JP3835472B2 - High frequency transmission line components - Google Patents

High frequency transmission line components Download PDF

Info

Publication number
JP3835472B2
JP3835472B2 JP2004319201A JP2004319201A JP3835472B2 JP 3835472 B2 JP3835472 B2 JP 3835472B2 JP 2004319201 A JP2004319201 A JP 2004319201A JP 2004319201 A JP2004319201 A JP 2004319201A JP 3835472 B2 JP3835472 B2 JP 3835472B2
Authority
JP
Japan
Prior art keywords
transmission line
conductors
sheet
conductor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004319201A
Other languages
Japanese (ja)
Other versions
JP2005102272A (en
Inventor
充英 加藤
尚樹 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2004319201A priority Critical patent/JP3835472B2/en
Publication of JP2005102272A publication Critical patent/JP2005102272A/en
Application granted granted Critical
Publication of JP3835472B2 publication Critical patent/JP3835472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、高周波伝送線路部品、例えば遅延線路部品、高周波スイッチ部品、高周波フィルタ部品、又は分波フィルタ部品等の高周波伝送線路部品に関する。 The present invention, high-frequency transmission line components, such as delay line components, the high-frequency switch component, the high-frequency filter component, or to high-frequency transmission line component such as a branching filter parts.

従来より、例えば高周波伝送線路部品として、図15に示すものが提案されている。この高周波伝送線路部品151は、一つの伝送線路導体からなる1本の伝送線路152を表面に設けた誘電体シート153と、グランド導体154を表面に設けた誘電体シート153と、保護用シート153等を積層したものである。伝送線路152を表面に設けた誘電体シート153は、グランド導体154を表面に設けた2枚の誘電体シート153の間に配設されている。従って、この高周波伝送線路部品151は、二つのグランド導体154の間に、所定の特性インピーダンスを有する1本の伝送線路152を1層で構成している。   Conventionally, for example, a high-frequency transmission line component shown in FIG. 15 has been proposed. The high-frequency transmission line component 151 includes a dielectric sheet 153 provided with one transmission line 152 made of one transmission line conductor on the surface, a dielectric sheet 153 provided with a ground conductor 154 on the surface, and a protective sheet 153. Etc. are laminated. The dielectric sheet 153 provided with the transmission line 152 on the surface is disposed between the two dielectric sheets 153 provided with the ground conductor 154 on the surface. Therefore, the high-frequency transmission line component 151 includes one transmission line 152 having a predetermined characteristic impedance in one layer between the two ground conductors 154.

しかしながら、従来の高周波伝送線路部品151は、二つのグランド導体154の間に伝送線路152を1層で構成するものであったため、一層当たりの伝送線路の長さが長くなり、部品サイズが大きくなるという問題があった。   However, since the conventional high-frequency transmission line component 151 comprises the transmission line 152 in a single layer between the two ground conductors 154, the length of the transmission line per layer is increased and the component size is increased. There was a problem.

また、外部からの電磁界ノイズから伝送線路152を遮蔽するため、二つのグランド導体154の間に伝送線路152を配設しているので、伝送線路152とグランド導体154との間に形成される浮遊容量の影響により、伝送線路152の特性インピーダンスが低くなる。従って、この高周波伝送線路部品151を、バイアス印加回路等の分岐線路として用いると、主線の挿入損失が大きく、帯域幅が狭くなるという問題があった。   Further, since the transmission line 152 is disposed between the two ground conductors 154 in order to shield the transmission line 152 from external electromagnetic field noise, it is formed between the transmission line 152 and the ground conductor 154. Due to the effect of stray capacitance, the characteristic impedance of the transmission line 152 is lowered. Therefore, when this high-frequency transmission line component 151 is used as a branch line such as a bias application circuit, there is a problem that the insertion loss of the main line is large and the bandwidth is narrowed.

なお、特許文献1には、積層された複数の誘電性基板のそれぞれに伝送線路導体を形成し、これらを伝搬する高周波信号の進行方向が相互に同方向になるように直列に接続して、一つもしくは複数の伝送線路を形成した電気回路が開示されている。   In Patent Document 1, a transmission line conductor is formed on each of a plurality of laminated dielectric substrates, and connected in series so that the traveling directions of the high-frequency signals propagating through these are the same direction, An electric circuit in which one or a plurality of transmission lines is formed is disclosed.

また、特許文献2には、伝送線路を構成する多層基板にダイオード・コンデンサ等の電気機能素子を設けた高周波スイッチが開示されている。
特表平8−508615号公報 特開平7−312568号公報
Patent Document 2 discloses a high-frequency switch in which an electric functional element such as a diode / capacitor is provided on a multilayer substrate constituting a transmission line.
Japanese National Patent Publication No. 8-508615 JP 7-31568 A

そこで、本発明の目的は、所定の特性インピーダンスを確保し、かつ、小型化が可能で周波数特性が優れている高周波伝送線路部品を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency transmission line component that ensures a predetermined characteristic impedance, can be miniaturized, and has excellent frequency characteristics.

以上の目的を達成するため、本発明は、
複数の誘電体層と複数の伝送線路導体とを積層してなる高周波伝送線路部品において、
前記複数の伝送線路導体のうちの同一方向にスパイラル状に形成された二つの伝送線路導体が、前記複数の誘電体層のうちの一つの誘電体層の主面上に配置され、
前記複数の伝送線路導体のうちの他の一つの略S字状の伝送線路導体が、前記複数の誘電体層のうちの他の一つの誘電体層の主面上に配置され、
前記三つの伝送線路導体がビアホールを介して電気的に直列に接続され、1本の伝送線路を形成し、
前記三つの伝送線路導体のそれぞれを伝播する高周波信号の進行方向がそれぞれ互いに近接する部分で同方向であること、
を特徴とする。
In order to achieve the above object, the present invention provides:
In a high-frequency transmission line component formed by laminating a plurality of dielectric layers and a plurality of transmission line conductors ,
Two transmission line conductors formed in a spiral shape in the same direction among the plurality of transmission line conductors are disposed on the main surface of one dielectric layer of the plurality of dielectric layers,
Another substantially S-shaped transmission line conductor of the plurality of transmission line conductors is disposed on the main surface of the other dielectric layer of the plurality of dielectric layers,
The three transmission line conductors are electrically connected in series through via holes to form one transmission line,
The traveling direction of the high-frequency signal propagating through each of the three transmission line conductors is the same direction at a portion close to each other,
It is characterized by.

以上の説明で明らかなように、本発明によれば、伝送線路が複数層で構成されているので、特性インピーダンスが一定であれば、一層当たりの伝送線路導体の長さは、従来より短くてすむ。この結果、高周波伝送線路は、従来と比較して小さいサイズで所定の特性インピーダンスを確保することができる。   As is clear from the above description, according to the present invention, since the transmission line is composed of a plurality of layers, if the characteristic impedance is constant, the length of the transmission line conductor per layer is shorter than the conventional one. I'm sorry. As a result, the high-frequency transmission line can ensure a predetermined characteristic impedance with a smaller size than the conventional one.

また、積層方向に隣り合う二つの伝送線路導体のそれぞれの導体幅を異ならせておけば、伝送線路導体の積層ずれによる特性インピーダンスの変動を抑えることができる。   Also, if the conductor widths of the two transmission line conductors adjacent to each other in the stacking direction are made different, it is possible to suppress fluctuations in the characteristic impedance caused by the stacking deviation of the transmission line conductors.

さらに、三つの伝送線路導体のそれぞれを伝播する高周波信号の進行方向が相互に近接する部分で同方向であるため、伝送線路導体のそれぞれの周囲に発生する磁束の周回方向が同方向となる。その結果、伝送線路導体相互の間隔を近接させることにより、伝送線路導体間の結合を大きくすることができ、所望の特性インピーダンスを容易に得ることができる。 Furthermore, since the traveling directions of the high-frequency signals propagating through the three transmission line conductors are the same in the portions close to each other, the circulation directions of the magnetic flux generated around each of the transmission line conductors are the same. As a result, by bringing the transmission line conductors close to each other , the coupling between the transmission line conductors can be increased, and a desired characteristic impedance can be easily obtained.

従って、外部からの電磁界ノイズから伝送線路を遮蔽するため、二つのグランド導体の間に伝送線路を配設しても、伝送線路とグランド導体との間に形成される浮遊容量の影響による伝送線路の特性インピーダンスの低下を補償して、一定の特性インピーダンスを確保することができる。そして、この高周波伝送線路を、バイアス印加回路等の分岐線路として用いる場合には、主線の挿入損失の低下及び帯域幅縮小を抑えることができる。   Therefore, even if a transmission line is provided between two ground conductors in order to shield the transmission line from external electromagnetic field noise, transmission due to the effect of stray capacitance formed between the transmission line and the ground conductor It is possible to ensure a certain characteristic impedance by compensating for a decrease in the characteristic impedance of the line. When this high-frequency transmission line is used as a branch line for a bias application circuit or the like, it is possible to suppress a reduction in main line insertion loss and a reduction in bandwidth.

また、伝送線路において、伝送線路導体が積層方向に重なっている部分の線路長を短くすることで、伝送線路を伝播する高周波信号のうちで最も大きな結合が得られる高周波信号の周波数を高くすることができる。   Also, in the transmission line, by shortening the length of the part where the transmission line conductors overlap in the stacking direction, the frequency of the high-frequency signal that provides the largest coupling among the high-frequency signals propagating through the transmission line is increased. Can do.

以下、本発明に係る高周波伝送線路部品の実施例について添付図面を参照して説明する。 Embodiments of a high-frequency transmission line component according to the present invention will be described below with reference to the accompanying drawings.

[第1実施例、図1〜図3]
図1に示すように、高周波伝送線路部品1は、伝送線路導体2a,2b及びビアホール6をそれぞれ設けた誘電体シート5と、グランド導体4を設けた誘電体シート5と、保護用誘電体シート5等にて構成されている。
[First embodiment, FIGS. 1 to 3]
As shown in FIG. 1, the high-frequency transmission line component 1 includes a dielectric sheet 5 provided with transmission line conductors 2a and 2b and a via hole 6, a dielectric sheet 5 provided with a ground conductor 4, and a protective dielectric sheet. 5 etc.

伝送線路導体2a,2bは、それぞれ大略ミアンダ形状をしており、伝送線路導体2aの引出し部3aはシート5の手前側の辺の左側部に露出し、伝送線路導体2bの引出し部3bはシート5の手前側の辺の右側部に露出している。さらに、伝送線路導体2a,2bは、引出し部3a,3bを残して、シート5を挟んで対向している。第1実施形態では、伝送線路導体2a,2bは積層方向に完全に重なり合うように配置されている(図3参照)。ただし、伝送線路導体2a,2bの配置は必ずしもこれに限るものではなく、例えば、導体幅の略半分が重なり合うように伝送線路導体2a,2bを配置してもよい。伝送線路導体2a,2bは、ビアホール6を介して電気的に直列に接続され、1本の伝送線路(例えば1/4波長の分布定数線路)2を形成する。   Each of the transmission line conductors 2a and 2b has a generally meander shape, the lead-out portion 3a of the transmission line conductor 2a is exposed on the left side of the front side of the sheet 5, and the lead-out portion 3b of the transmission line conductor 2b is a sheet. 5 is exposed on the right side of the side on the near side. Further, the transmission line conductors 2a and 2b are opposed to each other with the sheet 5 interposed therebetween, leaving the lead portions 3a and 3b. In the first embodiment, the transmission line conductors 2a and 2b are arranged so as to completely overlap in the stacking direction (see FIG. 3). However, the arrangement of the transmission line conductors 2a and 2b is not necessarily limited thereto. For example, the transmission line conductors 2a and 2b may be arranged so that approximately half of the conductor widths overlap. The transmission line conductors 2 a and 2 b are electrically connected in series via the via hole 6 to form one transmission line (for example, a 1/4 wavelength distributed constant line) 2.

グランド導体4は、シート5の表面に広面積に設けられている。グランド導体4の引出し部4aはシート5の左辺に露出し、引出し部4bはシート5の右辺に露出し、引出し部4c,4dはそれぞれシート5の奥側の辺の左側部及び右側部に露出している。   The ground conductor 4 is provided in a large area on the surface of the sheet 5. The lead portion 4a of the ground conductor 4 is exposed on the left side of the sheet 5, the lead portion 4b is exposed on the right side of the sheet 5, and the lead portions 4c and 4d are exposed on the left side and right side of the back side of the sheet 5, respectively. is doing.

導体2a,2b,4はAg,Pd,Ag−Pd,Cu等からなり、シート5の表面に、周知の印刷法やスパッタリング法や真空蒸着法等の方法によって形成される。矩形状誘電体シート5は、誘電体セラミック粉末を結合剤等と共に混練したものをシート状にしたものである。   The conductors 2a, 2b, and 4 are made of Ag, Pd, Ag-Pd, Cu, or the like, and are formed on the surface of the sheet 5 by a known printing method, sputtering method, vacuum deposition method, or the like. The rectangular dielectric sheet 5 is obtained by kneading dielectric ceramic powder together with a binder or the like into a sheet shape.

以上の構成からなる各シート5は積み重ねられ、一体的に焼結されることにより、図2に示すように積層体とされる。積層体の手前側の側面部の左側及び右側の位置には、それぞれ入力端子11及び出力端子13が形成され、奥側の側面部の左側及び右側の位置には、それぞれグランド端子12,14が形成される。さらに、積層体の左右の側面部には、それぞれグランド端子15,16が形成される。これらの端子11〜16は、スパッタリング法、真空蒸着法、あるいは塗布焼付等の方法にて形成される。   Each sheet 5 having the above configuration is stacked and integrally sintered to form a laminate as shown in FIG. Input terminals 11 and output terminals 13 are respectively formed at the left and right side positions of the side surface portion on the near side of the laminate, and ground terminals 12 and 14 are respectively disposed at the left and right positions of the back side surface portion. It is formed. Furthermore, ground terminals 15 and 16 are formed on the left and right side surfaces of the laminate, respectively. These terminals 11 to 16 are formed by a sputtering method, a vacuum deposition method, a coating baking method or the like.

入力端子11は伝送線路2の一方の端部、具体的には伝送線路導体2aの引出し部3aに電気的に接続している。出力端子13は伝送線路2の他方の端部、具体的には伝送線路導体2bの引出し部3bに電気的に接続している。グランド端子12,14,15,16は、それぞれグランド導体4の引出し部4c,4d,4a,4bに電気的に接続している。   The input terminal 11 is electrically connected to one end of the transmission line 2, specifically to the lead-out part 3a of the transmission line conductor 2a. The output terminal 13 is electrically connected to the other end of the transmission line 2, specifically, to the lead-out part 3b of the transmission line conductor 2b. The ground terminals 12, 14, 15, and 16 are electrically connected to the lead portions 4c, 4d, 4a, and 4b of the ground conductor 4, respectively.

こうして得られた高周波伝送線路部品1は、図3に示すように、上下に配置された二つのグランド導体4,4の間に、1本の伝送線路2が伝送線路導体2aと2bの2層で構成されている。従って、特性インピーダンスが一定であれば、一層当たりの伝送線路導体の長さは、従来の略1/2となる。この結果、伝送線路部品1は、従来の高周波伝送線路部品と比較して、小さい部品サイズで所定の特性インピーダンスを確保することができる。   As shown in FIG. 3, the high-frequency transmission line component 1 thus obtained has one transmission line 2 between two ground conductors 4 and 4 arranged above and below, two layers of transmission line conductors 2a and 2b. It consists of Therefore, if the characteristic impedance is constant, the length of the transmission line conductor per layer is about ½ of the conventional length. As a result, the transmission line component 1 can ensure a predetermined characteristic impedance with a small component size as compared with the conventional high-frequency transmission line component.

また、入力端子11に入った高周波信号が、伝送線路2を伝播して出力端子13から出力される場合、図1に示すように、伝送線路導体2aを伝播する高周波信号の進行方向aと、伝送線路導体2bを伝播する高周波信号の進行方向bとが同方向となる。従って、伝送線路導体2a,2bのそれぞれの周囲に発生する磁束の周回方向が同方向となり、伝送線路導体2aと2bはこの相互に同方向に周回する磁束によって電磁気的に結合することになる。これにより、図3に示すように、伝送線路導体2aと2bが近接して重なり合う部分において、伝送線路導体2a及び2bを中心として周回する磁束φが形成される。このため、例えば伝送線路導体2aと2bの間隔を25μm程度に設定することにより、伝送線路導体2aと2b間の結合を大きくすることができ、所望の特性インピーダンスを容易に得ることができる。   In addition, when the high-frequency signal that has entered the input terminal 11 propagates through the transmission line 2 and is output from the output terminal 13, as shown in FIG. 1, the traveling direction a of the high-frequency signal that propagates through the transmission line conductor 2a, The traveling direction b of the high-frequency signal propagating through the transmission line conductor 2b is the same direction. Accordingly, the circumferential direction of the magnetic flux generated around each of the transmission line conductors 2a and 2b is the same direction, and the transmission line conductors 2a and 2b are electromagnetically coupled by the magnetic flux circulating in the same direction. As a result, as shown in FIG. 3, a magnetic flux φ that circulates around the transmission line conductors 2 a and 2 b is formed in a portion where the transmission line conductors 2 a and 2 b overlap in the vicinity. Therefore, for example, by setting the distance between the transmission line conductors 2a and 2b to about 25 μm, the coupling between the transmission line conductors 2a and 2b can be increased, and a desired characteristic impedance can be easily obtained.

従って、外部からの電磁界ノイズから伝送線路2を遮蔽するため、二つのグランド導体4の間に伝送線路2を配設しても、伝送線路2とグランド導体4との間に形成される浮遊容量の影響による伝送線路2の特性インピーダンスの低下を補償して、一定の特性インピーダンスを確保することができる。そして、この高周波伝送線路部品1を、バイアス印加回路等の分岐線路として用いる場合には、主線の挿入損失の低下及び帯域幅縮小を抑えることができる。   Therefore, even if the transmission line 2 is disposed between the two ground conductors 4 in order to shield the transmission line 2 from electromagnetic field noise from the outside, a floating formed between the transmission line 2 and the ground conductor 4. A certain characteristic impedance can be ensured by compensating for a decrease in the characteristic impedance of the transmission line 2 due to the influence of the capacitance. And when using this high frequency transmission line component 1 as branch lines, such as a bias application circuit, the fall of the insertion loss and bandwidth reduction of a main line can be suppressed.

さらに、伝送線路2において、伝送線路導体2a,2bが積層方向に重なっている部分の線路長をLとすると、L=λ/4となる波長λの高周波信号が伝送線路2を伝播した際に、最も大きな結合が生じる。そして、この重なっている部分の線路長Lを短くすることで、伝送線路2を伝播する高周波信号のうちで最も大きな結合が得られる高周波信号の周波数(以下、中心周波数と記す)を高くすることができる。   Further, in the transmission line 2, when the line length of the portion where the transmission line conductors 2a and 2b overlap in the stacking direction is L, a high-frequency signal having a wavelength λ of L = λ / 4 propagates through the transmission line 2. The largest bond occurs. Then, by shortening the line length L of the overlapping portion, the frequency of the high-frequency signal (hereinafter referred to as the center frequency) that can obtain the largest coupling among the high-frequency signals propagating through the transmission line 2 is increased. Can do.

さらに、伝送線路導体2a,2bの導体幅、あるいは伝送線路導体2a,2bとグランド導体4の間隔、あるいは伝送線路導体2aと2bの重なり面積、あるいは伝送線路導体2a,2b相互の間隔を任意に設定することにより、特性インピーダンスを所望の値に調整することができる。   Further, the conductor width of the transmission line conductors 2a and 2b, the distance between the transmission line conductors 2a and 2b and the ground conductor 4, the overlapping area of the transmission line conductors 2a and 2b, or the distance between the transmission line conductors 2a and 2b is arbitrarily set. By setting, the characteristic impedance can be adjusted to a desired value.

[第2実施例、図4〜図7]
図4に示すように、高周波伝送線路部品21は、伝送線路導体22a,22b,22c及びビアホール26a,26bをそれぞれ設けた誘電体シート25と、グランド導体24を設けた誘電体シート25と、保護用誘電体シート25等にて構成されている。
[Second Embodiment, FIGS. 4 to 7]
As shown in FIG. 4, the high-frequency transmission line component 21 includes a dielectric sheet 25 provided with transmission line conductors 22a, 22b, 22c and via holes 26a, 26b, a dielectric sheet 25 provided with a ground conductor 24, and a protection. It is comprised by the dielectric material sheet 25 grade | etc.,.

伝送線路導体22a〜22cは、それぞれ大略ミアンダ形状をしている。伝送線路導体22a,22cの引出し部23a,23cは、それぞれシート25の手前側の辺の左側部及び右側部に露出している。さらに、伝送線路導体22a〜22cは、引出し部23a、23cを残して、シート25を挟んで対向し、電磁気的に結合している。伝送線路導体22a〜22cは、ビアホール26a,26bを介して電気的に直列に接続され、1本の伝送線路22を形成する。   Each of the transmission line conductors 22a to 22c has a generally meander shape. The lead-out portions 23a and 23c of the transmission line conductors 22a and 22c are exposed on the left side and the right side of the front side of the sheet 25, respectively. Further, the transmission line conductors 22a to 22c are opposed to each other with the sheet 25 interposed therebetween, leaving the lead portions 23a and 23c, and are electromagnetically coupled. The transmission line conductors 22a to 22c are electrically connected in series via via holes 26a and 26b to form one transmission line 22.

グランド導体24は、シート25の表面に広面積に設けられている。グランド導体24の引出し部24a,24bはそれぞれシート25の左辺及び右辺に露出し、引出し部24c,24dはそれぞれシート25の奥側の辺の左側部及び右側部に露出している。   The ground conductor 24 is provided in a large area on the surface of the sheet 25. The lead portions 24 a and 24 b of the ground conductor 24 are exposed at the left side and the right side of the sheet 25, respectively, and the lead portions 24 c and 24 d are exposed at the left side and right side of the back side of the sheet 25, respectively.

以上の構成からなる各シート25は積み重ねられ、一体的に焼結されることにより、図5に示すように積層体とされる。積層体の手前側の側面部の左寄り及び右寄りの位置には、それぞれ入力端子31及び出力端子32が形成され、奥側の側面部の左寄り及び右寄りの位置には、それぞれグランド端子35,36が形成され、左右の側面部には、それぞれグランド端子33,34が形成される。   Each sheet | seat 25 which consists of the above structure is laminated | stacked, and it is set as a laminated body as shown in FIG. 5 by sintering integrally. An input terminal 31 and an output terminal 32 are formed at the left side and the right side of the side surface portion on the near side of the laminate, respectively, and ground terminals 35 and 36 are respectively provided at the left side and the right side of the back side surface portion. The ground terminals 33 and 34 are formed on the left and right side portions, respectively.

入力端子31は伝送線路22の一方の端部、具体的には伝送線路導体22aの引出し部23aに電気的に接続している。出力端子32は伝送線路22の他方の端部、具体的には伝送線路導体22cの引出し部23cに電気的に接続している。グランド端子33,34,35,36は、それぞれグランド導体24の引出し部24a,24b,24c,24dに電気的に接続している。   The input terminal 31 is electrically connected to one end of the transmission line 22, more specifically, to the lead-out part 23a of the transmission line conductor 22a. The output terminal 32 is electrically connected to the other end of the transmission line 22, specifically to the lead-out part 23c of the transmission line conductor 22c. The ground terminals 33, 34, 35, and 36 are electrically connected to the lead portions 24a, 24b, 24c, and 24d of the ground conductor 24, respectively.

こうして得られた高周波伝送線路部品21は、図6(A)に示すように、上下に配置された二つのグランド導体24,24の間に、1本の伝送線路22が伝送線路導体22aと22bと22cの3層で構成されているので、特性インピーダンスが一定であれば、一層当たりの伝送線路導体の長さは従来の1/3となる。従って、伝送線路部品21を従来の高周波伝送線路部品と比較して小型にすることができる。   As shown in FIG. 6A, the high-frequency transmission line component 21 obtained in this way has a single transmission line 22 between the two ground conductors 24, 24 arranged above and below, and transmission line conductors 22a and 22b. If the characteristic impedance is constant, the length of the transmission line conductor per layer becomes 1/3 of the conventional one. Therefore, the transmission line component 21 can be reduced in size as compared with the conventional high-frequency transmission line component.

ここで、図6(B)に示すように、一対のグランド導体24の間に、伝送線路導体22a〜22cのうちの一つしか配置しない構造を有する伝送線路部品と比較する。グランド導体24と伝送線路導体22a(又は22b,22c)の間隔T1を150μm程度とすると、伝送線路導体22a〜22c相互の間隔T2は25μm程度にできる。従って、図6(B)に示されている構造の伝送線路部品の寸法T4は900μm程度となるのに対して、第2実施形態の伝送線路部品21の寸法T3は350μm程度に抑えることができる。   Here, as shown in FIG. 6B, the transmission line component is compared with a transmission line component having a structure in which only one of the transmission line conductors 22a to 22c is disposed between the pair of ground conductors 24. If the distance T1 between the ground conductor 24 and the transmission line conductor 22a (or 22b, 22c) is about 150 μm, the distance T2 between the transmission line conductors 22a to 22c can be about 25 μm. Accordingly, the dimension T4 of the transmission line component having the structure shown in FIG. 6B is about 900 μm, whereas the dimension T3 of the transmission line component 21 of the second embodiment can be suppressed to about 350 μm. .

また、図4に示すように、伝送線路導体22a,22b,22cをそれぞれ伝播する高周波信号の進行方向a,b,cは同方向となる。従って、図6(A)に示すように、伝送線路導体22a,22b,22cが近接して重なり合う部分において、伝送線路導体22a〜22cをほぼ中心として周回する磁束φが形成される。この結果、伝送線路部品21は、伝送線路導体22a〜22c相互の間隔を所定量確保することにより、伝送線路導体22a〜22c間の結合を大きくすることができ、所望の特性インピーダンスを容易に得ることができる。   Also, as shown in FIG. 4, the traveling directions a, b, and c of the high-frequency signals propagating through the transmission line conductors 22a, 22b, and 22c are the same direction. Therefore, as shown in FIG. 6A, a magnetic flux φ that circulates around the transmission line conductors 22a to 22c is formed at the portion where the transmission line conductors 22a, 22b, and 22c overlap in close proximity. As a result, the transmission line component 21 can increase the coupling between the transmission line conductors 22a to 22c by securing a predetermined distance between the transmission line conductors 22a to 22c, and easily obtain a desired characteristic impedance. be able to.

また、特性インピーダンスを所定値に調整するため、伝送線路導体22a〜22cの導体幅、あるいは伝送線路導体22a〜22cとグランド導体24の間隔、あるいは伝送線路導体22a〜22c相互の間隔を任意に設定することができる。特に、図7に示すように、積層方向において、最も外側に位置している伝送線路導体22a,22cと内側に位置している伝送線路導体22bのそれぞれの導体幅を異ならせておけば、伝送線路導体22a〜22cの積層ずれによる特性インピーダンスの変動を抑えることができるので、有効である。   Further, in order to adjust the characteristic impedance to a predetermined value, the conductor width of the transmission line conductors 22a to 22c, the distance between the transmission line conductors 22a to 22c and the ground conductor 24, or the distance between the transmission line conductors 22a to 22c is arbitrarily set. can do. In particular, as shown in FIG. 7, if the conductor widths of the transmission line conductors 22 a and 22 c located on the outermost side and the transmission line conductor 22 b located on the inner side are different in the stacking direction, transmission is performed. This is effective because fluctuations in characteristic impedance due to misalignment of the line conductors 22a to 22c can be suppressed.

[第3実施例、図8及び図9]
図8に示すように、高周波伝送線路部品41は、伝送線路導体42a,42cを設けた誘電体シート45と、伝送線路導体42bを設けた誘電体シート45と、グランド導体44を設けた誘電体シート45と、保護用誘電体シート45等にて構成されている。
[Third embodiment, FIGS. 8 and 9]
As shown in FIG. 8, the high frequency transmission line component 41 includes a dielectric sheet 45 provided with transmission line conductors 42a and 42c, a dielectric sheet 45 provided with a transmission line conductor 42b, and a dielectric provided with a ground conductor 44. The sheet 45 is composed of a protective dielectric sheet 45 and the like.

伝送線路導体42a〜42cは、それぞれ大略ミアンダ形状をしている。伝送線路導体42a,42cの引出し部43a,43cは、それぞれシート45の手前側の辺の中央左寄りの位置及び右側の位置に露出している。さらに、伝送線路導体42a〜42cは、引出し部43a,43c等を残してシート45を挟んで対向し、電磁気的に結合している。伝送線路導体42a〜42cは、ビアホール46a,46bを介して電気的に直列に接続され、1本の伝送線路42を形成する。   Each of the transmission line conductors 42a to 42c has a generally meander shape. The lead-out portions 43a and 43c of the transmission line conductors 42a and 42c are exposed at the center left side position and the right side position of the front side of the sheet 45, respectively. Further, the transmission line conductors 42a to 42c are opposed to each other with the sheet 45 interposed therebetween except for the lead portions 43a and 43c, and are electromagnetically coupled. Transmission line conductors 42a to 42c are electrically connected in series via via holes 46a and 46b to form one transmission line 42.

グランド導体44は、シート45の表面に広面積に設けられている。グランド導体44の引出し部44a,44bはそれぞれシート45の左辺及び右辺に露出し、引出し部44c,44dはそれぞれシート45の奥側の辺の中央左寄りの位置及び右側の位置に露出している。   The ground conductor 44 is provided on the surface of the sheet 45 in a wide area. The lead portions 44a and 44b of the ground conductor 44 are exposed at the left side and the right side of the sheet 45, respectively, and the lead portions 44c and 44d are exposed at the center left side and the right side of the back side of the sheet 45, respectively.

以上の構成からなる各シート45は積み重ねられ、一体的に焼結されることにより、図9に示すように積層体とされる。積層体の手前側の側面部の中央左寄り及び右側の位置には、それぞれ入力端子51及び出力端子52が形成され、奥側の側面部の中央左寄り及び右側の位置には、それぞれグランド端子55,56が形成され、左右の側面部にはそれぞれグランド端子53,54が形成される。   Each sheet 45 having the above configuration is stacked and integrally sintered to form a laminate as shown in FIG. An input terminal 51 and an output terminal 52 are formed at the center left side and right side positions of the side surface portion on the near side of the laminate, respectively, and ground terminals 55, respectively are provided at the center left side and right side positions of the back side surface portion. 56 is formed, and ground terminals 53 and 54 are formed on the left and right side portions, respectively.

入力端子51は伝送線路42の一方の端部、具体的には伝送線路導体42aの引出し部43aに電気的に接続している。出力端子52は伝送線路42の他方の端部、具体的には伝送線路導体42cの引出し部43cに電気的に接続している。グランド端子53,54,55,56は、それぞれグランド導体44の引出し部44a,44b,44c,44dに電気的に接続している。   The input terminal 51 is electrically connected to one end of the transmission line 42, specifically to the lead-out part 43a of the transmission line conductor 42a. The output terminal 52 is electrically connected to the other end of the transmission line 42, specifically, to the lead-out part 43c of the transmission line conductor 42c. The ground terminals 53, 54, 55, and 56 are electrically connected to the lead portions 44a, 44b, 44c, and 44d of the ground conductor 44, respectively.

こうして得られた高周波伝送線路部品41は、上下に配置された二つのグランド導体44,44の間に、1本の伝送線路42が、伝送線路導体42a,42cの層と、伝送線路導体42bの層の2層で構成されている。従って、特性インピーダンスが一定であれば、一層あたりの伝送線路導体の長さは、従来の長さより短くなる。この結果、伝送線路部品41は、従来の高周波伝送線路部品と比較して小型にすることができる。   The high-frequency transmission line component 41 obtained in this way has one transmission line 42 between the two ground conductors 44, 44 arranged above and below, the layers of the transmission line conductors 42a, 42c, and the transmission line conductor 42b. It consists of two layers. Therefore, if the characteristic impedance is constant, the length of the transmission line conductor per layer is shorter than the conventional length. As a result, the transmission line component 41 can be reduced in size as compared with the conventional high-frequency transmission line component.

また、図8に示すように、伝送線路導体42a,42b,42cをそれぞれ伝播する高周波信号の進行方向a,b,cが同方向となる。従って、伝送線路導体42a,42b,42cのそれぞれの周囲に発生する磁束の周回方向が同方向となる。この結果、伝送線路部品41は、伝送線路導体42a〜42c相互の間隔を近接させることにより、伝送線路導体42a〜42c間の結合を大きくすることができ、所望の特性インピーダンスを容易に得ることができる。   Further, as shown in FIG. 8, the traveling directions a, b, and c of the high-frequency signals propagating through the transmission line conductors 42a, 42b, and 42c are the same direction. Therefore, the circulation direction of the magnetic flux generated around each of the transmission line conductors 42a, 42b, and 42c is the same direction. As a result, the transmission line component 41 can increase the coupling between the transmission line conductors 42a to 42c by making the distance between the transmission line conductors 42a to 42c close to each other, and can easily obtain a desired characteristic impedance. it can.

[第4実施例、図10及び図11]
図10に示すように、高周波伝送線路部品61は、伝送線路導体62a,62b及びビアホール66をそれぞれ設けた誘電体シート65と、グランド導体64を設けた誘電体シート65と、保護用誘電体シート65等にて構成されている。伝送線路導体62aの引出し部63aはシート65の手前側の辺の左側部に露出し、伝送線路導体62bの引出し部63bはシート65の手前側の辺の左側部に露出している。さらに、伝送線路導体62a,62bは、引出し部63a,63bを残してシート65を挟んで対向している。伝送線路導体62a,62bはビアホール66を介して直列に電気的に接続され、1本の伝送線路62を形成する。
[Fourth embodiment, FIGS. 10 and 11]
As shown in FIG. 10, the high-frequency transmission line component 61 includes a dielectric sheet 65 provided with transmission line conductors 62a and 62b and a via hole 66, a dielectric sheet 65 provided with a ground conductor 64, and a protective dielectric sheet. 65 or the like. The lead-out portion 63a of the transmission line conductor 62a is exposed on the left side of the front side of the sheet 65, and the lead-out portion 63b of the transmission line conductor 62b is exposed on the left side of the front side of the sheet 65. Further, the transmission line conductors 62a and 62b are opposed to each other with the sheet 65 interposed therebetween, leaving the lead portions 63a and 63b. The transmission line conductors 62 a and 62 b are electrically connected in series via the via hole 66 to form one transmission line 62.

グランド導体64は、シート65の表面に広面積に設けられている。グランド導体64の引出し部64a,64bはそれぞれシート65の左辺及び右辺に露出し、引出し部64cはシート65の手前側の辺の右側部に露出し、引出し部64d,64eはそれぞれシート65の奥側の辺の右側部及び左側部に露出している。   The ground conductor 64 is provided in a large area on the surface of the sheet 65. The lead portions 64a and 64b of the ground conductor 64 are exposed at the left side and the right side of the sheet 65, the lead portion 64c is exposed at the right side of the front side of the sheet 65, and the lead portions 64d and 64e are at the back of the sheet 65, respectively. It is exposed at the right side and the left side of the side.

以上の構成からなる各シート65は積み重ねられ、一体的に焼結されることにより、図11に示すように積層体とされる。積層体の手前側の側面部の左側及び右側の位置には、それぞれ入出力端子71及びグランド端子73が形成され、奥側の側面部の左側及び右側の位置には、それぞれグランド端子72,74が形成され、左右の側面部には、それぞれグランド端子75,76が形成される。   Each sheet 65 having the above configuration is stacked and integrally sintered to form a laminate as shown in FIG. Input / output terminals 71 and ground terminals 73 are formed at the left and right positions of the side surface portion on the near side of the laminate, respectively, and ground terminals 72 and 74 are disposed at the left and right positions of the back side surface portion, respectively. The ground terminals 75 and 76 are formed on the left and right side surfaces, respectively.

入出力端子71は、伝送線路62の一方の端部、具体的には伝送線路導体62aの引出し部63aに電気的に接続している。グランド端子73は伝送線路62の他方の端部、具体的には伝送線路導体62bの引出し部63b及びグランド導体64の引出し部64cに電気的に接続している。グランド端子72,74,75,76は、それぞれグランド導体64の引出し部64e、64d、64a,64bに電気的に接続している。なお、この実施形態においては、伝送線路導体62bの引出し部63bとグランド導体64とが電気的に接続されているが、回路とのマッチングをとる場合等、回路構成上必要な場合に限って接続されるものである。   The input / output terminal 71 is electrically connected to one end of the transmission line 62, specifically, to the lead-out part 63a of the transmission line conductor 62a. The ground terminal 73 is electrically connected to the other end of the transmission line 62, specifically, the lead-out part 63 b of the transmission-line conductor 62 b and the lead-out part 64 c of the ground conductor 64. The ground terminals 72, 74, 75, and 76 are electrically connected to the lead portions 64e, 64d, 64a, and 64b of the ground conductor 64, respectively. In this embodiment, the lead-out portion 63b of the transmission line conductor 62b and the ground conductor 64 are electrically connected. However, the connection is made only when necessary for the circuit configuration, such as when matching with a circuit. It is what is done.

こうして得られた高周波伝送線路部品61は、前記第1実施例の伝送線路部品1と同様の作用効果を奏する。   The high-frequency transmission line component 61 obtained in this way has the same effects as the transmission line component 1 of the first embodiment.

[第5実施例、図12〜図14]
第5実施例は、高周波伝送経路を有した電子部品の一例として、高周波スイッチ部品を例にして説明する。
[Fifth Embodiment, FIGS. 12 to 14]
In the fifth embodiment, a high-frequency switch component will be described as an example of an electronic component having a high-frequency transmission path.

図12に示すように、高周波スイッチ部品81は、伝送線路導体82a,82b等を設けた誘電体シート95と、グランド導体84を設けた誘電体シート95と、コンデンサ導
体85,86を設けた誘電体シート95と、伝送線路導体87a〜87c,88a,88bをそれぞれ設けた誘電体シート95と、ビアホール付きパッド107a〜110bを設けた誘電体シート95等にて構成されている。
As shown in FIG. 12, the high frequency switch component 81 includes a dielectric sheet 95 provided with transmission line conductors 82a and 82b, a dielectric sheet 95 provided with a ground conductor 84, and a dielectric sheet provided with capacitor conductors 85 and 86. A body sheet 95, a dielectric sheet 95 provided with transmission line conductors 87a to 87c, 88a and 88b, a dielectric sheet 95 provided with pads 107a to 110b with via holes, and the like.

伝送線路導体87a,87b,87cは、それぞれ大略スパイラル形状をしており、伝送線路導体87aの引出し部89aはシート95の奥側の辺の左側部に露出し、伝送線路導体87cの引出し部89cはシート95の手前側の辺の左側部に露出している。さらに、伝送線路導体87a〜87cは、引出し部89a,89cを残してシート95を挟んで対向している。これらの伝送線路導体87a〜87cは、シート95に設けたビアホール120a、120bを介して電気的に直列に接続され、1本の伝送線路87を形成する。この伝送線路87は、バイアス回路の分岐線路として用いられる。   Each of the transmission line conductors 87a, 87b, 87c has a substantially spiral shape, and the lead-out portion 89a of the transmission line conductor 87a is exposed on the left side of the back side of the sheet 95, and the lead-out portion 89c of the transmission line conductor 87c. Is exposed on the left side of the front side of the sheet 95. Further, the transmission line conductors 87a to 87c are opposed to each other with the sheet 95 interposed therebetween, leaving the lead portions 89a and 89c. These transmission line conductors 87 a to 87 c are electrically connected in series via via holes 120 a and 120 b provided in the sheet 95 to form one transmission line 87. This transmission line 87 is used as a branch line of the bias circuit.

同様に、伝送線路導体88a,88bはそれぞれ大略ミアンダ形状をしており、伝送線路導体88aの引出し部90aはシート95の奥側の辺の右側部に露出し、伝送線路導体88bの引出し部90bはシート95の手前側の辺の中央部に露出している。さらに、伝送線路導体88a,88bは、引出し部90a,90bを残してシート95を挟んで対向している。これらの伝送線路導体88a,88bは、シート95に設けたビアホール121a,121bを介して電気的に直列に接続され、1本の伝送線路88を形成する。この伝送線路88は、特性インピーダンスを50Ω程度するため、伝送線路導体88aと88bの2層構造にして、伝送線路導体88aと88bの間隔を大きくしている。さらに、伝送線路88の場合、伝送線路導体88a,88bの導体幅を伝送線路87の伝送線路導体87a〜87cより太くすることにより、特性インピーダンスを調整している。この伝送線路88は、高周波スイッチ部品81の主線路として用いられる。   Similarly, each of the transmission line conductors 88a and 88b has a generally meander shape, and the lead-out portion 90a of the transmission line conductor 88a is exposed to the right side of the back side of the sheet 95, and the lead-out portion 90b of the transmission line conductor 88b. Is exposed at the center of the front side of the sheet 95. Further, the transmission line conductors 88a and 88b are opposed to each other with the sheet 95 interposed therebetween, leaving the lead portions 90a and 90b. These transmission line conductors 88 a and 88 b are electrically connected in series via via holes 121 a and 121 b provided in the sheet 95 to form one transmission line 88. The transmission line 88 has a two-layer structure of transmission line conductors 88a and 88b in order to increase the characteristic impedance to about 50Ω, and the interval between the transmission line conductors 88a and 88b is increased. Further, in the case of the transmission line 88, the characteristic impedance is adjusted by making the conductor widths of the transmission line conductors 88a and 88b thicker than the transmission line conductors 87a to 87c of the transmission line 87. The transmission line 88 is used as a main line of the high frequency switch component 81.

伝送線路導体82a,82bはそれぞれ大略スパイラル形状をしており、伝送線路導体82bの引出し部83はシート95の手前側の辺の中央部に露出している。さらに、伝送線路導体82a,82bは、引出し部83を残してシート95を挟んで対向している。これらの伝送線路導体82a,82bは、シート95に設けたビアホール122を介して電気的に直列に接続され、1本の伝送線路82を形成する。伝送線路82,87,88の特性インピーダンスはそれぞれ異なる値を有している。   Each of the transmission line conductors 82 a and 82 b has a substantially spiral shape, and the lead-out portion 83 of the transmission line conductor 82 b is exposed at the center of the front side of the sheet 95. Further, the transmission line conductors 82a and 82b face each other with the sheet 95 interposed therebetween, leaving the lead-out portion 83. These transmission line conductors 82 a and 82 b are electrically connected in series via via holes 122 provided in the sheet 95 to form one transmission line 82. The characteristic impedances of the transmission lines 82, 87, and 88 have different values.

グランド導体84は、シート95の表面に広面積に設けられている。グランド導体84の引出し部84aはシート95の左辺に露出し、引出し部84bはシート95の右辺に露出し、引出し部84cはシート95の奥側の辺の中央部に露出している。   The ground conductor 84 is provided in a large area on the surface of the sheet 95. The lead portion 84 a of the ground conductor 84 is exposed on the left side of the sheet 95, the lead portion 84 b is exposed on the right side of the sheet 95, and the lead portion 84 c is exposed at the center of the back side of the sheet 95.

コンデンサ導体85,86は、それぞれシート95の表面の左側及び右側に設けられている。コンデンサ導体85の引出し部85aはシート95の手前側の辺の左側部に露出している。これらのコンデンサ導体85,86はそれぞれシート95を挟んでグランド導体84に対向しており、グランド導体84と共にコンデンサC1,C2を形成する。   Capacitor conductors 85 and 86 are provided on the left and right sides of the surface of the sheet 95, respectively. The lead-out portion 85 a of the capacitor conductor 85 is exposed on the left side of the front side of the sheet 95. These capacitor conductors 85 and 86 face the ground conductor 84 with the sheet 95 interposed therebetween, and form the capacitors C1 and C2 together with the ground conductor 84.

さらに、伝送線路導体82aが設けられているシート95の表面には、引出し導体100,101,102,103及び中継導体104が設けられている。引出し導体100,101の一端は、それぞれシート95の奥側の辺の左側部及び右側部に露出し、引出し導体102,103の一端はそれぞれシート95の手前側の辺の中央部及び右側部に露出している。そして、伝送線路導体82aはビアホール付きパッド109bに電気的に接続され、引出し導体101,102,103はそれぞれビアホール付きパッド108b,107a,110aに電気的に接続される。中継導体104はビアホール付きパッド110b及び108aに電気的に接続されると共に、シート95に設けたビアホール123a,123b,123cを介してコンデンサ導体86に電気的に接続される。   Further, the lead conductors 100, 101, 102, 103 and the relay conductor 104 are provided on the surface of the sheet 95 on which the transmission line conductor 82a is provided. One end of each of the lead conductors 100 and 101 is exposed at the left side and the right side of the back side of the sheet 95, and one end of each of the lead conductors 102 and 103 is at the center and right side of the front side of the sheet 95, respectively. Exposed. The transmission line conductor 82a is electrically connected to the pad 109b with via hole, and the lead conductors 101, 102, and 103 are electrically connected to the pads 108b, 107a, and 110a with via hole, respectively. The relay conductor 104 is electrically connected to the pads 110b and 108a with via holes, and is also electrically connected to the capacitor conductor 86 via the via holes 123a, 123b, and 123c provided in the sheet 95.

以上の構成からなる各シート95は積み重ねられ、一体的に焼結されることにより、図13に示すように積層体とされる。積層体の手前側の側面部の左側、中央及び右側の位置には、それぞれ電圧制御用端子Vc1、アンテナ用端子ANT及び電圧制御用端子Vc2が形成される。積層体の奥側の側面部の左側、中央及び右側の位置には、それぞれ送信回路用端子TX、グランド端子G3及び受信回路用端子RXが形成される。さらに、積層体の左右の側面部には、それぞれグランド端子G1,G2が形成される。   Each sheet 95 having the above configuration is stacked and integrally sintered to form a laminate as shown in FIG. A voltage control terminal Vc1, an antenna terminal ANT, and a voltage control terminal Vc2 are formed at positions on the left side, center, and right side of the side surface portion on the near side of the laminate. A transmission circuit terminal TX, a ground terminal G3, and a reception circuit terminal RX are formed at positions on the left side, the center, and the right side of the side surface portion on the back side of the laminate. Further, ground terminals G1 and G2 are formed on the left and right side surfaces of the laminate, respectively.

送信回路用端子TXは、伝送線路87の一方の端部、具体的には伝送線路導体87aの引出し部89aと、引出し導体100とに電気的に接続している。受信回路用端子RXは、伝送線路88の一方の端部、具体的には伝送線路導体88aの引出し部90aと、引出し導体101とに電気的に接続している。アンテナ用端子ANTは、伝送線路82の一方の端部、具体的には伝送線路導体82bの引出し部83と、引出し導体102と、伝送線路88の他方の端部、具体的に伝送線路導体88bの引出し部90bとに電気的に接続している。電圧制御用端子Vc1は、伝送線路87の他方の端部、具体的には伝送線路導体87cの引出し部89cと、コンデンサ導体85の引出し部85aとに電気的に接続している。電圧制御用端子Vc2は、引出し導体103に電気的に接続している。グランド端子G1,G2,G3はそれぞれグランド導体84の引出し部84a,84b,84cに電気的に接続している。   The transmission circuit terminal TX is electrically connected to one end portion of the transmission line 87, specifically, the lead portion 89a of the transmission line conductor 87a and the lead conductor 100. The reception circuit terminal RX is electrically connected to one end portion of the transmission line 88, specifically, the lead portion 90a of the transmission line conductor 88a and the lead conductor 101. The antenna terminal ANT has one end portion of the transmission line 82, specifically, a lead portion 83 of the transmission line conductor 82b, a lead conductor 102, and the other end portion of the transmission line 88, specifically, the transmission line conductor 88b. Is electrically connected to the drawer portion 90b. The voltage control terminal Vc1 is electrically connected to the other end portion of the transmission line 87, specifically, the lead portion 89c of the transmission line conductor 87c and the lead portion 85a of the capacitor conductor 85. The voltage control terminal Vc2 is electrically connected to the lead conductor 103. The ground terminals G1, G2, and G3 are electrically connected to the lead portions 84a, 84b, and 84c of the ground conductor 84, respectively.

さらに、積層体の上面のパッド107a,107bにはそれぞれダイオード素子D1のカソード電極及びアノード電極が半田付けされ、パッド108a,108bにはそれぞれダイオード素子D2のカソード電極及びアノード電極が半田付けされ、パッド109a,109bにはそれぞれコンデンサ素子C3の端子電極が半田付けされ、パッド110a,110bにはそれぞれ抵抗素子Rの端子電極が半田付けされる。   Further, the cathode electrode and the anode electrode of the diode element D1 are soldered to the pads 107a and 107b on the upper surface of the laminate, respectively, and the cathode electrode and the anode electrode of the diode element D2 are soldered to the pads 108a and 108b, respectively. The terminal electrodes of the capacitor element C3 are soldered to the 109a and 109b, respectively, and the terminal electrodes of the resistance element R are soldered to the pads 110a and 110b, respectively.

図14は、以上の構成からなる高周波スイッチ部品81の電気等価回路図である。送信回路用端子TXにはダイオード素子D1のアノードが接続されている。ダイオード素子D1のアノードは、分岐線路である伝送線路87及びコンデンサC1の直列回路を介し、グランドに接地している。伝送線路87とコンデンサC1との中間点には電圧制御用端子Vc1が接続している。この電圧制御用端子Vc1には、高周波スイッチ部品81の伝送路切り換えを行うためのコントロール回路が接続される。ダイオード素子D1の両端(アノード・カソード間)には、伝送線路82及びコンデンサ素子C3の直列回路が接続している。伝送線路82及びコンデンサ素子C3は、ダイオード素子D1がOFF状態のときのアイソレーションを確保するためのものである。さらに、ダイオード素子D1のカソードは、アンテナ用端子ANTに接続している。   FIG. 14 is an electrical equivalent circuit diagram of the high-frequency switch component 81 having the above configuration. The anode of the diode element D1 is connected to the transmission circuit terminal TX. The anode of the diode element D1 is grounded to the ground via a series circuit of a transmission line 87, which is a branch line, and a capacitor C1. A voltage control terminal Vc1 is connected to an intermediate point between the transmission line 87 and the capacitor C1. A control circuit for switching the transmission path of the high frequency switch component 81 is connected to the voltage control terminal Vc1. A series circuit of a transmission line 82 and a capacitor element C3 is connected to both ends (between the anode and the cathode) of the diode element D1. The transmission line 82 and the capacitor element C3 are for ensuring isolation when the diode element D1 is in the OFF state. Furthermore, the cathode of the diode element D1 is connected to the antenna terminal ANT.

アンテナ用端子ANTには、主線路である伝送線路88を介して受信回路用端子RXが接続している。さらに、受信回路用端子RXには、ダイオード素子D2のアノードが接続している。ダイオード素子D2のカソードは、コンデンサC2を介し、グランドに接地している。ダイオード素子D2とコンデンサC2との中間点には、抵抗素子Rを介して電圧制御用端子Vc2が接続している。この電圧制御用端子Vc2には、前記電圧制御用端子Vc1と同様に、高周波スイッチ部品81の伝送路切り換えを行うためのコントロール回路が接続される。   A receiving circuit terminal RX is connected to the antenna terminal ANT via a transmission line 88 which is a main line. Further, the anode of the diode element D2 is connected to the receiving circuit terminal RX. The cathode of the diode element D2 is grounded via the capacitor C2. A voltage control terminal Vc2 is connected to a middle point between the diode element D2 and the capacitor C2 via a resistance element R. A control circuit for switching the transmission path of the high frequency switch component 81 is connected to the voltage control terminal Vc2 in the same manner as the voltage control terminal Vc1.

なお、図14の中で点線で表示しているように、ダイオード素子D1に対して並列に、逆バイアス印加時の電圧安定化のための抵抗素子Raを接続したり、OFF状態のときのアイソレーションを確保するためのコンデンサ素子Caを接続してもよい。また、ダイオード素子D2についても、ダイオード素子D1と同様に、抵抗素子Ra、コンデンサ素子Ca、伝送線路82及びコンデンサ素子C3を接続してもよいことは言うまでもない。そして、高周波スイッチ部品81を使用する際には、送信回路用端子TX、受信回路用端子RX及びアンテナ用端子ANTのそれぞれを、別部品のバイアスカット用のカップリングコンデンサ素子を介して送信回路、受信回路及びアンテナに接続する。   Note that, as indicated by a dotted line in FIG. 14, a resistance element Ra for voltage stabilization at the time of reverse bias application is connected in parallel to the diode element D1, or an isolator in the OFF state is connected. A capacitor element Ca for securing the adjustment may be connected. Needless to say, the resistor element Ra, the capacitor element Ca, the transmission line 82, and the capacitor element C3 may be connected to the diode element D2 as well as the diode element D1. When the high-frequency switch component 81 is used, each of the transmission circuit terminal TX, the reception circuit terminal RX, and the antenna terminal ANT is connected to the transmission circuit through a separate coupling capacitor element for bias cut. Connect to receiving circuit and antenna.

次に、この高周波スイッチ部品81を用いての送受信について説明する。   Next, transmission / reception using the high-frequency switch component 81 will be described.

送信を行う場合には、電圧制御用端子Vc1とVc2の間に正の電位差を与える。この電圧は、ダイオード素子D1,D2に対して順方向のバイアス電圧として働くため、ダイオード素子D1,D2をON状態にする。このとき、コンデンサC1〜C3によって直流分がカットされ、ダイオード素子D1,D2を含む回路にのみ電圧制御用端子Vc1,Vc2に加えられた電圧が印加される。従って、伝送線路88がダイオード素子D2により接地されて送信周波数で共振し、インピーダンスが略無限大となる。この結果、送信回路用端子TXに入った送信信号は、受信回路用端子RXに殆んど伝送されることなく、ダイオード素子D1を経てアンテナ用端子ANTに伝送される。一方、伝送線路87はコンデンサC1を介して接地されているため、送信周波数で共振してインピーダンスが略無限大となり、送信信号がグランド側へ漏れることを防止している。   When transmission is performed, a positive potential difference is applied between the voltage control terminals Vc1 and Vc2. Since this voltage acts as a forward bias voltage for the diode elements D1 and D2, the diode elements D1 and D2 are turned on. At this time, the DC component is cut by the capacitors C1 to C3, and the voltage applied to the voltage control terminals Vc1 and Vc2 is applied only to the circuit including the diode elements D1 and D2. Therefore, the transmission line 88 is grounded by the diode element D2, resonates at the transmission frequency, and the impedance becomes almost infinite. As a result, the transmission signal that has entered the transmission circuit terminal TX is transmitted to the antenna terminal ANT via the diode element D1 with almost no transmission to the reception circuit terminal RX. On the other hand, since the transmission line 87 is grounded via the capacitor C1, it resonates at the transmission frequency, the impedance becomes almost infinite, and the transmission signal is prevented from leaking to the ground side.

受信を行う場合は、電圧制御用端子Vc1とVc2の間に負の電位差を与える。この電圧は、ダイオード素子D1,D2に対して逆方向のバイアス電圧として働くため、ダイオード素子D1,D2はOFF状態になり、アンテナ用端子ANTに入った受信信号は、伝送線路88を経て受信回路用端子RXに伝送され、送信回路用端子TXには殆ど伝送されない。このように、高周波スイッチ部品81は、電圧制御用端子Vc1,Vc2に印加するバイアス電圧をコントロールすることにより、送受の信号の伝送路を切り換えることができる。   When receiving, a negative potential difference is given between the voltage control terminals Vc1 and Vc2. Since this voltage acts as a bias voltage in the reverse direction with respect to the diode elements D1 and D2, the diode elements D1 and D2 are turned off, and the reception signal that has entered the antenna terminal ANT passes through the transmission line 88 to receive circuit. It is transmitted to the terminal RX for transmission and hardly transmitted to the terminal TX for transmission circuit. Thus, the high frequency switch component 81 can switch the transmission path of the transmission / reception signal by controlling the bias voltage applied to the voltage control terminals Vc1 and Vc2.

以上の構成からなる高周波スイッチ部品81は、二つのグランド導体84,84の間に、2本の伝送線路87,88が並設され、かつ、それぞれの伝送線路87,88が伝送線路導体87a〜87cの3層及び88a,88bの2層で構成されている。さらに、1本の伝送線路82が伝送線路82a,82bの2層で構成されている。従って、一定の特性インピーダンスを確保する場合、一層当たりの伝送線路の長さは従来より短くてすみ、高周波スイッチ部品81の小型化を図ることができる。具体的には、900MHz帯の高周波スイッチ部品81で、従来8×5×3mmのサイズであったものが、5×4×2mmに小型化することができた。   In the high-frequency switch component 81 having the above configuration, two transmission lines 87 and 88 are arranged in parallel between the two ground conductors 84 and 84, and the transmission lines 87 and 88 are connected to the transmission line conductors 87 a to 87-. It is composed of three layers 87c and two layers 88a and 88b. Furthermore, one transmission line 82 is composed of two layers of transmission lines 82a and 82b. Therefore, when a certain characteristic impedance is ensured, the length of the transmission line per layer can be shorter than the conventional one, and the high-frequency switch component 81 can be downsized. Specifically, the high frequency switch component 81 in the 900 MHz band, which has conventionally been 8 × 5 × 3 mm in size, can be reduced to 5 × 4 × 2 mm.

[他の実施例]
なお、本発明に係る高周波伝送線路部品は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更することができる。
[Other Examples]
The high-frequency transmission line component according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.

高周波伝送線路は、占有面積や所望の特性インピーダンスの仕様によってミアンダ形状の他に、スパイラル形状のもの、あるいは、ミアンダ形状とスパイラル形状を組み合わせたもの等であってもよい。さらに、前記実施例は、それぞれ導体が形成された誘電体シートを積み重ねた後、一体的に焼成するものであるが、必ずしもこれに限定されない。シートは予め焼結されたものを用いてもよい。   The high-frequency transmission line may be of a spiral shape or a combination of a meander shape and a spiral shape in addition to the meander shape depending on the specifications of the occupied area and desired characteristic impedance. Further, in the above-described embodiment, the dielectric sheets on which the conductors are formed are stacked and then fired integrally. However, the present invention is not necessarily limited thereto. A sheet that has been sintered in advance may be used.

高周波伝送線路の第1実施例を示す分解斜視図。The disassembled perspective view which shows 1st Example of a high frequency transmission line. 図1に示されている高周波伝送線路の外観を示す斜視図。The perspective view which shows the external appearance of the high frequency transmission line shown by FIG. 図2のIII−III断面図。III-III sectional drawing of FIG. 高周波伝送線路の第2実施例を示す分解斜視図。The disassembled perspective view which shows 2nd Example of a high frequency transmission line. 図4に示されている高周波伝送線路の外観を示す斜視図。The perspective view which shows the external appearance of the high frequency transmission line shown by FIG. (A)は図5のVI−VI断面図、(B)は比較例を示す断面図。(A) is VI-VI sectional drawing of FIG. 5, (B) is sectional drawing which shows a comparative example. 図4に示されている高周波伝送線路の変形例を示す分解斜視図。The disassembled perspective view which shows the modification of the high frequency transmission line shown by FIG. 本発明に係る高周波伝送線路の第3実施例を示す分解斜視図。The disassembled perspective view which shows 3rd Example of the high frequency transmission line which concerns on this invention. 図8に示されている高周波伝送線路の外観を示す斜視図。The perspective view which shows the external appearance of the high frequency transmission line shown by FIG. 高周波伝送線路の第4実施例を示す分解斜視図。The disassembled perspective view which shows 4th Example of a high frequency transmission line. 図10に示されている高周波伝送線路の外観を示す斜視図。The perspective view which shows the external appearance of the high frequency transmission line shown by FIG. 高周波伝送線路を有した電子部品の実施例を示す分解斜視図。The disassembled perspective view which shows the Example of the electronic component which has a high frequency transmission line. 図12に示されている電子部品の外観を示す斜視図。The perspective view which shows the external appearance of the electronic component shown by FIG. 図12に示されている電子部品の電気等価回路図。FIG. 13 is an electrical equivalent circuit diagram of the electronic component shown in FIG. 12. 従来の高周波伝送線路を示す分解斜視図。The disassembled perspective view which shows the conventional high frequency transmission line.

符号の説明Explanation of symbols

41…高周波伝送線路部品
42…伝送線路
42a〜42c…伝送線路導体
45…誘電体シート
41 ... High-frequency transmission line component 42 ... Transmission line 42a-42c ... Transmission line conductor 45 ... Dielectric sheet

Claims (1)

複数の誘電体層と複数の伝送線路導体とを積層してなる高周波伝送線路部品において、
前記複数の伝送線路導体のうちの同一方向にスパイラル状に形成された二つの伝送線路導体が、前記複数の誘電体層のうちの一つの誘電体層の主面上に配置され、
前記複数の伝送線路導体のうちの他の一つの略S字状の伝送線路導体が、前記複数の誘電体層のうちの他の一つの誘電体層の主面上に配置され、
前記三つの伝送線路導体がビアホールを介して電気的に直列に接続され、1本の伝送線路を形成し、
前記三つの伝送線路導体のそれぞれを伝播する高周波信号の進行方向がそれぞれ互いに近接する部分で同方向であること、
を特徴とする高周波伝送線路部品
In a high-frequency transmission line component formed by laminating a plurality of dielectric layers and a plurality of transmission line conductors ,
Two transmission line conductors formed in a spiral shape in the same direction among the plurality of transmission line conductors are disposed on the main surface of one of the plurality of dielectric layers,
Another substantially S-shaped transmission line conductor of the plurality of transmission line conductors is disposed on the main surface of the other dielectric layer of the plurality of dielectric layers,
The three transmission line conductors are electrically connected in series through via holes to form one transmission line,
The traveling direction of the high-frequency signal propagating through each of the three transmission line conductors is the same direction at a portion close to each other,
High frequency transmission line parts characterized by
JP2004319201A 2004-11-02 2004-11-02 High frequency transmission line components Expired - Lifetime JP3835472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319201A JP3835472B2 (en) 2004-11-02 2004-11-02 High frequency transmission line components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319201A JP3835472B2 (en) 2004-11-02 2004-11-02 High frequency transmission line components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16900097A Division JP3644619B2 (en) 1997-06-25 1997-06-25 Electronic components with high-frequency transmission lines

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2006143780A Division JP2006311580A (en) 2006-05-24 2006-05-24 Electronic component with high frequency transmission line
JP2006143781A Division JP4182159B2 (en) 2006-05-24 2006-05-24 Electronic components

Publications (2)

Publication Number Publication Date
JP2005102272A JP2005102272A (en) 2005-04-14
JP3835472B2 true JP3835472B2 (en) 2006-10-18

Family

ID=34464266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319201A Expired - Lifetime JP3835472B2 (en) 2004-11-02 2004-11-02 High frequency transmission line components

Country Status (1)

Country Link
JP (1) JP3835472B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005632A (en) * 2013-06-21 2015-01-08 株式会社村田製作所 Method for manufacturing multilayer coil

Also Published As

Publication number Publication date
JP2005102272A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
US20080266020A1 (en) Balanced Splitter
US6529102B2 (en) LC filter circuit and laminated type LC filter
JP2003007537A (en) Laminated balun transformer
US20020153988A1 (en) Laminated balun transformer
JP2004274715A (en) Balanced-to-unbalanced transformer circuit and multilayer balanced-to-unbalanced transformer
US7262675B2 (en) Laminated filter with improved stop band attenuation
JP2006067281A (en) Antenna switch module
JP3292095B2 (en) High frequency switch
JP3780394B2 (en) High frequency transmission line and electronic component having high frequency transmission line
JP4783996B2 (en) Multi-layer composite balun transformer
JP4182159B2 (en) Electronic components
JP3644619B2 (en) Electronic components with high-frequency transmission lines
JP3835472B2 (en) High frequency transmission line components
JP4788065B2 (en) Multilayer transmission line crossing chip
JP4423830B2 (en) Multilayer directional coupler
JP4033852B2 (en) Common mode filter
JP2006311580A (en) Electronic component with high frequency transmission line
TWI676354B (en) Balanced filter
JP4140033B2 (en) High frequency components
JP2005143150A (en) Layered directional coupler
JPH08335803A (en) Filter
JP4293118B2 (en) Non-reciprocal circuit device and communication device
JP2002330009A (en) Laminated directional coupler
JP2002231559A (en) Laminated through-type capacitor
JPH04356801A (en) Dielectric filter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

EXPY Cancellation because of completion of term