筒の燃料噴射弁5に連通している。
【0020】
また可変プレッシャレギュレータ8は、高圧燃料ポンプ4のベース部21と一体化されたベース部31と、このベース部31に取り付けられた略円筒状のバルブ部32と、に大別され、バルブ部32の中心にプランジャを兼ねた弁体33が摺動可能に配設されているとともに、この弁体33を囲むようにソレノイド34が配設されている。またベース部31には、上記弁体33先端に対向するようにバルブシート35が設けられており、その中心部に連通するように高圧側通路37が、また側方に連通するように低圧側通路38が、それぞれ形成されている。上記弁体33は、リターンスプリング36によって、バルブシート35に着座する方向に付勢されている。そして、上記高圧側通路37は上記高圧室30に、上記低圧側通路38は上記燃料室29に、それぞれ連通しており、弁体33の開度に応じて高圧室30から低圧側へ高圧燃料の一部がリークし、燃圧を可変制御できるようになっている。この可変プレッシャレギュレータ8は、例えば160Hz程度の周波数の駆動パルス信号でもって開度制御され、その平均的な開度が、駆動パルス信号のデューティ比に応じて連続的に変化するものであって、ONデューティ比が大となると、開度も大となり、逆に燃圧は低下する。
【0021】
上記のような高圧燃料ポンプ4においては、例えば、スリッパ28とプランジャ27先端部との間、あるいはスリッパ28と揺動板25との間、等の摺動部が、燃料室29内の燃料自体によって潤滑される。そして、これらのスリッパ28やプランジャ27等の摺動部には、プランジャ27によって加圧される燃料圧力の反力が面圧として作用する。従って、上記の反力つまり燃圧が高いほど、潤滑条件は厳しいものとなる。
【0022】
そこで、本発明では、燃料の粘性が低下する過度の高燃温時には、燃圧を低下させ、上記の摺動部において十分な潤滑油膜を確保できるようにしている。
【0023】
次に、図3のフローチャートに基づいて、本発明に係る燃圧制御について説明する。
【0024】
このフローチャートの処理は、内燃機関1の運転中繰り返し実行されるものであって、先ずステップ1で内燃機関1の負荷、回転数、スロットル開度等の運転条件を読み込み、ステップ2で、燃料温度センサ15が検出した燃料タンク2内の燃料温度から燃料ポンプ4内の燃料温度Tを推定する。なお、燃料ポンプ4自体に燃料温度センサを設けるようにしてもよい。あるいは、燃料温度センサを全く具備せずに、冷却水温から燃料温度を推定するようにしてもよい。そして、ステップ3で、この燃料温度Tを所定の上限温度T1と比較する。
【0025】
上限温度T1は、潤滑に必要な粘性を維持し得る燃料温度の上限となるもので、例えば80℃程度に設定される。実際の燃料温度Tがこの上限温度T1未満であれば、ステップ3からステップ4へ進み、通常時の燃圧マップに基づいて、目標燃圧を決定する。この通常時燃圧マップは、内燃機関1の負荷(例えば基本燃料噴射量Tp)および回転数をパラメータとして、例えば図4に示すような特性に設定されている。この実施例では、内燃機関1の負荷および回転数によって、図示するように燃圧がP1,P2,P3の3段階に制御され、かつ、P1<P2<P3の関係となっている。そして、ステップ5へ進み、この目標燃圧に沿って、必要なデューティ比がセットされる。なお、高圧燃料ポンプ4の回転数は、機関回転数に比例したものとなり、高速域ほど吐出量は大となるので、同一の燃圧に維持するのに必要なデューティ比は、機関回転数(ポンプ回転数)に応じて変化し、高速域ほどデューティ比を大きくする必要がある。
【0026】
一方、ステップ3で燃料温度Tが上限温度T1以上であると判断した場合には、ステップ6へ進み、機関負荷Tpが所定負荷Tp0より小さくかつ機関回転数Nが所定回転数N0よりも低い、という条件を満たすか否かを判定する。この条件を満たさない場合には、燃料温度が高くとも燃圧低下は実行せず、ステップ4へ進む。つまり、所定負荷以上の高負荷域ならびに所定回転数以上の高速域では、過度に排温が上昇したりスモークが悪化する恐れがあるので、燃圧低下は行わない。
【0027】
ステップ6で、YESの場合は、燃圧低下を実行するが、その際に、ステップ7において、内燃機関1の成層燃焼領域であるか均質燃焼領域であるかを判定し、もし成層燃焼領域であった場合には、ステップ8において、強制的に均質燃焼に切り換える。図5は、成層燃焼領域と均質燃焼領域とを示す特性図であって、図示するように、比較的低速低負荷側の領域において成層燃焼となり、高速高負荷側の領域では、均質燃焼となる。この均質燃焼の場合には、燃料は、吸入行程において噴射され、上死点付近で略一様に混合した混合気に点火される。また成層燃焼の場合には、圧縮行程後半においてピストン頂面の凹部へ向けて燃料が噴射され、混合気が成層化されるとともに、その中の比較的濃い部分に上死点付近で点火される。なお、この成層燃焼の場合、全体の平均的な空燃比は、非常にリーンとなる。
【0028】
従って、燃圧低下に際し、上記のように成層燃焼を禁止することにより、燃圧低下に伴う燃焼の不安定化が未然に防止される。
【0029】
次にステップ9へ進み、高燃温時の燃圧マップに基づいて、目標燃圧を決定する。この高燃温時燃圧マップは、上述した通常時燃圧マップに比較して目標燃圧が低くなるように設定されている。そして、目標燃圧を決定した後、ステップ5へ進み、この目標燃圧に沿って、必要なデューティ比がセットされる。
【0030】
図6は、高燃温時燃圧マップの一例を示したものであって、この実施例では、全領域で一定の目標燃圧P4となっており、特に、この高燃温時の目標燃圧P4が、上述した通常時の燃圧P1,P2,P3の中の最も低い燃圧P1よりもさらに低く設定されている。
【0031】
また、図7は、高燃温時燃圧マップの他の例を示したものであって、この実施例では、通常時燃圧マップと同様に3つの運転領域に区画され、それぞれの燃圧P5,P6,P7が、上述した通常時の燃圧P1,P2,P3よりも一定量づつ低い値となっている。従って、この高燃温時燃圧マップの中では、P5<P6<P7の関係となっている。
【0032】
また、図8は、高燃温時燃圧マップのさらに他の例を示したものであって、この実施例では、所定の負荷Tp1および回転数N1,N2によって、6つの運転領域に区画され、それぞれの燃圧P8〜P13が、上述した通常時の燃圧P1,P2,P3よりも低い値となっている。ここで、高負荷側の燃圧P8,P9,P10と低負荷側の燃圧P11,P12,P13とを比較すると、それぞれ低負荷側の方が相対的に低い値となっている。つまり、P11<P8、P12<P9、P13<P10の関係となっている。これは、低負荷側の方が燃料噴射量が少なく、燃料ポンプ4からの熱の持ち出しが少なくなって、燃料ポンプ4内の燃温が一層上昇し易いことを考慮したものである。また、回転数については、低速側および高速側の双方で中速域よりも低い値となっている。つまり、P8<P9,P9>P10ならびにP11<P12,P12>P13の関係がある。これは、低速域では、ポンプ回転数が低くなり、摺動部の摺動速度が小さいことから、油膜厚さを有効に確保することができないこと、逆に、ポンプ回転数が高くなる機関の高速域では、摺動速度が大となり、摩擦熱が発生して摺動部の温度が高くなることから、燃料の粘性がさらに低下し、油膜確保が困難となること、をそれぞれ考慮したものである。
【0033】
なお、上記のように燃圧を低下させたとしても、実際の燃圧が、燃圧センサ7によって検出され、これに応じて燃料噴射弁5の駆動パルス信号が補正される。つまり、通常時に比較して噴射期間が長くなるように補正され、所定の燃料量が噴射される。
【0034】
また、図3のフローチャートのステップ3では、単に燃料温度Tを所定の上限温度T1と比較するものとして示されているが、当然のことながら、この上限温度T1には、適宜なヒシテリシスが与えられており、上限温度T1付近で燃圧が頻繁に変化するようなことはない。
【図面の簡単な説明】
【図1】この発明に係る燃圧制御装置を備えた筒内直噴式内燃機関の燃料系の構成説明図。
【図2】その燃料ポンプおよび可変プレッシャレギュレータの断面図。
【図3】燃圧制御の一実施例を示すフローチャート。
【図4】通常時燃圧マップの特性を示す特性図。
【図5】均質燃焼領域と成層燃焼領域とを示す特性図。
【図6】高燃温時燃圧マップの一例を示す特性図。
【図7】高燃温時燃圧マップの異なる例を示す特性図。
【図8】高燃温時燃圧マップのさらに異なる例を示す特性図。
【符号の説明】
4…高圧燃料ポンプ
8…可変プレッシャレギュレータ
11…コントロールユニット
15…燃料温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel pressure control device that variably controls fuel pressure in a direct injection type internal combustion engine.
[0002]
[Prior art]
For example, an in-cylinder direct injection internal combustion engine that directly injects fuel such as gasoline into a cylinder requires a very high fuel pressure. Therefore, a mechanical high-pressure fuel pump driven by engine output is used, In other words, a fuel supply system in which an electronically controlled variable pressure regulator is provided on the discharge side and a part of the discharged fuel is leaked to the low pressure side to be adjusted to the target fuel pressure is often employed ( For example, refer to Japanese Patent Laid-Open No. 5-149168).
[0003]
Here, the fuel pressure is conventionally variably controlled in accordance with engine operating conditions, such as engine speed and engine load. For example, depending on the operating conditions, it should be relatively high in the high speed range and high load range, relatively low in the low speed and low load range, and intermediate fuel pressure in the remaining medium speed range and medium load range. Fuel pressure is given.
[0004]
As the fuel pump, for example, a swash plate type pump described in JP-A-10-82353 is used. In this swash plate type pump, a plurality of cylinders are arranged opposite to a swash plate attached to a rotating shaft, and a plunger combined with the cylinders is reciprocated by a kind of cam action accompanying rotation of the swash plate. The fuel chamber in which the cylinder is disposed is filled with fuel (for example, gasoline), and each sliding portion is lubricated by the fuel itself.
[0005]
[Problems to be solved by the invention]
However, as described above, when the sliding portion is lubricated with fuel such as gasoline itself, the viscosity of the fuel is low in the first place, which is disadvantageous in terms of lubrication performance. In particular, the fuel temperature (fuel temperature) is abnormal. When it is high, there is a problem that the viscosity of the fuel becomes low and a sufficient lubricating oil film cannot be secured at the sliding portion, the friction increases, the fuel consumption deteriorates, and in the extreme case, the wear increases.
[0006]
In the high speed range of the engine where the pump speed increases, the sliding speed becomes large, frictional heat is generated, and the temperature of the sliding part increases, so the viscosity of the fuel further decreases and it is difficult to secure an oil film. However, conversely, in the engine low speed range where the pump rotation speed is low, the sliding speed is low, so that it is difficult to effectively ensure the oil film thickness. Further, in a low load region of the engine, the fuel injection amount is small, and heat is not taken out from the fuel pump, so that the fuel temperature is likely to be further increased.
[0007]
[Means for Solving the Problems]
Accordingly, the present invention provides a fuel pump mechanically driven by the rotation of the internal combustion engine as in claim 1 and a fuel pressure by leaking a part of the discharged fuel from the high pressure side of the fuel pump to the low pressure side. A fuel pressure control device for a direct injection type internal combustion engine, wherein the fuel pressure control device includes a fuel temperature detection device for detecting or estimating the fuel temperature, and the fuel temperature is higher than a predetermined temperature. It is characterized by lowering the fuel pressure.
[0008]
In a fuel pump, the surface pressure of each sliding part generally depends on the level of fuel pressure generated by the fuel pump. Therefore, when the fuel pressure is lowered as described above at the high fuel temperature, the surface pressure applied to each sliding portion of the fuel pump is lowered, and the oil film thickness at the sliding portion is increased. This avoids an excessive increase in friction.
[0009]
In the invention of claim 3 , which further embodies the invention of claim 1, a normal time fuel pressure map in which the target fuel pressure at the normal time is assigned with the load and speed of the internal combustion engine as parameters, and the load and speed of the internal combustion engine are also used. And a fuel pressure map at high fuel temperature at which the target fuel pressure when the fuel temperature is high is assigned as a parameter, and when the fuel temperature is higher than a predetermined temperature, the normal fuel pressure map is switched to the fuel pressure map at high fuel temperature. It is a feature.
[0010]
As the high fuel temperature fuel pressure map, for example, it is possible to set a constant target fuel pressure over the entire range of the load and the rotational speed, and in accordance with the characteristics of the target fuel pressure at the normal time, The target fuel pressure can be made lower by a certain amount than the target fuel pressure. Further, the target fuel pressure may be assigned to a characteristic suitable for a high fuel temperature regardless of the characteristic of the target fuel pressure at the normal time.
[0011]
According to a fourth aspect of the present invention, there is provided an in-cylinder direct injection internal combustion engine in which homogeneous combustion for injecting fuel in the intake stroke and stratified combustion for injecting fuel in the latter half of the compression stroke are switched and controlled in accordance with engine operating conditions. The fuel pressure is lowered and the stratified combustion is prohibited when the fuel temperature is higher than a predetermined temperature.
[0012]
In order to stratify the air-fuel mixture generated in the combustion chamber and achieve reliable ignition combustion under a lean air-fuel ratio as a whole, a high injection pressure is required, and the injection timing is also very important. If the fuel pressure is reduced based on the fuel temperature, the injection pressure tends to be insufficient, and the injection period becomes longer, so stratified combustion becomes unstable. Therefore, in the invention of claim 3, the combustion is forcibly maintained regardless of the operating conditions, and the instability of the combustion is avoided.
[0013]
Further, in the first aspect of the invention, the fuel pressure lowering control at the high fuel temperature is prohibited in a high load region above a predetermined load and a high speed region above a predetermined rotation speed. Thereby, it is possible to avoid an excessive increase in exhaust temperature or deterioration of smoke in a high load region or a high speed region due to a decrease in fuel pressure.
[0014]
【The invention's effect】
According to the fuel pressure control apparatus for a direct injection type internal combustion engine according to the present invention, it is possible to prevent poor lubrication of each part of the fuel pump due to a decrease in the viscosity of the fuel when the fuel temperature rises, and to increase friction, which leads to deterioration of fuel consumption. Increase in wear can be prevented.
[0015]
In particular, according to the invention of claim 4 , by prohibiting stratified combustion simultaneously with a decrease in fuel pressure, instability of combustion accompanying a decrease in fuel pressure can be avoided in advance.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
FIG. 1 is an explanatory diagram showing a fuel system of a direct injection type internal combustion engine 1, in which an electric low-pressure fuel pump 3 is accommodated in a fuel tank 2, and is pumped from the low-pressure fuel pump 3. Fuel is introduced into the high-pressure fuel pump 4. The high-pressure fuel pump 4 is a mechanical type driven by a crankshaft or a camshaft of the internal combustion engine 1. The high-pressure fuel pressurized here is injected into the fuel of each cylinder via the high-pressure fuel passage 6. It is supplied to the valve 5. A fuel pressure sensor 7 for detecting the fuel pressure is disposed in the high pressure fuel passage 6. Further, a variable pressure regulator 8 is provided as a fuel pressure control means so as to leak a part of the high pressure fuel from the high pressure fuel passage 6. The variable pressure regulator 8 is integrated with the high pressure fuel pump 4 as a high pressure pump unit 9. The fuel leaked through the variable pressure regulator 8 is returned to the high pressure fuel pump inlet by the return passage 10.
[0018]
The opening of the variable pressure regulator 8 is controlled by a drive pulse signal output from the control unit 11, and a fuel pressure signal detected by the fuel pressure sensor 7 is input to the control unit 11. In addition, detection signals from the air flow meter 12, the crank angle sensor 13, the throttle opening sensor 14, and the like indicating engine operating conditions are input so that the target fuel pressure is set according to the engine operating conditions, as will be described later. In addition, the duty ratio of the drive pulse signal is feedback-controlled. The duty ratio may be open loop control according to the engine operating conditions, and the detection value of the fuel pressure sensor 7 may be used only for correcting the fuel injection pulse. The fuel tank 2 is provided with a fuel temperature sensor 15 for detecting the fuel temperature.
[0019]
FIG. 2 shows a specific configuration of the high-pressure fuel pump 4 and the variable pressure regulator 8 integrated therewith. The high-pressure fuel pump 4 is composed of a known swash plate type pump described in, for example, Japanese Patent Laid-Open No. 10-82353, and a base housing 21 and a cover 22 constitute a pump housing. A rotating shaft 23 is rotatably supported on the side. A swash plate 24 is fixed to the tip of the rotating shaft 23, and a swing plate 25 that swings with the rotation of the swash plate 24 is combined with the swash plate 24. A plurality of cylinder bores 26 are formed on the base portion 21 side so as to face the outer peripheral portion of the swing plate 25, and a plunger 27 is slidably fitted into the cylinder bore 26. The oscillating plate 25 is rotatable relative to the swash plate 24, and does not rotate with respect to the base portion 21, but only performs oscillating motion. The plunger 27 has a hemispherical tip and is in contact with the swing plate 25 via a slipper 28 having a corresponding hemispherical recess. The tip of the bellows 29A is connected to the outer peripheral edge of the swing plate 25, and the inside of the bellows 29A is filled with low pressure fuel as a fuel chamber 29. Accordingly, when the swash plate 24 rotates and the swing plate 25 swings, the plunger 27 fitted to the cylinder bore 26 strokes, sucks fuel from the fuel chamber 29 and pressurizes it, and discharges it to the high pressure chamber 30. The high pressure chamber 30 communicates with the fuel injection valve 5 of each cylinder via the high pressure fuel passage 6 described above.
[0020]
The variable pressure regulator 8 is roughly divided into a base portion 31 integrated with the base portion 21 of the high-pressure fuel pump 4 and a substantially cylindrical valve portion 32 attached to the base portion 31. A valve body 33 that also serves as a plunger is slidably disposed at the center of the valve body, and a solenoid 34 is disposed so as to surround the valve body 33. The base portion 31 is provided with a valve seat 35 so as to face the tip of the valve body 33. A high pressure side passage 37 communicates with the central portion of the base portion 31, and a low pressure side communicates laterally. Each passage 38 is formed. The valve body 33 is urged by a return spring 36 in the direction of seating on the valve seat 35. The high pressure side passage 37 communicates with the high pressure chamber 30, and the low pressure side passage 38 communicates with the fuel chamber 29, and the high pressure fuel is transferred from the high pressure chamber 30 to the low pressure side according to the opening of the valve element 33. A part of the fuel leaks, and the fuel pressure can be variably controlled. The variable pressure regulator 8 is controlled in opening degree by a drive pulse signal having a frequency of about 160 Hz, for example, and the average opening degree is continuously changed according to the duty ratio of the drive pulse signal, When the ON duty ratio increases, the opening degree also increases, and the fuel pressure decreases.
[0021]
In the high-pressure fuel pump 4 as described above, for example, a sliding part such as between the slipper 28 and the tip of the plunger 27 or between the slipper 28 and the swing plate 25, the fuel in the fuel chamber 29 itself. Lubricated by. A reaction force of the fuel pressure pressurized by the plunger 27 acts as a surface pressure on the sliding portions such as the slipper 28 and the plunger 27. Therefore, the higher the reaction force, that is, the fuel pressure, the more severe the lubrication conditions.
[0022]
Therefore, in the present invention, at an excessively high fuel temperature at which the viscosity of the fuel decreases, the fuel pressure is decreased so that a sufficient lubricating oil film can be secured in the sliding portion.
[0023]
Next, the fuel pressure control according to the present invention will be described based on the flowchart of FIG.
[0024]
The processing of this flowchart is repeatedly executed during the operation of the internal combustion engine 1. First, in step 1, operating conditions such as load, rotation speed, throttle opening, etc. of the internal combustion engine 1 are read. The fuel temperature T in the fuel pump 4 is estimated from the fuel temperature in the fuel tank 2 detected by the sensor 15. A fuel temperature sensor may be provided in the fuel pump 4 itself. Alternatively, the fuel temperature may be estimated from the cooling water temperature without providing any fuel temperature sensor. In step 3, the fuel temperature T is compared with a predetermined upper limit temperature T1.
[0025]
The upper limit temperature T1 is an upper limit of the fuel temperature at which the viscosity necessary for lubrication can be maintained, and is set to about 80 ° C., for example. If the actual fuel temperature T is lower than the upper limit temperature T1, the process proceeds from step 3 to step 4, and the target fuel pressure is determined based on the normal fuel pressure map. This normal fuel pressure map is set to characteristics as shown in FIG. 4, for example, with the load (for example, basic fuel injection amount Tp) and the rotational speed of the internal combustion engine 1 as parameters. In this embodiment, the fuel pressure is controlled in three stages of P1, P2 and P3 as shown in the figure depending on the load and the rotational speed of the internal combustion engine 1, and P1 <P2 <P3. Then, the process proceeds to step 5, and a required duty ratio is set along the target fuel pressure. The rotational speed of the high-pressure fuel pump 4 is proportional to the engine rotational speed, and the discharge amount increases as the speed increases. Therefore, the duty ratio required to maintain the same fuel pressure is determined by the engine rotational speed (pump It is necessary to increase the duty ratio as the speed increases.
[0026]
On the other hand, if it is determined in step 3 that the fuel temperature T is equal to or higher than the upper limit temperature T1, the process proceeds to step 6 where the engine load Tp is smaller than the predetermined load Tp0 and the engine speed N is lower than the predetermined speed N0. It is determined whether or not the condition is satisfied. If this condition is not satisfied, the fuel pressure reduction is not executed even if the fuel temperature is high, and the routine proceeds to step 4. That is, in a high load range above a predetermined load and a high speed range above a predetermined rotation speed, there is a risk that the exhaust temperature will rise excessively or smoke will deteriorate, so the fuel pressure is not reduced.
[0027]
If YES in step 6, the fuel pressure is reduced. At this time, in step 7, it is determined whether the combustion zone is the stratified combustion region or the homogeneous combustion region of the internal combustion engine 1, and if it is the stratified combustion region. If so, in step 8, the combustion is forcibly switched to homogeneous combustion. FIG. 5 is a characteristic diagram showing a stratified combustion region and a homogeneous combustion region. As shown in the figure, stratified combustion occurs in a region on a relatively low speed and low load side, and homogeneous combustion occurs in a region on a high speed and high load side. . In the case of this homogeneous combustion, the fuel is injected in the intake stroke and ignited to the air-fuel mixture that is mixed substantially uniformly near the top dead center. In the case of stratified combustion, fuel is injected toward the recess on the top surface of the piston in the latter half of the compression stroke, and the air-fuel mixture is stratified and ignited near the top dead center in a relatively dense portion therein. . In the case of stratified combustion, the overall average air-fuel ratio is very lean.
[0028]
Therefore, when the fuel pressure is lowered, the stratified combustion is prohibited as described above, thereby preventing the combustion from becoming unstable due to the fuel pressure drop.
[0029]
Next, it progresses to step 9, and a target fuel pressure is determined based on the fuel pressure map at the time of high fuel temperature. This high fuel temperature fuel pressure map is set so that the target fuel pressure is lower than the above-described normal fuel pressure map. Then, after determining the target fuel pressure, the routine proceeds to step 5 where a necessary duty ratio is set along the target fuel pressure.
[0030]
FIG. 6 shows an example of the fuel pressure map at the high fuel temperature. In this embodiment, the target fuel pressure P4 is constant in the entire region. In particular, the target fuel pressure P4 at the high fuel temperature is The fuel pressure P1 is set to be lower than the lowest fuel pressure P1 among the normal fuel pressures P1, P2 and P3.
[0031]
FIG. 7 shows another example of the fuel pressure map at the high fuel temperature. In this embodiment, the fuel pressure is divided into three operation areas in the same manner as the normal fuel pressure map. , P7 are values that are lower than the above-described normal fuel pressures P1, P2, P3 by a certain amount. Therefore, in this high fuel temperature fuel pressure map, the relationship is P5 <P6 <P7.
[0032]
FIG. 8 shows still another example of the fuel pressure map at high fuel temperature. In this embodiment, the fuel pressure map is divided into six operation regions by a predetermined load Tp1 and the rotational speeds N1 and N2. The respective fuel pressures P8 to P13 are lower than the above-described normal fuel pressures P1, P2, and P3. Here, when the fuel pressures P8, P9, P10 on the high load side and the fuel pressures P11, P12, P13 on the low load side are compared, the values on the low load side are relatively lower. That is, P11 <P8, P12 <P9, and P13 <P10. This is because the fuel injection amount is smaller on the low load side, heat is not taken out from the fuel pump 4, and the fuel temperature in the fuel pump 4 is more likely to rise. Further, the rotational speed is lower than the medium speed range on both the low speed side and the high speed side. That is, there is a relationship of P8 <P9, P9> P10 and P11 <P12, P12> P13. This is because, in the low speed range, the pump rotational speed is low and the sliding speed of the sliding part is small, so that the oil film thickness cannot be secured effectively, and conversely, the engine speed of the pump is high. In the high speed range, the sliding speed becomes large, frictional heat is generated, and the temperature of the sliding part becomes high, so that the viscosity of the fuel further decreases and it becomes difficult to secure an oil film. is there.
[0033]
Even if the fuel pressure is reduced as described above, the actual fuel pressure is detected by the fuel pressure sensor 7, and the drive pulse signal of the fuel injection valve 5 is corrected accordingly. That is, it is corrected so that the injection period is longer than in the normal time, and a predetermined amount of fuel is injected.
[0034]
Further, in step 3 of the flowchart of FIG. 3, the fuel temperature T is shown merely as being compared with the predetermined upper limit temperature T1, but naturally, an appropriate hysteresis is given to the upper limit temperature T1. Therefore, the fuel pressure does not change frequently near the upper limit temperature T1.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory diagram of a fuel system of a direct injection type internal combustion engine equipped with a fuel pressure control device according to the present invention.
FIG. 2 is a sectional view of the fuel pump and a variable pressure regulator.
FIG. 3 is a flowchart showing an embodiment of fuel pressure control.
FIG. 4 is a characteristic chart showing characteristics of a normal fuel pressure map.
FIG. 5 is a characteristic diagram showing a homogeneous combustion region and a stratified combustion region.
FIG. 6 is a characteristic diagram showing an example of a fuel pressure map at high fuel temperature.
FIG. 7 is a characteristic diagram showing different examples of fuel pressure maps at high fuel temperatures.
FIG. 8 is a characteristic diagram showing still another example of a fuel pressure map at high fuel temperature.
[Explanation of symbols]
4 ... High pressure fuel pump 8 ... Variable pressure regulator 11 ... Control unit 15 ... Fuel temperature sensor

Claims (4)

内燃機関の回転によって機械的に駆動される燃料ポンプと、この燃料ポンプの高圧側から吐出燃料の一部を低圧側へリークすることにより燃圧を可変に制御する燃圧制御手段と、を備えてなる筒内直噴式内燃機関の燃圧制御装置において、燃料温度を検出もしくは推定する燃料温度検出手段を備え、この燃料温度が所定温度よりも高いときに燃圧を低下させるとともに、所定負荷以上の高負荷域および所定回転数以上の高速域では、高燃温時の燃圧低下制御を禁止することを特徴とする筒内直噴式内燃機関の燃圧制御装置。A fuel pump mechanically driven by the rotation of the internal combustion engine, and fuel pressure control means for variably controlling the fuel pressure by leaking a part of the discharged fuel from the high pressure side of the fuel pump to the low pressure side. A fuel pressure control device for a direct injection type internal combustion engine, comprising fuel temperature detecting means for detecting or estimating a fuel temperature, and when the fuel temperature is higher than a predetermined temperature, the fuel pressure is reduced and a high load region that is equal to or higher than a predetermined load And a fuel pressure control device for a direct injection type internal combustion engine, which prohibits fuel pressure reduction control at a high fuel temperature in a high-speed range of a predetermined rotation speed or higher . 内燃機関の回転によって機械的に駆動される燃料ポンプと、この燃料ポンプの高圧側から吐出燃料の一部を低圧側へリークすることにより燃圧を可変に制御する燃圧制御手段と、を備えてなる筒内直噴式内燃機関の燃圧制御装置において、燃料温度を検出もしくは推定する燃料温度検出手段を備え、この燃料温度が所定温度よりも高いときに燃圧を低下させるとともに、高燃温時の燃圧が、回転数の低速側と高速側の双方で、中速域よりも低い値となっていることを特徴とする筒内直噴式内燃機関の燃圧制御装置。A fuel pump mechanically driven by the rotation of the internal combustion engine, and fuel pressure control means for variably controlling the fuel pressure by leaking a part of the discharged fuel from the high pressure side of the fuel pump to the low pressure side. in the fuel pressure control apparatus for a cylinder direct injection internal combustion engine, comprising a fuel temperature detection means for detecting or estimating the fuel temperature, with lowering the fuel pressure when the fuel temperature is higher than a predetermined temperature, the fuel pressure in the high fuel temperature A fuel pressure control device for a direct injection type internal combustion engine, wherein both the low speed side and the high speed side have a lower value than the medium speed range . 内燃機関の負荷および回転数をパラメータとして通常時の目標燃圧を割り付けた通常時燃圧マップと、同じく内燃機関の負荷および回転数をパラメータとして燃料温度が高いときの目標燃圧を割り付けた高燃温時燃圧マップとを有し、燃料温度が所定温度よりも高いときに通常時燃圧マップから高燃温時燃圧マップに切り換えることを特徴とする請求項1又は2に記載の筒内直噴式内燃機関の燃圧制御装置。A normal fuel pressure map that assigns the target fuel pressure at normal times using the load and speed of the internal combustion engine as parameters, and a high fuel temperature that assigns the target fuel pressure when the fuel temperature is high using the load and speed of the internal combustion engine as parameters. The direct-injection internal combustion engine according to claim 1 or 2, wherein the fuel pressure map is switched from a normal fuel pressure map to a high fuel temperature fuel pressure map when the fuel temperature is higher than a predetermined temperature. Fuel pressure control device. 吸入行程において燃料を噴射する均質燃焼と、圧縮行程後半において燃料を噴射する成層燃焼と、が、機関運転条件に応じて切換制御される筒内直噴式内燃機関であって、燃料温度が所定温度よりも高いときに、燃圧を低下させるとともに、成層燃焼を禁止することを特徴とする請求項1〜3のいずれかに記載の筒内直噴式内燃機関の燃圧制御装置。An in-cylinder direct injection internal combustion engine in which homogeneous combustion in which fuel is injected in the intake stroke and stratified combustion in which fuel is injected in the latter half of the compression stroke is controlled to be switched according to engine operating conditions. The fuel pressure control device for a direct injection type internal combustion engine according to any one of claims 1 to 3 , wherein the fuel pressure is reduced and stratified combustion is prohibited when the fuel pressure is higher.
JP27925198A 1998-10-01 1998-10-01 Fuel pressure control device for in-cylinder direct injection internal combustion engine Expired - Fee Related JP3835934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27925198A JP3835934B2 (en) 1998-10-01 1998-10-01 Fuel pressure control device for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27925198A JP3835934B2 (en) 1998-10-01 1998-10-01 Fuel pressure control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000110621A JP2000110621A (en) 2000-04-18
JP3835934B2 true JP3835934B2 (en) 2006-10-18

Family

ID=17608557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27925198A Expired - Fee Related JP3835934B2 (en) 1998-10-01 1998-10-01 Fuel pressure control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3835934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094524A (en) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd Control device for engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973923B1 (en) 2004-07-20 2005-12-13 International Engine Intellectual Property Company, Llc Dynamic fuel injection control pressure set-point limits
JP2007309199A (en) * 2006-05-18 2007-11-29 Nikki Co Ltd Fuel supply device for engine
US7726282B2 (en) 2006-08-04 2010-06-01 Toyota Jidosha Kabushiki Kaisha Direct injection spark ignition internal combustion engine and fuel injection method for same
JP4918911B2 (en) * 2007-12-25 2012-04-18 日産自動車株式会社 Fuel pressure control device for in-cylinder direct fuel injection spark ignition engine
JP5549633B2 (en) * 2011-03-31 2014-07-16 マツダ株式会社 Control device for spark ignition engine
JP6459463B2 (en) * 2014-12-12 2019-01-30 株式会社デンソー Control device for fuel injection system
KR102586933B1 (en) * 2018-07-12 2023-10-10 현대자동차주식회사 Variable low pressure fuel pump control method and fuel supply system for minimizing fuel consumption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094524A (en) * 2009-10-29 2011-05-12 Hitachi Automotive Systems Ltd Control device for engine

Also Published As

Publication number Publication date
JP2000110621A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3539302B2 (en) Fuel supply device for internal combustion engine
KR100372472B1 (en) Fuel pump control apparatus
JP4238890B2 (en) Fuel injection control device for internal combustion engine
KR100609104B1 (en) Fuel injection control apparatus and fuel injection control method for internal combustion engine
JP3400752B2 (en) Control device for internal combustion engine
JP3835934B2 (en) Fuel pressure control device for in-cylinder direct injection internal combustion engine
EP1602811B1 (en) Controller for internal combustion engine
JP5900150B2 (en) Start control device for in-cylinder internal combustion engine
JP3540095B2 (en) Abnormality judgment device in diesel engine injection timing control device
JPH04301148A (en) Device for adjusting oil pressure in control chamber of reciprocating pistion having compression height
JP5523082B2 (en) Early warm-up control method for internal combustion engine
JP3082509B2 (en) Control device for internal combustion engine
JPH1162680A (en) Control device for cylinder injection type spark ignition internal combustion engine
JP4075752B2 (en) Accumulated fuel injection system
JP4421451B2 (en) Abnormality detection device for fuel supply system for internal combustion engine
JP3180387B2 (en) Fuel injection control system for diesel engine
JPH04303141A (en) Controller for internal combustion engine
JP4138134B2 (en) Fuel injection pump injection timing control structure
JP2611357B2 (en) Fuel injection control device
JP7283279B2 (en) fuel pump controller
JP2020101147A (en) Control device of internal combustion engine
JP3628839B2 (en) Fuel injection timing control device for diesel engine
JPH02104941A (en) Device for controlling fuel injection of diesel engine
JP3643188B2 (en) Injection timing control device for electronically controlled diesel engine
JP2008128015A (en) Fuel supply control device of internal-combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees