JP3835565B2 - Engine cylinder deactivation control device - Google Patents

Engine cylinder deactivation control device Download PDF

Info

Publication number
JP3835565B2
JP3835565B2 JP17628796A JP17628796A JP3835565B2 JP 3835565 B2 JP3835565 B2 JP 3835565B2 JP 17628796 A JP17628796 A JP 17628796A JP 17628796 A JP17628796 A JP 17628796A JP 3835565 B2 JP3835565 B2 JP 3835565B2
Authority
JP
Japan
Prior art keywords
cylinder
engine
control
cylinder deactivation
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17628796A
Other languages
Japanese (ja)
Other versions
JPH1018872A (en
Inventor
公裕 野中
敏明 佐藤
Original Assignee
ヤマハマリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハマリン株式会社 filed Critical ヤマハマリン株式会社
Priority to JP17628796A priority Critical patent/JP3835565B2/en
Publication of JPH1018872A publication Critical patent/JPH1018872A/en
Application granted granted Critical
Publication of JP3835565B2 publication Critical patent/JP3835565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for marine engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの気筒休止制御の技術分野に属する。
【0002】
【従来の技術】
例えば、船外機用の2サイクルエンジンにおいては、スペース上の制約から各気筒の排気ポートを集合排気管に接続させているために、エンジンが低回転、低負荷域のように吸気が少ないときに排気のパルスが入ってきてシリンダ内に排気が残留し、不整燃焼が発生してしまう。これを改善する方法として、一部の気筒の運転を停止して運転気筒数を減少させる気筒休止制御が行われている。この気筒休止制御により、排気干渉が抑制されることから、気筒当たりの吸気量が増大しエンジン回転が安定化する効果が得られる。
【0003】
【発明が解決しようとする課題】
しかしながら、エンジンが異常状態の場合や、エンジン回転数とスロットル開度の変化が大きいところで、上記気筒休止制御を実施すると、エンジンの安定性に問題が生じる。例えば、始動時に上記気筒休止制御を実施すると、着火気筒がくるまでは始動しないため、また、休止気筒の回りの温度上昇が緩やかなため、始動までの時間が長くなり、さらに、始動時はシリンダブロックの温度が低く燃焼が安定しないため、低速の安定性が全気筒運転よりも悪くなるという問題を有している。また、急加速時に気筒休止制御を実施するとエンジン回転の上昇が遅くなるという問題を有し、また、センサ故障時とか、空燃比制御における空燃比センサの不活性時など、エンジン異常状態時に気筒休止制御を実施すると、エンジンの燃焼不安定が助長されるという問題を有している。
【0004】
本発明は、上記問題を解決するものであって、エンジンが正常運転又は定常運転時でない場合には気筒休止制御を実施しないことにより、気筒休止制御に伴って生じるエンジンの不安定状態を防止することができるエンジンの気筒休止制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、複数の気筒を有し各気筒の排気通路を集合排気管に接続し、気筒休止制御を行うエンジンにおいて、エンジンが異常状態ではない正常運転の場合で且つエンジン回転数とスロットル開度の変化が少ない定常運転の場合に気筒休止制御を実施し、エンジンが正常運転又は定常運転時でない場合には、気筒休止制御を実施しないことを特徴とし、
請求項2記載の発明は、請求項1において、エンジンが正常運転又は定常運転時でない場合とは、始動制御中、急加減速中、空燃比センサ不活性中、ノック制御中、オイルエンプティ制御中、オーバーヒート制御中、センサ故障制御中、デュアルエンジンシステム制御中の少なくとも1つに該当する場合であることを特徴とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、複数の気筒を有し各気筒の排気通路を集合排気管に接続し、気筒休止制御を行うエンジンにおいて、前記エンジンが船外機用のクランク軸縦置きV型エンジンであって、空燃比センサをエンジンの最上部の気筒の排気通路に設け、エンジンが異常状態ではない正常運転の場合で且つエンジン回転数とスロットル開度の変化が少ない定常運転の場合に空燃比センサが設置された最上部の気筒を休止することなく他の気筒の気筒休止制御を実施し、エンジンが正常運転又は定常運転時でない場合には、気筒休止制御を実施しないことを特徴とし、請求項2記載の発明は、請求項1において、エンジンが正常運転又は定常運転時でない場合とは、始動制御中、急加減速中、空燃比センサ不活性中、ノック制御中、オイルエンプティ制御中、オーバーヒート制御中、センサ故障制御中、デュアルエンジンシステム制御中の少なくとも1つに該当する場合であることを特徴とする。
以上
【0007】
矢印Fは船体(図示せず)の前進方向を示し、船体の後部には駆動装置である船外機1が着脱自在に装着されている。船外機1は、推進ユニット2を備え、推進ユニット2の上部にエンジン3が取り付けられ、エンジン3をその上方から覆うカウリング4が設けられている。エンジン3は、燃料噴射式水冷2サイクルV型6気筒クランク軸縦置きエンジンで、クランクケース5を有し、クランクケース5には軸心がほぼ垂直のクランク軸6が回転自在に支持されている。クランクケース5には、各気筒を構成するシリンダ本体7がV字型をなすように突設されている。シリンダ本体7には各気筒毎にそれぞれピストン8が摺動自在に嵌合され、これら各ピストン8はクランク軸6に連結されている。シリンダ本体7とピストン8とで囲まれた空間の燃焼室に対向して点火プラグ9が配設されている。
【0008】
クランクケース5にはその内外を連通させる吸気管10が各気筒毎に接続され、吸気管10にはリード弁11と吸気管10の断面積を手動操作により調節するスロットル弁12が設けられている。各吸気管10には、各気筒毎に燃料噴射弁13が取り付けられ、各燃料噴射弁13は磁力で開閉作動されるソレノイド開閉式であり、リード弁11よりも上流側に燃料を噴射可能にしている。燃料噴射弁13は、高圧燃料ポンプ15、レギュレータ弁16、ベーパセパレータタンク17、フィルタ19、手動の低圧燃料ポンプ20を介して船体側に設置された燃料タンク21に接続されている。
【0009】
また、シリンダ本体7の6つの気筒▲1▼〜▲6▼の内、最上部の気筒、例えば気筒▲1▼のみに空燃比センサ22が取り付けられ、各気筒▲1▼〜▲6▼は、排気通路18を介して集合排気管24に接続されている。船外機においては、集合排気管24の先端が水面下にあるため、水滴が飛散して空燃比センサに入り込でしまい、水滴がセンサに付着すると、センサ素子部がセラミックスでありヒータにより高温に加熱されているため、センサ素子部が壊れてしまう。そこで、空燃比センサ22をエンジンの最上部の気筒の排気通路に設けている。
【0010】
制御装置23には、エンジン3の運転状態、船外機1や船体の状態を示す各種センサからの検出信号が入力される。すなわち、センサとして、前記空燃比センサ22、クランク軸6の回転角(回転数)を検出するクランク角センサ25、クランクケース6内の圧力を検出するクランク室内圧センサ26、各気筒▲1▼〜▲6▼内の圧力を検出する筒内圧センサ27、吸気温度を検出する吸気温センサ29、シリンダ7内の温度を検出するエンジン温度センサ30、各気筒▲1▼〜▲6▼内の背圧を検出する背圧センサ31、スロットル弁12の開度を検出するスロットル開度センサ32、冷却水の温度を検出する冷却水温度センサ33、エンジン3のノック状態を検出するノックセンサ35、エンジン3のマウント高さを検出するエンジンマウント高さ検出センサ36、船外機1の推進ユニット2のニュートラル状態を検出するニュートラルセンサ37、船外機1の上下回動位置を検出するトリム角検出センサ39、船速を検出する船速センサ40、船の姿勢を検出する船姿勢センサ41、大気圧を検出する大気圧センサ42、燃料に混合させるオイルの量(オイルタンクの)を検知するオイルレベルセンサ43が設けられている。制御装置23は、これら各種センサの検出信号を演算処理し、制御信号を点火プラグ9、燃料噴射弁13、スロットル弁12及びISC46に伝送する。
【0011】
次に、図2〜図4により、本発明に係わる気筒休止制御について説明する。前述の如く、船外機用の2サイクルエンジンにおいては、スペース上の制約から各気筒の排気ポートを集合排気管に接続させているために、エンジンが低回転、低負荷域のように吸気が少ないときに排気のパルスが入ってきてシリンダ内に排気が残留し、不整燃焼が発生してしまう。これを改善する方法として、一部の気筒の運転を停止して運転気筒数を減少させる気筒休止制御が行われている。この気筒休止制御により、排気干渉が抑制されることから、気筒当たりの吸気量が増大しエンジン回転が安定化する効果が得られる。
【0012】
図2は各気筒の排気パルスの影響を説明するための図、図3は各気筒の排気ポートの開閉タイミングを示す図である。図2に示すように、気筒▲1▼、▲3▼、▲5▼は図示右側(Sバンク)に、気筒▲2▼、▲4▼、▲6▼は図示左側(Pバンク)にそれぞれ上下に配置され、各気筒は▲1▼〜▲6▼の順序でクランク角60度の等間隔で点火が行われる。図3に示すように、気筒▲1▼の排気ポートが開くタイミングと気筒▲5▼の排気ポートが閉じるタイミングを、排気の出る面積を大きくするためにラップさせており、このラップ期間だけ両気筒▲1▼、▲5▼が連通し、図2に示すように、気筒▲1▼からの強い排気圧力が気筒▲5▼に作用する。同様に、気筒▲3▼の排気ポートが開くタイミングと気筒▲1▼の排気ポートが閉じるタイミングをラップさせており、気筒▲3▼からの排気圧力が気筒▲1▼に作用し、また、気筒▲5▼の排気ポートが開くタイミングと気筒▲3▼の排気ポートが閉じるタイミングをラップさせており、気筒▲5▼からの排気圧力が気筒▲3▼に作用する。この関係はPバンクにおいても同様である。
【0013】
ここで、各気筒の排気圧力(燃焼圧力)は最上流側の気筒▲1▼、▲2▼が最大であり、下部の気筒にいくほど弱くなる。これは、最上流側の気筒▲1▼、▲2▼は比較的長い排気管長を有するため、排気脈動を効果的に利用でき、吸入空気量を増加し排気ガスを十分に掃気することができるからである。一方、最下流側の気筒▲5▼、▲6▼は、排気管長が短いため排気脈動が十分に得られない上に、排気ガスの流れ方向と上部気筒からの排気パルスの作用方向が一致しているため、吸気量が少なく残留排気ガス量が多くなり、燃焼が不安定になる。従って、この観点からは、気筒休止を行う場合には、最上流側の気筒と該気筒からの排気パルスの影響を受ける最下流側の気筒との同時燃焼が起こらないように、Sバンクの気筒▲5▼を休止させるか、Pバンクの気筒▲6▼を休止させるのが最善であり、次善の策としてSバンクの気筒▲1▼を休止させるか、Pバンクの気筒▲2▼を休止させるのが良い。
【0014】
しかしながら、気筒▲1▼は空燃比を検出する気筒なので、これを休止すると空燃比制御ができなくなり不具合を生じるので、休止気筒の選択に際しては気筒▲1▼を除外する。その結果、気筒▲5▼を休止させるか、気筒▲6▼を休止させるのが最善であり、次善の策として気筒▲2▼を休止させるのが良いことになる。
【0015】
さらに、1気筒だけを休止させる場合には、最下流側の気筒▲5▼又は▲6▼を停止すればよいが、2気筒を休止させる場合に両方の気筒▲5▼、▲6▼を休止させると問題が生じる。その理由は、各気筒は▲1▼〜▲6▼の順序でクランク角60度の等間隔で点火を行っているため、気筒▲5▼、▲6▼を休止させた場合には、爆発間隔が等間隔にならず全体としての燃焼が不安定になる。そこで、2気筒を休止させる場合には、気筒▲1▼は空燃比を検出する気筒なので休止はさせず、Sバンクの最下流側の気筒▲5▼とPバンクの最上流側の気筒▲2▼を休止させるようにすれば、2つの気筒が爆発する毎に1つの気筒が休止することになり、気筒休止状態での全体としての爆発間隔が等間隔となり、出力発生時期のバランスが良好となり低速安定性が得られる。このとき、Pバンクでは、最下流側の気筒▲6▼運転時には最上流側の気筒▲2▼が休止であり、気筒▲2▼と▲6▼の同時燃焼は起こらないので、燃焼安定性は維持される。
【0016】
図4は、気筒休止制御を説明するための図であり、エンジン回転数とスロットル開度に対応させた運転領域を示すマップを示している。本制御は、スロットル開度とエンジン回転数に応じて、4気筒運転あるいは5気筒運転からなる気筒休止運転と、6気筒運転(全気筒運転)とを選択するように制御する。ここでは、エンジン側振動周波数と船外機マウント側振動周波数を一致させないように休止気筒を選択しており、エンジン回転数が所定値以下であれば共振を回避することが可能な5気筒運転を実施し、エンジン回転数が所定値を越えれば4気筒運転を実施する。ここで、気筒休止は、点火を停止することによって行われ、また、この休止気筒への燃料供給は、各気筒に独立に設けられた燃料噴射弁13によって継続される。
【0017】
図5は、本発明のエンジンの気筒休止制御装置の1実施形態を示し、処理の流れを説明するための図である。先ず、ステップS1でエンジンが正常運転且つ定常運転時か否かの判定が行われる。ここで、エンジン定常運転時とは、図6に示すように、エンジン回転数とスロットル開度の変化が少ない範囲の場合で、次の制御を行っていない場合である。すなわち、
(1)始動制御中:始動時における燃料量の増加及び点火時期の進角
(2)急加速中:急加速における燃料量の増加及び点火時期の進角
(3)急減速中:急減速における燃料量の増加及び点火時期の遅角
である。
【0018】
また、エンジン正常運転時とは、異常状態ではない場合で、次の状態あるいは制御でない場合である。すなわち、
(4)空燃比センサ不活性中:空燃比センサのセンサ素子部の温度が低下し、センサ素子を活性化させるための温度が維持できず、空燃比の検出信号にばらつきが生じ適正な空燃比制御ができない状態
(5)ノック制御中:ノックセンサ35がノックを検知した場合における点火時期の遅角
(6)オイルエンプティ制御中:オイルレベルセンサ43により燃料に混合させるオイルが所定量以下になった場合において、点火時期の遅角及び回転数が上がらないようにするために運転気筒数の減少
(7)オーバーヒート制御中:冷却水温度センサ33により冷却水温度が所定値以上になった場合において、点火時期の遅角及び回転数が上がらないようにするために運転気筒数の減少
(8)センサ故障制御中:エンジンを停止させないために点火時期の進角
(9)デュアルエンジンシステム制御中:船外機が2機掛けで一方のエンジンがノック制御中、オイルエンプティ制御中、オーバーヒート制御中の時、他方のエンジンも同様に制御して、蛇行を防止する。
【0019】
そして、上記(1)〜(9)の制御あるいは状態のとき、エンジンが正常運転又は定常運転時でないと判定し、ステップS4に進み6気筒運転(全気筒運転)を実施する。上記(1)〜(9)の制御あるいは状態でないとき、エンジンが正常運転且つ定常運転時であると判定し、ステップS2に進み図4で説明したように、スロットル開度とエンジン回転数に応じて、4気筒運転あるいは5気筒運転からなる気筒休止運転を実施する。
【0020】
図7は、本発明の変形例を示し、始動制御と気筒休止制御の切換制御を説明するための図である。図7(A)に示すように、始動制御の終了は、エンジン壁温センサ30の検出値が始動終了判定温度T0 (固定値)を越えたか否かで判定するようにしているが、始動終了判定温度T0 を越え始動制御終了を検知し、6気筒運転から気筒休止運転に移行した後に、センサにゴミ等が詰まり温度管理ができなくなると、始動終了判定温度T0 をまたいで6気筒運転と気筒休止運転を繰り返す不具合が生じる。そこで、図7(B)に示すように、始動制御終了を検知し、6気筒運転から気筒休止運転に切り替わった場合には、始動終了判定温度をT1 に下げて、センサの値が変化しても気筒休止運転から6気筒運転に切り替わらないようにするものである。
【0021】
以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく種々の変更が可能である。例えば、上記実施形態においては、6気筒エンジンに適用した例について説明しているが、これに限定されるものではなく複数の気筒を有するものであればよい。また、上記実施形態においては、2サイクルエンジンに適用した例について説明しているが、4サイクルエンジンへの適用も可能であり、さらに、燃料を筒内に直接噴射する方式にも適用可能である。
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば、エンジンが正常運転又は定常運転時でない場合には気筒休止制御を実施しないことにより、気筒休止制御に伴って生じるエンジンの不安定状態を防止することができる。
【図面の簡単な説明】
【図1】本発明のエンジンの気筒休止制御装置に係わる制御系の全体構成図である。
【図2】本発明に係わる気筒休止制御に関し、各気筒の排気パルスの影響を説明するための図である。
【図3】本発明に係わる気筒休止制御に関し、各気筒の排気ポートの開閉タイミングを示す図である。
【図4】本発明に係わる気筒休止制御を説明するための図である。
【図5】本発明のエンジンの気筒休止制御装置の1実施形態を示し、処理の流れを説明するための図である。
【図6】図5に関してエンジンの定常運転状態を説明するための図である。
【図7】本発明の変形例を示し、始動制御と気筒休止制御の切換制御を説明するための図である。
【符号の説明】
3…エンジン、18…排気通路、24…集合排気管、▲1▼〜▲6▼…気筒
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of engine cylinder deactivation control.
[0002]
[Prior art]
For example, in a two-cycle engine for an outboard motor, the exhaust port of each cylinder is connected to the collective exhaust pipe due to space constraints, so the engine is low in intake, such as in a low speed and low load range. Exhaust pulses enter the cylinder and exhaust remains in the cylinder, causing irregular combustion. As a method for improving this, cylinder deactivation control is performed in which the operation of some cylinders is stopped to reduce the number of operating cylinders. By this cylinder deactivation control, exhaust interference is suppressed, so that an effect of increasing the intake amount per cylinder and stabilizing the engine rotation can be obtained.
[0003]
[Problems to be solved by the invention]
However, if the cylinder deactivation control is performed when the engine is in an abnormal state or when changes in the engine speed and the throttle opening are large, a problem arises in engine stability. For example, if the cylinder deactivation control is performed at the time of start-up, the engine does not start until the ignition cylinder comes, and the temperature rise around the deactivation cylinder is slow, so the time until start-up becomes longer. Since the temperature is low and combustion is not stable, there is a problem that low-speed stability is worse than that in all-cylinder operation. In addition, if cylinder deactivation control is performed during sudden acceleration, there is a problem that the increase in engine speed is delayed, and cylinder deactivation occurs when the engine is abnormal, such as when a sensor fails or when the air-fuel ratio sensor is inactive during air-fuel ratio control. When the control is performed, there is a problem that combustion instability of the engine is promoted.
[0004]
The present invention solves the above problem, and prevents the engine from being unstable due to cylinder deactivation control by not performing cylinder deactivation control when the engine is not in normal operation or steady operation. An object of the present invention is to provide an engine cylinder deactivation control device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, in an engine having a plurality of cylinders and connecting the exhaust passages of the respective cylinders to the collective exhaust pipe and performing cylinder deactivation control, the engine is not operating in an abnormal state. In this case, the cylinder deactivation control is performed when the engine speed and the throttle opening are small, and the cylinder deactivation control is not performed when the engine is not in normal operation or steady operation. ,
The invention according to claim 2 is the case where the engine is not in normal operation or steady operation in the case of claim 1, during start control, sudden acceleration / deceleration, air / fuel ratio sensor inactive, knock control, oil empty control It is a case corresponding to at least one of overheat control, sensor failure control, and dual engine system control.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided an engine having a plurality of cylinders, wherein the exhaust passage of each cylinder is connected to a collective exhaust pipe, and cylinder deactivation control is performed . A crankshaft vertical V-type engine, in which an air-fuel ratio sensor is provided in the exhaust passage of the uppermost cylinder of the engine, and when the engine is in a normal operation that is not in an abnormal state, and the engine speed and throttle opening change are small Performs cylinder deactivation control for other cylinders without deactivating the uppermost cylinder in which the air-fuel ratio sensor is installed during steady operation, and performs cylinder deactivation control when the engine is not in normal operation or steady operation The invention according to claim 2 is characterized in that, in claim 1, when the engine is not in a normal operation or a steady operation, the start control, the sudden acceleration / deceleration, the air-fuel ratio sensor is inactive, During click control, the oil empty control, in overheating control, during sensor failure control, characterized in that it is a case corresponding to at least one of dual engine system control.
[0007]
An arrow F indicates the forward direction of the hull (not shown), and an outboard motor 1 as a driving device is detachably mounted on the rear part of the hull. The outboard motor 1 includes a propulsion unit 2, an engine 3 is attached to the upper portion of the propulsion unit 2, and a cowling 4 that covers the engine 3 from above is provided. The engine 3 is a fuel-injected water-cooled two-cycle V-type six-cylinder crankshaft vertical engine, and has a crankcase 5. A crankshaft 6 having a substantially vertical axis is rotatably supported by the crankcase 5. . In the crankcase 5, a cylinder body 7 constituting each cylinder protrudes so as to form a V shape. A piston 8 is slidably fitted to the cylinder body 7 for each cylinder, and each piston 8 is connected to the crankshaft 6. A spark plug 9 is disposed facing the combustion chamber in the space surrounded by the cylinder body 7 and the piston 8.
[0008]
An intake pipe 10 that communicates the inside and outside of the crankcase 5 is connected to each cylinder. The intake pipe 10 is provided with a reed valve 11 and a throttle valve 12 that adjusts the cross-sectional area of the intake pipe 10 by manual operation. . Each intake pipe 10 is provided with a fuel injection valve 13 for each cylinder, and each fuel injection valve 13 is a solenoid open / close type that is opened and closed by a magnetic force so that fuel can be injected upstream of the reed valve 11. ing. The fuel injection valve 13 is connected to a fuel tank 21 installed on the hull side via a high-pressure fuel pump 15, a regulator valve 16, a vapor separator tank 17, a filter 19, and a manual low-pressure fuel pump 20.
[0009]
Of the six cylinders (1) to (6) of the cylinder body 7, the air-fuel ratio sensor 22 is attached only to the uppermost cylinder, for example, the cylinder (1), and each cylinder (1) to (6) It is connected to the collective exhaust pipe 24 via the exhaust passage 18. In the outboard motor, since the leading end of the collective exhaust pipe 24 is below the water surface, water droplets scatter and enter the air-fuel ratio sensor. When the water droplets adhere to the sensor, the sensor element portion is made of ceramics and heated by the heater. Since the sensor element is heated, the sensor element unit is broken. Therefore, the air-fuel ratio sensor 22 is provided in the exhaust passage of the uppermost cylinder of the engine.
[0010]
Detection signals from various sensors indicating the operation state of the engine 3 and the state of the outboard motor 1 and the hull are input to the control device 23. That is, as the sensor, the air-fuel ratio sensor 22, the crank angle sensor 25 for detecting the rotation angle (rotation speed) of the crankshaft 6, the crank chamber pressure sensor 26 for detecting the pressure in the crankcase 6, and each cylinder (1) to (6) In-cylinder pressure sensor 27 for detecting the internal pressure, intake air temperature sensor 29 for detecting the intake air temperature, engine temperature sensor 30 for detecting the temperature in the cylinder 7, and the back pressure in each cylinder (1) to (6) A back pressure sensor 31 for detecting the throttle valve 12, a throttle opening sensor 32 for detecting the opening of the throttle valve 12, a cooling water temperature sensor 33 for detecting the temperature of the cooling water, a knock sensor 35 for detecting the knocking state of the engine 3, and the engine 3 Engine mount height detection sensor 36 for detecting the mount height of the vehicle, neutral sensor 37 for detecting the neutral state of the propulsion unit 2 of the outboard motor 1, A trim angle detection sensor 39 for detecting the vertical rotation position of the machine 1, a ship speed sensor 40 for detecting the ship speed, a ship attitude sensor 41 for detecting the attitude of the ship, an atmospheric pressure sensor 42 for detecting atmospheric pressure, and mixing with fuel An oil level sensor 43 is provided for detecting the amount of oil (in the oil tank). The control device 23 computes the detection signals of these various sensors and transmits the control signals to the spark plug 9, the fuel injection valve 13, the throttle valve 12 and the ISC 46.
[0011]
Next, the cylinder deactivation control according to the present invention will be described with reference to FIGS. As described above, in a two-cycle engine for an outboard motor, because the exhaust port of each cylinder is connected to the collective exhaust pipe due to space limitations, the intake air can be reduced like a low-speed, low-load region. When the amount is small, an exhaust pulse enters and the exhaust gas remains in the cylinder, causing irregular combustion. As a method for improving this, cylinder deactivation control is performed in which the operation of some cylinders is stopped to reduce the number of operating cylinders. By this cylinder deactivation control, exhaust interference is suppressed, so that an effect of increasing the intake amount per cylinder and stabilizing the engine rotation can be obtained.
[0012]
FIG. 2 is a diagram for explaining the influence of the exhaust pulse of each cylinder, and FIG. 3 is a diagram showing the opening / closing timing of the exhaust port of each cylinder. As shown in FIG. 2, cylinders (1), (3) and (5) are moved up and down on the right side (S bank), and cylinders (2), (4) and (6) are moved up and down on the left side (P bank). The cylinders are ignited at equal intervals of a crank angle of 60 degrees in the order of (1) to (6). As shown in FIG. 3, the opening timing of the exhaust port of the cylinder {circle around (1)} and the closing timing of the exhaust port of the cylinder {circle around (5)} are wrapped to increase the area where the exhaust is emitted. (1) and (5) communicate with each other, and as shown in FIG. 2, a strong exhaust pressure from the cylinder (1) acts on the cylinder (5). Similarly, the opening timing of the exhaust port of the cylinder (3) and the closing timing of the exhaust port of the cylinder (1) are overlapped, and the exhaust pressure from the cylinder (3) acts on the cylinder (1). The timing of opening the exhaust port of (5) and the timing of closing the exhaust port of the cylinder (3) are overlapped, and the exhaust pressure from the cylinder (5) acts on the cylinder (3). This relationship is the same in the P bank.
[0013]
Here, the exhaust pressure (combustion pressure) of each cylinder is maximum in the most upstream cylinders (1) and (2), and becomes weaker toward the lower cylinder. This is because the most upstream cylinders {circle around (1)} and {circle around (2)} have a relatively long exhaust pipe length, so that exhaust pulsation can be used effectively, the amount of intake air can be increased, and exhaust gas can be sufficiently scavenged. Because. On the other hand, the most downstream cylinders {circle around (5)} and {circle around (6)} have a short exhaust pipe length, so that exhaust pulsation cannot be obtained sufficiently, and the flow direction of exhaust gas and the direction of action of exhaust pulses from the upper cylinder coincide. Therefore, the amount of intake air is small, the amount of residual exhaust gas is large, and combustion becomes unstable. Therefore, from this point of view, when performing cylinder deactivation, the cylinders of the S bank are arranged so that simultaneous combustion of the most upstream cylinder and the most downstream cylinder affected by the exhaust pulse from the cylinder does not occur. It is best to deactivate (5) or P bank cylinder (6), and as the next best measure, deactivate S bank cylinder (1) or deactivate P bank cylinder (2). It is good to let it.
[0014]
However, since the cylinder (1) is a cylinder that detects the air-fuel ratio, if it is deactivated, the air-fuel ratio control cannot be performed and a problem occurs. Therefore, the cylinder (1) is excluded when selecting the deactivated cylinder. As a result, it is best to deactivate the cylinder (5) or deactivate the cylinder (6), and it is better to deactivate the cylinder (2) as the next best measure.
[0015]
Furthermore, when only one cylinder is deactivated, the most downstream cylinder (5) or (6) may be deactivated. When two cylinders are deactivated, both cylinders (5) and (6) are deactivated. Cause problems. The reason is that each cylinder is ignited at an equal interval of 60 degrees in the order of (1) to (6), so when the cylinders (5) and (6) are stopped, the explosion interval Are not evenly spaced and combustion as a whole becomes unstable. Therefore, when the two cylinders are deactivated, the cylinder (1) is a cylinder that detects the air-fuel ratio, so it is not deactivated, but the most downstream cylinder (5) of the S bank and the most upstream cylinder (2) of the P bank. If ▼ is deactivated, one cylinder is deactivated each time two cylinders explode, and the overall explosion interval in the cylinder deactivated state is equal, and the balance of output generation timing is improved. Low speed stability is obtained. At this time, in the P bank, when the most downstream cylinder (6) is operated, the most upstream cylinder (2) is inactive, and the simultaneous combustion of the cylinders (2) and (6) does not occur. Maintained.
[0016]
FIG. 4 is a diagram for explaining cylinder deactivation control, and shows a map showing an operation region corresponding to the engine speed and the throttle opening. This control is performed so as to select a cylinder deactivation operation consisting of a 4-cylinder operation or a 5-cylinder operation and a 6-cylinder operation (all-cylinder operation) according to the throttle opening and the engine speed. Here, the idle cylinder is selected so that the engine-side vibration frequency and the outboard motor-mount-side vibration frequency do not coincide with each other, and if the engine speed is equal to or less than a predetermined value, the 5-cylinder operation that can avoid resonance is performed. If the engine speed exceeds a predetermined value, a 4-cylinder operation is performed. Here, cylinder deactivation is performed by stopping ignition, and fuel supply to the deactivated cylinder is continued by a fuel injection valve 13 provided independently for each cylinder.
[0017]
FIG. 5 shows an embodiment of the cylinder deactivation control device for an engine of the present invention, and is a diagram for explaining the flow of processing. First, in step S1, it is determined whether or not the engine is in normal operation and steady operation. Here, when the engine is in steady operation, as shown in FIG. 6, the change in the engine speed and the throttle opening is in a small range, and the next control is not performed. That is,
(1) During start-up control: Increase in fuel amount at start-up and advance of ignition timing
(2) During sudden acceleration: Increase in fuel amount and advance of ignition timing during sudden acceleration
(3) During sudden deceleration: An increase in fuel amount and retarded ignition timing during sudden deceleration.
[0018]
The normal engine operation is a case where the engine is not in an abnormal state and is not in the next state or control. That is,
(4) When the air-fuel ratio sensor is inactive: The temperature of the sensor element section of the air-fuel ratio sensor is lowered, the temperature for activating the sensor element cannot be maintained, and the air-fuel ratio detection signal varies, resulting in an appropriate air-fuel ratio. Inability to control
(5) During knock control: retarded ignition timing when knock sensor 35 detects a knock
(6) During oil empty control: When the amount of oil mixed with fuel by the oil level sensor 43 falls below a predetermined amount, the number of operating cylinders is reduced in order to prevent the ignition timing from retarding and the rotational speed from increasing.
(7) During overheat control: When the coolant temperature sensor 33 exceeds the predetermined value by the coolant temperature sensor 33, the number of operating cylinders is decreased in order to prevent the ignition timing from retarding and the rotation speed from increasing.
(8) During sensor failure control: Advance the ignition timing so as not to stop the engine
(9) During dual engine system control: When two outboard motors are engaged and one engine is in knock control, oil empty control, or overheat control, the other engine is also controlled to prevent meandering. .
[0019]
Then, when the control or state of (1) to (9) described above is made, it is determined that the engine is not in normal operation or steady operation, and the process proceeds to step S4 where 6 cylinder operation (all cylinder operation) is performed. When the control or state is not in the above (1) to (9), it is determined that the engine is in normal operation and steady operation, and the process proceeds to step S2 as described in FIG. 4 according to the throttle opening and the engine speed. Thus, cylinder deactivation operation consisting of 4-cylinder operation or 5-cylinder operation is performed.
[0020]
FIG. 7 shows a modification of the present invention and is a diagram for explaining switching control between start control and cylinder deactivation control. As shown in FIG. 7A, the end of the start control is determined based on whether or not the detected value of the engine wall temperature sensor 30 exceeds the start end determination temperature T0 (fixed value). After the start temperature control is detected and the end of the start control is detected and the transition from the 6-cylinder operation to the cylinder deactivation operation is made, if the sensor is clogged with dust or the like and the temperature control becomes impossible, the 6-cylinder operation The problem of repeated pause operation occurs. Therefore, as shown in FIG. 7B, when the end of the start control is detected and the operation is switched from the 6-cylinder operation to the cylinder deactivation operation, the start end determination temperature is lowered to T1, and the sensor value changes. This is also intended to prevent switching from cylinder deactivation operation to 6-cylinder operation.
[0021]
Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications are possible. For example, in the above-described embodiment, an example applied to a 6-cylinder engine has been described. However, the present invention is not limited to this, and any configuration having a plurality of cylinders is acceptable. In the above-described embodiment, an example in which the present invention is applied to a two-cycle engine has been described. However, the present invention can also be applied to a four-cycle engine, and can also be applied to a method in which fuel is directly injected into a cylinder. .
[0022]
【The invention's effect】
As is apparent from the above description, according to the present invention, when the engine is not in normal operation or steady operation, the cylinder deactivation control is not performed, thereby preventing an unstable state of the engine caused by the cylinder deactivation control. can do.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a control system related to an engine cylinder deactivation control device according to the present invention;
FIG. 2 is a diagram for explaining an influence of an exhaust pulse of each cylinder in relation to cylinder deactivation control according to the present invention.
FIG. 3 is a diagram showing the opening / closing timing of the exhaust port of each cylinder in cylinder deactivation control according to the present invention.
FIG. 4 is a diagram for explaining cylinder deactivation control according to the present invention.
FIG. 5 is a diagram for explaining the flow of processing according to an embodiment of the cylinder deactivation control device of the present invention.
6 is a diagram for explaining a steady operation state of the engine with respect to FIG. 5; FIG.
FIG. 7 is a diagram illustrating a modification of the present invention and illustrating switching control between start control and cylinder deactivation control.
[Explanation of symbols]
3 ... Engine, 18 ... Exhaust passage, 24 ... Collective exhaust pipe, (1) to (6) ... Cylinder

Claims (2)

複数の気筒を有し各気筒の排気通路を集合排気管に接続し、気筒休止制御を行うエンジンにおいて、前記エンジンが船外機用のクランク軸縦置きV型エンジンであって、空燃比センサをエンジンの最上部の気筒の排気通路に設け、エンジンが異常状態ではない正常運転の場合で且つエンジン回転数とスロットル開度の変化が少ない定常運転の場合に空燃比センサが設置された最上部の気筒を休止することなく他の気筒の気筒休止制御を実施し、エンジンが正常運転又は定常運転時でない場合には、気筒休止制御を実施しないことを特徴とするエンジンの気筒休止制御装置。In an engine having a plurality of cylinders and connecting an exhaust passage of each cylinder to a collective exhaust pipe and performing cylinder deactivation control, the engine is a crankshaft vertical V-type engine for an outboard motor, and an air-fuel ratio sensor is provided. It is provided in the exhaust passage of the uppermost cylinder of the engine, and the uppermost air / fuel ratio sensor is installed in the normal operation where the engine is not in an abnormal state and in the steady operation where the engine speed and the throttle opening are small . cylinder deactivation control other cylinders carried without pause cylinders, when the engine is not normal operation or steady operation, cylinder deactivation control device for an engine characterized in that it does not implement the cylinder deactivation control. エンジンが正常運転又は定常運転時でない場合とは、始動制御中、急加減速中、空燃比センサ不活性中、ノック制御中、オイルエンプティ制御中、オーバーヒート制御中、センサ故障制御中、デュアルエンジンシステム制御中の少なくとも1つに該当する場合であることを特徴とする請求項1記載のエンジンの気筒休止制御装置。When the engine is not in normal operation or steady operation, it means that during start control, sudden acceleration / deceleration, air-fuel ratio sensor inactive, knock control, oil empty control, overheat control, sensor failure control, dual engine system 2. The engine cylinder deactivation control device according to claim 1, wherein the cylinder deactivation control device corresponds to at least one of the control modes.
JP17628796A 1996-07-05 1996-07-05 Engine cylinder deactivation control device Expired - Fee Related JP3835565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17628796A JP3835565B2 (en) 1996-07-05 1996-07-05 Engine cylinder deactivation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17628796A JP3835565B2 (en) 1996-07-05 1996-07-05 Engine cylinder deactivation control device

Publications (2)

Publication Number Publication Date
JPH1018872A JPH1018872A (en) 1998-01-20
JP3835565B2 true JP3835565B2 (en) 2006-10-18

Family

ID=16010955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17628796A Expired - Fee Related JP3835565B2 (en) 1996-07-05 1996-07-05 Engine cylinder deactivation control device

Country Status (1)

Country Link
JP (1) JP3835565B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215185A (en) * 2007-03-05 2008-09-18 Denso Corp Fuel injection control unit and fuel injection control system
KR101294515B1 (en) * 2007-12-13 2013-08-07 현대자동차주식회사 Methods for Controlling dioxide-sensor's Temperature of CDA vehicle
KR101786672B1 (en) 2015-11-03 2017-10-18 현대자동차 주식회사 Device for controlling driving mode and method for controlling driving mode using the same
JP6332255B2 (en) 2015-12-10 2018-05-30 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JPH1018872A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP3535233B2 (en) Operation control device for two-stroke engine for outboard motor
JP3971474B2 (en) Ship engine operation control device
US5579736A (en) Combustion control system for internal combustion engine
US5797371A (en) Cylinder-disabling control system for multi-cylinder engine
EP0831219B1 (en) Method for controlling the operation of an internal combustion engine
JPS6166839A (en) Overspeed limiting fuel-cut controller for internal-combustion engine
JP3705390B2 (en) Marine engine control device
JP3883231B2 (en) Engine operation control device
JPH11182288A (en) Control device for direct fuel injection type engine
JPH102242A (en) Operation controller for engine
JPH06185380A (en) Fuel control method for multiple-cylinder internal combustion engine
JPH11182289A (en) Control device for cylinder fuel injection type two-cycle engine
JP3835565B2 (en) Engine cylinder deactivation control device
JP3751653B2 (en) 2-cycle engine cylinder deactivation control device
US5423392A (en) Engine control system
JP3835566B2 (en) Engine cylinder deactivation control device
JPH04140435A (en) Output controller of engine
JP3835567B2 (en) Engine cylinder deactivation control device
JPH1018871A (en) Shift cut control device of engine
JP3942234B2 (en) Exhaust system for outboard engine
JPH08246910A (en) Cylinder cut-off control device for two-cycle engine
JPH1061482A (en) Knock control device for inner-cylinder fuel injection type internal combustion engine
JPH1018874A (en) Cylinder suspending control device of engine
JP3617739B2 (en) In-cylinder two-cycle engine for outboard motors
JP3634414B2 (en) Engine combustion control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees