JPH02104941A - Device for controlling fuel injection of diesel engine - Google Patents

Device for controlling fuel injection of diesel engine

Info

Publication number
JPH02104941A
JPH02104941A JP25807588A JP25807588A JPH02104941A JP H02104941 A JPH02104941 A JP H02104941A JP 25807588 A JP25807588 A JP 25807588A JP 25807588 A JP25807588 A JP 25807588A JP H02104941 A JPH02104941 A JP H02104941A
Authority
JP
Japan
Prior art keywords
injection
idling
time
cylinder
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25807588A
Other languages
Japanese (ja)
Other versions
JPH0778375B2 (en
Inventor
Eiji Aiyoshizawa
相吉澤 英二
Shunichi Aoyama
俊一 青山
Shogo Saegusa
三枝 省五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25807588A priority Critical patent/JPH0778375B2/en
Publication of JPH02104941A publication Critical patent/JPH02104941A/en
Publication of JPH0778375B2 publication Critical patent/JPH0778375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To restrain the lowering of torque or the increase of smoke at the time of the maximum injection quantity by correcting a fundamental injection starting timing based on the learned correcting quantity at the time of idling even in an operating condition other than the idling time. CONSTITUTION:A fundamental injecting term Avm and a fundamental injection starting timing Itm which are common to the whole cylinders are calculated by means 23, 24 in accordance with an accelerator pedal opening Acc and an engine speed N by sensors 21, 22. At the time of idling judged by a means 26, a feedback correcting quantity is learned by a means 25 so as t make engine speed for each cylinder 25 a predetermined target engine speed NM, and each fundamental injection starting timing Itm is corrected by this leaned feedback correcting quantity DELTAAvi even in an operating condition other than the idling time, to calculate a determined injecting term Avt and a determined injection starting timing Iti by a means 27. Thereby, the increase in idling noise or misfire at the time of flow temperature can be prevented, while suppressing the discharge of smoke at the time of injecting the maximum injection quantity.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はディーゼル機関の燃料噴射制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel injection control device for a diesel engine.

(従来の技術) 従来、自動車用ディーゼル機関等にあっては、アイドル
時等の振動を抑制するために、燃料噴射1等を気筒別に
電子制御するものがある。
(Prior Art) Conventionally, some diesel engines for automobiles electronically control fuel injection 1 and the like on a cylinder-by-cylinder basis in order to suppress vibrations during idling and the like.

このような制御装置として、アイドル回転数が予め定め
た目標回転数となるように、各気筒について検出したア
イドル回転数と目標回転数との偏差に基づいて閉弁期間
のフィードバック補正量を求め、気筒毎にアイドル回転
数制御を行うとともに、このフィードバック補正量を学
習し、アイドル時以外の無負臂運転条件でも気筒別燃料
噴射量のばらつきを補正するものがあった(例えば特開
昭62−32254号公報参照)。
Such a control device calculates a feedback correction amount for the valve closing period based on the deviation between the idle rotation speed detected for each cylinder and the target rotation speed so that the idle rotation speed becomes a predetermined target rotation speed, In addition to controlling the idle speed for each cylinder, there are systems that learn this feedback correction amount and correct variations in the fuel injection amount for each cylinder even under uncontrolled operation conditions other than when idling (for example, Japanese Patent Application Laid-Open No. 1983-1999). (See Publication No. 32254).

(発明が解決しようとする課題) この上うな気筒別燃料噴射量を制御するディーゼルIa
閏において、燃焼室に臨む噴射ノズルの開弁圧が経時変
化等を米しで変化すると、失火を招いて白煙が増加した
りノック音(燃焼音)が増加することがある。
(Problem to be solved by the invention) Furthermore, diesel Ia that controls the fuel injection amount for each cylinder
In a combustion engine, if the opening pressure of the injection nozzle facing the combustion chamber changes due to changes over time, misfires may occur, resulting in an increase in white smoke or knocking noise (combustion noise).

しかしながら、従来は気筒別補正量を噴射開始時期に反
映させていたため、例えば、ある気筒の閉弁開始時期が
早められている場合にノズル開弁圧が低下すると、その
低下分だけ早めに針弁り7トが開始されるので、この状
態での針弁はリフト開始t 177 )終了の双方とも
早くなる。この結果、その気筒だけ早めに噴射がなされ
るので、燃焼状態が良好になる分だけ燃焼音がうるさく
なるのである。この逆に、閉弁開始時期が遅くされてい
る場合にノズル開弁圧が上昇すると、今度はリフト開始
t I77 )終了の双方とも遅くなって、失火を生じ
やすくなる。
However, in the past, the correction amount for each cylinder was reflected in the injection start timing, so for example, if the nozzle opening pressure decreases when the valve closing start timing of a certain cylinder is advanced, the needle valve is adjusted earlier by that amount. Since lift is started, the needle valve in this state both starts and ends earlier (t 177 ). As a result, fuel is injected earlier in that cylinder, so the combustion sound becomes louder as the combustion condition improves. On the other hand, if the nozzle opening pressure increases when the valve closing start timing is delayed, both the lift start (t I77 ) and the end will be delayed, making misfires more likely to occur.

また、従来はアイドル時の気筒別補正量を無負荷運転時
にしか反映していないため、気筒別燃料噴射量のばらつ
きにより最大噴射量時にトルク低下を米したりスモーク
が増大することを抑えられなかった。
In addition, conventionally, the correction amount for each cylinder at idle is only reflected during no-load operation, which makes it impossible to prevent torque reduction and smoke increase at maximum injection amount due to variations in fuel injection amount for each cylinder. Ta.

この発明はこのような従来の課題に着目してなされたも
ので、アイドル時に学習した気筒別補正量を用いて最大
噴射量時まで燃料の噴射開始時期を制御する装置を提供
することを目的とする。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a device that controls the fuel injection start timing until the maximum injection amount by using the cylinder-specific correction amount learned during idling. do.

(課題を解決するための手段) この発明は、燃料の噴射開始時期と噴射開始時期が可変
制御ll′l−れる燃料噴射ポンプ(第2図参照)を備
え、第1図に示すように、エンジンの作動状態量を検出
するセンサ(たとえばエンジン負荷相当量としてのアク
セルベグル開度(Ace)を検出するセンサ21と、エ
ンジン回転数(N)を検出するセンサ22)と、このセ
ンサ検出値(AceとN)に応じて全気筒に共通な燃料
の基本噴射期間(Avm)および基本噴射開始時期(I
ts)をそれぞれ算出する手段23.24と、アイドル
時であるがどうかを判定する手段25と、アイドル時に
前記各気筒についてのエンジン回伝数が予め定めた目標
回転数(NM)となるように各気筒についてのフィード
バック補正量を学習する手段26と、アイドル時以外の
運転条件でもこの学習されたフィードバック補正!(Δ
Avi)にて前記基本噴射開始時期(Itl)をそれぞ
れ補正して決定噴射期間(Avt)、決定噴射開始時期
(Iti)をそれぞれ算出する手段27を設けた。
(Means for Solving the Problems) The present invention includes a fuel injection pump (see FIG. 2) whose fuel injection start timing and injection start timing are variably controlled, and as shown in FIG. A sensor that detects the operating state quantity of the engine (for example, a sensor 21 that detects the accelerator valve opening (Ace) as an amount equivalent to the engine load, and a sensor 22 that detects the engine rotation speed (N)), and the sensor detection value ( Ace and N), the basic fuel injection period (Avm) and basic injection start timing (I
ts), and means 25 for determining whether or not the engine is idling, and a means 25 for determining whether the engine is running at idle so that the number of engine revolutions for each cylinder becomes a predetermined target rotation speed (NM) at idle. A means 26 for learning the feedback correction amount for each cylinder, and this learned feedback correction even under operating conditions other than idling! (Δ
Means 27 is provided for calculating the determined injection period (Avt) and determined injection start timing (Iti) by correcting the basic injection start timing (Itl) at Avi).

(作用) この発明によれば、燃料の噴射開始時期を変化させるこ
とで、針弁のす7ト開始が早められあるいは遅められ、
これにて各気筒についてのアイドル回転数が目標回転数
へと収束する。この場合に、ノズル開弁圧が変化すると
、針弁す7Fの開始が影響を受けて開弁圧変化分だけ早
くなったり遅くなったりするが、針弁のす7トが終了す
る時期については、ノズル開弁圧の変化によっては影響
を受けることがない、この結果、すべての気筒に同量の
燃料が供給され、気筒間でトルクが均一になり、機関振
動が抑制される。
(Function) According to the present invention, by changing the fuel injection start timing, the needle valve starts earlier or later.
As a result, the idle rotation speed for each cylinder converges to the target rotation speed. In this case, if the nozzle valve opening pressure changes, the start of the needle valve 7F will be affected and become earlier or slower by the change in valve opening pressure, but the timing at which the needle valve 7F ends will be affected. As a result, the same amount of fuel is supplied to all cylinders, the torque becomes uniform among the cylinders, and engine vibration is suppressed.

このアイドル時におけるフィードバック補正量を学習し
て、気筒別の噴射開始時期制御を最大噴射量時まで行う
ことにより、スモーク排出領域で一部気筒に生じる最大
噴射量のばらつきを無くして気筒全体としてのスモーク
量を抑制する。
By learning this feedback correction amount during idling and controlling the injection start timing for each cylinder until the maximum injection amount, it is possible to eliminate variations in the maximum injection amount that occur in some cylinders in the smoke emission region and improve the overall cylinder efficiency. Control the amount of smoke.

(実施例) 以下添付図面に基づいて本発明の詳細な説明する。(Example) The present invention will be described in detail below based on the accompanying drawings.

tIIJ2図において、1はポンプハウジング、2と3
は駆動軸4により駆動される低圧’mフィードポンプと
高圧側プランジャポンプで、図示しない燃料入口からフ
ィードポンプ2により吸引された燃料はハウジング1内
のフィードポンプ室5に供給され、フィードポンプ室5
に開口する吸込通路6を介してプランジャポンプ3に送
られる。
In the tIIJ2 diagram, 1 is the pump housing, 2 and 3
are a low-pressure 'm feed pump and a high-pressure side plunger pump driven by a drive shaft 4; fuel sucked by the feed pump 2 from a fuel inlet (not shown) is supplied to the feed pump chamber 5 in the housing 1;
It is sent to the plunger pump 3 via a suction passage 6 that opens to the plunger pump 3.

プランジャポンプ3のプランジャ7は、先端に機関のシ
リングと同数の吸込溝8が形成されると共に、他端に同
じく同数のカム山をもつ7エイスカム9が形成され、7
エイスカム9は駆動軸4と共に回転しながらローラリン
グ10に配設されたロー211を朱り越えて所定のカム
リフトだけ往復運動する。
The plunger 7 of the plunger pump 3 has suction grooves 8 of the same number as the shillings of the engine formed at the tip, and a 7-eighth cam 9 having the same number of cam ridges at the other end.
The eighth cam 9 rotates together with the drive shaft 4 and reciprocates by a predetermined cam lift, passing over the rows 211 disposed on the roller ring 10.

したがって、ブランツヤ7は回転しながら往復運動する
ことになり、この回転往復運動に伴い吸込溝8からプラ
ンツヤ室12に吸引された燃料が、プランジャ室12に
通じる図示しない各気筒毎の分配ボートからデリバリパ
ルプを通って燃焼室に臨む噴射ノズルへと圧送される。
Therefore, the plunger 7 reciprocates while rotating, and the fuel sucked into the plunger chamber 12 from the suction groove 8 due to this rotational reciprocating motion is delivered from a distribution boat for each cylinder (not shown) that communicates with the plunger chamber 12. It passes through the pulp and is pumped to the injection nozzle facing the combustion chamber.

そして、燃料の噴射時期や噴射量を制御するために、フ
ィードポンプ室5とプランジャ室12とを連通ずる燃料
戻し通路13を形成し、この燃料戻し通路13の途中に
高速応動型の電磁弁14を介装している。
In order to control the fuel injection timing and injection amount, a fuel return passage 13 is formed that communicates the feed pump chamber 5 and the plunger chamber 12, and a fast-response type solenoid valve 14 is provided in the middle of this fuel return passage 13. is interposed.

この電磁弁14は、開弁時にプランジャ室12を開放す
るもので、駆動パルスにより機関の運転条件に応じてプ
ランジャポンプ3の吐出行程で所定の期間閉じられる。
This electromagnetic valve 14 opens the plunger chamber 12 when the valve is opened, and is closed for a predetermined period during the discharge stroke of the plunger pump 3 according to the operating conditions of the engine by a drive pulse.

プランツヤ7の圧縮行程中に電磁弁14を閉じることで
燃料の噴射が開始され、電磁弁14を開くことで噴射が
終了し、したがって電磁弁14の閉弁時期により燃料の
噴射開始時期が、またその閉弁期間に応じて噴射量が制
御されるのである。
Fuel injection is started by closing the solenoid valve 14 during the compression stroke of the planter 7, and injection ends by opening the solenoid valve 14. Therefore, depending on the closing timing of the solenoid valve 14, the fuel injection start timing can be changed. The injection amount is controlled according to the valve closing period.

プランジャ7の圧縮行程の途中で電磁弁14が−たん開
くようにすると、燃料の主噴射に先立ってパイロット噴
射することも可能となる。
If the electromagnetic valve 14 is opened briefly during the compression stroke of the plunger 7, pilot injection can be performed prior to main injection of fuel.

一方、電磁弁14を制御対象とする装置は、機関の運転
パラメータを検出するセンサ17と、これら検出信号を
信号処理するコントロールユニット19と、電磁弁駆動
回路16とから構成される。
On the other hand, a device that controls the electromagnetic valve 14 includes a sensor 17 that detects engine operating parameters, a control unit 19 that processes these detection signals, and an electromagnetic valve drive circuit 16.

13図はコントロールユニット19の詳細を示し、これ
は入出力回路(Ilo)41.ROM42゜RAM43
.CPU44からなるマイクロコンピュータから構成さ
れ、第1図に示す各手段23〜28の機能を備える。
FIG. 13 shows details of the control unit 19, which includes input/output circuits (Ilo) 41. ROM42°RAM43
.. It is composed of a microcomputer consisting of a CPU 44, and has the functions of each means 23 to 28 shown in FIG.

入出力回路41には、エンジンの作動状態量の基本値を
検出するため、噴射ポンプの1回転当たり1個のリファ
レンスパルス31と1回転当たり36個のスケールパル
ス32、エンジン負荷相当量としてのアクセルベグル開
度を検出するセンサ33だけでなく、その他の運転条件
を検出するセンサ(燃料温度センサ34.水温センサ3
5.アイドルスイッチ36.電磁弁14の実際の開弁開
始時期と閉弁期間を検出するセンサ37および実際の噴
射開始時期を検出するセンサ38)からの信号がそれぞ
れ入力される。
The input/output circuit 41 includes one reference pulse 31 per revolution of the injection pump, 36 scale pulses 32 per revolution, and an accelerator pulse as an amount equivalent to the engine load, in order to detect the basic value of the operating state quantity of the engine. In addition to the sensor 33 that detects the valve opening degree, the sensors that detect other operating conditions (fuel temperature sensor 34, water temperature sensor 3
5. Idle switch 36. Signals from a sensor 37 that detects the actual opening start timing and closing period of the electromagnetic valve 14 and a sensor 38 that detects the actual injection start timing are input, respectively.

CPU44ではROM42に記憶されたプログラムにし
たがって入出力回路41からの情報を探り込んで各種の
演算処理を行い、電磁弁14を制御するためのデータ(
閉弁時期と閉弁期間)を入出力回路41にセットする。
The CPU 44 searches for information from the input/output circuit 41 according to the program stored in the ROM 42, performs various arithmetic processing, and generates data (
(valve closing timing and valve closing period) are set in the input/output circuit 41.

なお、RAM43はCPU44の演算処理に関連したデ
ータを一時的に退避するために使われる。入出力回路4
1ではCPU44から出力されたデータに基づき電磁弁
14の駆動パルスを出力する。
Note that the RAM 43 is used to temporarily save data related to arithmetic processing by the CPU 44. Input/output circuit 4
1, a drive pulse for the solenoid valve 14 is output based on the data output from the CPU 44.

次に、CPU44の動作を第4図の70−チャートに基
づいて説明する。
Next, the operation of the CPU 44 will be explained based on chart 70 in FIG.

ステップ50ではアイドル安定状態かどうかを判定する
。これは、アイドル回転数および気筒毎のアイドル回転
数の差が設定値以下であるか否かで判断される。もし、
ステップ50でアイドル安定状態であると判断された場
合には、ステップ57でその時の気筒毎の基本噴射量の
フィードバック補正量ΔAviを学習し、ステップ58
でΔAviの値をメモリに入れる。
In step 50, it is determined whether the idle state is stable. This is determined based on whether the idle rotation speed and the difference between the idle rotation speeds for each cylinder are equal to or less than a set value. if,
If it is determined in step 50 that the idle state is stable, in step 57 the feedback correction amount ΔAvi of the basic injection amount for each cylinder at that time is learned, and in step 58
The value of ΔAvi is stored in memory.

ステップ50でアイドル安定状態でないと判断された場
合には、ステップ51で8!関回転数Nとアクセル開度
Aceを読込み、ステップ52でアイドル噴射量よりも
多いか否かを判定し、例えば第5図に示すような特性を
ROM42に記憶させておき、計算式あるいはマツプに
より補正係数Kを算出する。
If it is determined in step 50 that the idle is not in a stable state, step 51 indicates 8! The engine rotation speed N and the accelerator opening degree Ace are read, and it is determined in step 52 whether or not the amount is greater than the idle injection amount. For example, the characteristics shown in FIG. 5 are stored in the ROM 42, and the characteristics are Calculate the correction coefficient K.

ステップ53では例えば第6図、第7図の特性をROM
42に記憶させておき、基本噴射期間Avm、基本噴射
開始時期Itsを決定する。
In step 53, for example, the characteristics shown in FIGS. 6 and 7 are stored in the ROM.
42, and determines the basic injection period Avm and the basic injection start timing Its.

ステップ54では、ステップ58でメモリされた気筒毎
学習補正量ΔAviを読出し、ステップ55では、基本
噴射jlAvmと気筒毎学習補正量ΔAviに補正係数
Kを朱じたものを加算して決定噴射期間Aviを求める
とともに、基本噴射開始時期■tsと気前毎学習補正量
ΔAviに補正係数Kを乗じたものを加算して決定噴射
開始時期Itiを求め、ステップ56で決定噴射期間A
yおよび決定噴射開始時期ItをRAM41の所定のア
ドレスに格納し終了する。
In step 54, the cylinder-by-cylinder learning correction amount ΔAvi stored in step 58 is read out, and in step 55, the basic injection jlAvm and the cylinder-by-cylinder learning correction amount ΔAvi with the correction coefficient K in red are added to determine the determined injection period Avi. At the same time, the basic injection start time ■ts and the generous learning correction amount ΔAvi multiplied by the correction coefficient K are added to obtain the determined injection start time Iti, and in step 56, the determined injection period A is determined.
y and the determined injection start timing It are stored in a predetermined address of the RAM 41, and the process ends.

これを第8図で説明すると、電磁弁14を開弁する駆動
パルスは、機関の諸条件に対応する基本噴射期間および
基本噴射開始時期に対して、例えぽノズル開弁圧が高い
場合は気筒別学習補正量ΔAviが正となって駆動パル
スの立ち上がりを早めて、ノズルの針弁す7トの開始が
遅れないように補正する一方、ノズル開弁圧が低下した
場合は気筒別学習補正lΔAviが負となって駆動パル
スの立ち上がりを遅らし、ノズルの針弁す7トの開始が
早すぎないように補正する。
To explain this with reference to FIG. 8, the drive pulse for opening the solenoid valve 14 is different from the basic injection period and basic injection start timing corresponding to the engine conditions.For example, if the nozzle opening pressure is high, When the separate learning correction amount ΔAvi becomes positive, the rise of the drive pulse is accelerated and the correction is made so that the start of the nozzle needle valve is not delayed. On the other hand, if the nozzle valve opening pressure decreases, the cylinder-specific learning correction lΔAvi becomes negative, thereby delaying the rise of the drive pulse and correcting the nozzle needle so that it does not start too early.

ノズル開弁圧が変化すると、針弁す7トの開始が影響を
受けて開弁圧変化分だけ早(なったり遅(なったりする
が、針弁のり7Fが終了する時期については、ノズル開
弁圧の変化によっては影響を受けることがない、この結
果、すべての気筒に同量の燃料が供給され、気筒間でト
ルクが均一になり、機関振動が抑制される。
When the nozzle valve opening pressure changes, the start of the needle valve 7F will be affected and the start of the needle valve 7F will be earlier (or later) by the change in valve opening pressure. It is unaffected by changes in valve pressure, resulting in the same amount of fuel being supplied to all cylinders, equalizing torque between cylinders and suppressing engine vibration.

高負荷域で最大噴射量のばらつきによりスモーク限界を
越えるほど濃い混合気がいずれか一つの気随について供
給されても、全体のスモーク量が増加する。しかしなが
ら、このアイドル時におけるフィードバック補正量を学
習して、気筒別の噴射開始時期を最大噴射量時まで学習
補正することにより、スモーク排出領域で一部気筒に生
じる最大噴射量のばらつ訃を無くシて気筒全体としての
スモーク量を抑制する。尚、7エイスカム9の形状を常
に等送油率となるように形成すれば、ステップ55で基
本噴射量の補正は行なわなくてもよい。
Even if an air-fuel mixture so rich as to exceed the smoke limit is supplied to any one airflow due to variations in the maximum injection amount in a high load range, the overall amount of smoke increases. However, by learning this feedback correction amount during idle and learning and correcting the injection start timing for each cylinder up to the maximum injection amount, the variation in maximum injection amount that occurs in some cylinders in the smoke emission region can be eliminated. This suppresses the amount of smoke in the cylinder as a whole. Note that if the shape of the seven-eighth cam 9 is formed so that the oil feeding rate is always constant, it is not necessary to correct the basic injection amount in step 55.

第9図は他の実施例を示すコントロールユニット19の
詳細を示し、排気マニホールド集合部に取付けられた空
燃比センサ39を設け、気筒別の空気過剰率を検出して
燃料噴射開始時期を変えるものである。
FIG. 9 shows details of a control unit 19 showing another embodiment, which is provided with an air-fuel ratio sensor 39 attached to the exhaust manifold gathering part, detects the excess air ratio of each cylinder, and changes the fuel injection start timing. It is.

第10図に70−チャートを示すように、ステップ55
では、基本噴射期間AVMに気筒毎補正量ΔAviに補
正係数Kを乗じたちの加算し、さらに気筒別空燃比に応
じた補正量ΔAvpを加算して決定噴射期間Aviを求
めるとともに、基本噴射開始時期It−と気筒毎補正量
ΔAviに補正係数Kを乗じたものを加算し、さらに気
筒別空燃比に応じた補正量ΔItAFを加算して決定噴
射開始時期Itiを求める。
Step 55, as shown in the 70-chart in FIG.
Now, add the basic injection period AVM to the correction amount ΔAvi for each cylinder multiplied by the correction coefficient K, and then add the correction amount ΔAvp according to the air-fuel ratio for each cylinder to obtain the determined injection period Avi. The determined injection start timing Iti is obtained by adding It- and the cylinder-by-cylinder correction amount ΔAvi multiplied by the correction coefficient K, and further adding the correction amount ΔItAF according to the cylinder-by-cylinder air-fuel ratio.

第11図は回転数とアクセル開度をパラメータとして目
標空燃比λ@apを求めるためのマツプを示し、こうし
て定まる値λ―aρと実空燃比λtの差に基づいてtI
pi12図、第13図のマツプから噴射量補正量ΔAV
Fと噴射時期補正量ΔAviをそれぞれ求めるようにな
っている。
Figure 11 shows a map for determining the target air-fuel ratio λ@ap using the rotation speed and accelerator opening as parameters, and based on the difference between the value λ-aρ determined in this way and the actual air-fuel ratio λt, tI
The injection amount correction amount ΔAV is determined from the maps of pi 12 and 13.
F and the injection timing correction amount ΔAvi are respectively determined.

この例によれば、所定の空気過剰率を越えないように気
筒別に噴射期間および噴射開始時期の制御をアイドル時
の学習補正と共に行うので、高負荷域で最大噴射量のば
らつきをさらに精度良く抑制し、気筒全体としてのスモ
ーク量が抑えられる。
According to this example, the injection period and injection start timing are controlled for each cylinder along with learning correction during idling so as not to exceed a predetermined excess air ratio, thereby suppressing variations in the maximum injection amount even more accurately in the high load range. However, the amount of smoke from the cylinder as a whole can be suppressed.

(発明の効果) 以上のように本発明によれば、アイドル時に学習した気
筒別のフィードバック補正量を燃料の噴射開始時期でな
(、噴射開始時期に反映させるようにしたため、ノズル
開弁圧の変化等による実噴射時期の変化によるアイドル
騒音の増大や低温時の失火を防ぐとともに、最大噴射量
噴射時にスモークの排出を抑制できる。
(Effects of the Invention) As described above, according to the present invention, since the feedback correction amount for each cylinder learned during idling is reflected in the injection start timing, the nozzle opening pressure is In addition to preventing an increase in idle noise and misfires at low temperatures due to changes in the actual injection timing due to changes in the actual injection timing, it is also possible to suppress smoke emissions when injecting the maximum injection amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は一実施例の
噴射ポンプの断面図、WIJ3図はコントロールユニッ
トのブロック図、第4図は制御動作を説明する7a−チ
ャート、第5図ないし第8図は制御動作において使用さ
れる各位の内容を示す特性図である。第9図は他の実施
例を示すコントロールユニットのブロック図、第10図
は制御動作を説明するフローチャート、第11図ないし
第13図は制御動作において使用される各位の内容を示
す特性図である。 1・・・ポンプハウジング、3・・・プランジャポンプ
、7・・・プランツヤ、9・・・7エイスカム、12・
・・プランジャ室、13・・・燃料戻し通路、14・・
・電磁弁、16・・・電磁弁駆動回路、19・・・コン
トロールユニット、21・・・アクセル開度センサ、2
2・・・回転数センサ、23・・・基本噴射期間算出手
段、24・・・基本噴射開始時期算出手段、25・・・
アイドル時判定手段、26・・・気筒別補正量学習手段
、27・・・噴射期間補正手段、31・・・IJ77レ
ンスパルス発生手段、32・・・スケールパルス発生手
段、41・・・入出力回路、42・ROM、43・RA
M、44・CPU。
Fig. 1 is a diagram corresponding to the claims of the present invention, Fig. 2 is a sectional view of an injection pump according to an embodiment, Fig. WIJ3 is a block diagram of the control unit, Fig. 4 is a 7a-chart explaining control operation, and Fig. 5 8 through 8 are characteristic diagrams showing the contents of each component used in the control operation. FIG. 9 is a block diagram of a control unit showing another embodiment, FIG. 10 is a flowchart explaining the control operation, and FIGS. 11 to 13 are characteristic diagrams showing the contents of each part used in the control operation. . 1...Pump housing, 3...Plunger pump, 7...Plantsya, 9...7 Acecam, 12.
...Plunger chamber, 13...Fuel return passage, 14...
- Solenoid valve, 16... Solenoid valve drive circuit, 19... Control unit, 21... Accelerator opening sensor, 2
2... Rotation speed sensor, 23... Basic injection period calculation means, 24... Basic injection start time calculation means, 25...
Idle time determination means, 26... Cylinder-specific correction amount learning means, 27... Injection period correction means, 31... IJ77 lens pulse generation means, 32... Scale pulse generation means, 41... Input/output Circuit, 42・ROM, 43・RA
M, 44・CPU.

Claims (1)

【特許請求の範囲】[Claims]  燃料の噴射開始時期と噴射終了時期が可変制御される
燃料噴射ポンプを備え、エンジンの作動状態量を検出す
るセンサと、このセンサ検出値に応じて全気筒に共通な
燃料の基本噴射期間および基本噴射開始時期をそれぞれ
算出する手段と、アイドル時であるかどうかを判定する
手段と、アイドル時に各気筒についてのエンジン回転数
が予め定めた目標回転数となるように求められるフィー
ドバック補正量を学習する手段と、アイドル時以外の運
転条件でもこの学習補正量に基づいて前記基本噴射開始
時期をそれぞれ補正する手段とを設けたことを特徴とす
るディーゼル機関の燃料噴射制御装置。
It is equipped with a fuel injection pump whose fuel injection start timing and injection end timing are variably controlled, and a sensor that detects the operating state of the engine, and a basic fuel injection period common to all cylinders and a basic fuel injection period that is common to all cylinders according to the sensor detection value. A means for calculating each injection start timing, a means for determining whether or not it is idling, and a feedback correction amount required so that the engine rotation speed for each cylinder becomes a predetermined target rotation speed during idling are learned. A fuel injection control device for a diesel engine, comprising means for correcting the basic injection start timing based on the learning correction amount even under operating conditions other than idling.
JP25807588A 1988-10-13 1988-10-13 Fuel injection control device for diesel engine Expired - Fee Related JPH0778375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25807588A JPH0778375B2 (en) 1988-10-13 1988-10-13 Fuel injection control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25807588A JPH0778375B2 (en) 1988-10-13 1988-10-13 Fuel injection control device for diesel engine

Publications (2)

Publication Number Publication Date
JPH02104941A true JPH02104941A (en) 1990-04-17
JPH0778375B2 JPH0778375B2 (en) 1995-08-23

Family

ID=17315176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25807588A Expired - Fee Related JPH0778375B2 (en) 1988-10-13 1988-10-13 Fuel injection control device for diesel engine

Country Status (1)

Country Link
JP (1) JPH0778375B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199652A (en) * 1989-12-28 1991-08-30 Nippondenso Co Ltd Fuel injection timing controller of internal combustion engine
WO2003016697A1 (en) * 2001-08-10 2003-02-27 Bosch Automotive Systems Corporation Fuel injection quantity controlling method and device
KR100428307B1 (en) * 2002-05-20 2004-04-28 현대자동차주식회사 Apparatus for controlling fuel injection in vehicle and method thereof
WO2009034812A1 (en) * 2007-09-13 2009-03-19 Toyota Jidosha Kabushiki Kaisha Engine learning value transfer system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199652A (en) * 1989-12-28 1991-08-30 Nippondenso Co Ltd Fuel injection timing controller of internal combustion engine
WO2003016697A1 (en) * 2001-08-10 2003-02-27 Bosch Automotive Systems Corporation Fuel injection quantity controlling method and device
KR100428307B1 (en) * 2002-05-20 2004-04-28 현대자동차주식회사 Apparatus for controlling fuel injection in vehicle and method thereof
WO2009034812A1 (en) * 2007-09-13 2009-03-19 Toyota Jidosha Kabushiki Kaisha Engine learning value transfer system

Also Published As

Publication number Publication date
JPH0778375B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US6244241B1 (en) Fuel injection control system for direct injection-spark ignition engine
US4771752A (en) Control system for internal combustion engines
EP0440173B1 (en) Method and apparatus for controlling torque generated in an internal combustion engine
US6446596B1 (en) Method of operating an internal combustion engine
JPH09177587A (en) Abnormality judging device for fuel injection control device
JPH02104941A (en) Device for controlling fuel injection of diesel engine
JPH11303669A (en) Fuel injection control device for internal combustion engine
US5092297A (en) Air-fuel ratio control device for a vehicle engine
JP3650522B2 (en) Engine fuel supply apparatus and fuel supply method
JP2870365B2 (en) Fuel injection amount control device for diesel engine with EGR device
JPH09256886A (en) Fuel injection controller for direct injection type engine
JPH0545804Y2 (en)
JPH0223252A (en) Fuel injection rate control device for compression ignition engine
JP2001263140A (en) Output control device for engine
JPH06612Y2 (en) Fuel injection control device for diesel engine
JP2540876B2 (en) Diesel engine speed controller
JP2611357B2 (en) Fuel injection control device
JP2591318B2 (en) Diesel engine exhaust recirculation system
JPH05296094A (en) Fuel injection amount control device for multicylinder diesel engine
JP2569587B2 (en) Exhaust gas recirculation control system for diesel engine
JP2985470B2 (en) Fuel injection timing control device
JP2023166659A (en) Fuel injection control device for internal combustion engine
JP3513013B2 (en) Fuel injection control device for internal combustion engine
JP2870332B2 (en) EGR control device for diesel engine
JPH0693914A (en) Accumulative fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees