JP3835114B2 - Battery control circuit and battery pack - Google Patents

Battery control circuit and battery pack Download PDF

Info

Publication number
JP3835114B2
JP3835114B2 JP2000127050A JP2000127050A JP3835114B2 JP 3835114 B2 JP3835114 B2 JP 3835114B2 JP 2000127050 A JP2000127050 A JP 2000127050A JP 2000127050 A JP2000127050 A JP 2000127050A JP 3835114 B2 JP3835114 B2 JP 3835114B2
Authority
JP
Japan
Prior art keywords
power supply
control circuit
supply unit
current
photocoupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127050A
Other languages
Japanese (ja)
Other versions
JP2001314044A (en
Inventor
正樹 長岡
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000127050A priority Critical patent/JP3835114B2/en
Publication of JP2001314044A publication Critical patent/JP2001314044A/en
Application granted granted Critical
Publication of JP3835114B2 publication Critical patent/JP3835114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は組電池制御用回路及びバッテリパックに係り、特に、第1電源部とこの第1電源部より高い電圧の第2電源部との2系統の電源で作動し、組電池を構成する各単電池の単電池電圧を検出して各単電池の容量を均一に調整する組電池制御用回路であって、フォトカプラを用いて外部に信号伝送を行う組電池制御回路及び該組電池制御回路を備えたバッテリパックに関する。
【0002】
【従来の技術】
従来、単電池としてのリチウムイオン2次電池(以下、セルという。)が直列に複数個接続された組電池を制御する組電池制御用回路は、各セルのセル電圧を検出する電圧検出部、各セルの容量がほぼ一定となるように制御するバイパス制御部、種々の演算処理を実行するマイコン及び組電池の外部との通信を行うための通信部等によって構成されている。
【0003】
図3にこのような組電池制御用回路の一例を示す。電圧検出部1はセルB1〜B8の各セル電圧をセルB8の−端子をグランド(GND)として変換するもので、具体的には差動増幅器が用いられる。この電圧検出部1の出力は、セルB1〜B8の各セルの電圧値と予め設定された電圧値とを比較してセルB1〜B8の過充電・過放電(過電圧)を検出する電圧比較部2の入力となる。セルB1〜B8が過電圧の場合には、フォトカプラ3を通じて外部へ過電圧信号を出力する。また、マイコン4は内蔵されたADコンバータを介して各セルB1〜B8のセル電圧を取り込み(検出し)、各セルB1〜B8のセル電圧がほぼ均一となるように抵抗を通じて放電させる。この機能を行うのがバイパス制御部5である。さらにマイコン4は、例えば自動車の制御部等の外部とフォトカプラ6、7を通じて通信を行う。
【0004】
図3に示した組電池制御用回路では、電源として、マイコン4、フォトカプラ3、6、7等を作動させる第1電源部11とこの第1電源部11よりも少し電圧が高い第2電源部12とが必要となる。この組電池制御用回路で第2電源部12の電圧が第1電源部11の電圧より高いのは、各セルB1〜B8のセル電圧の検出に差動増幅器が用いられているためである。
【0005】
また、外部との通信信号生成にフォトカプラを使用する組電池制御用回路では、確実な信号伝送が行われるようにフォトカプラに所定の通電電流を流している。特に、スパークノイズが発生する自動車用システムでは、信号伝送の確実性を担保するために、フォトカプラにある程度の電流を通電する必要がある。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した組電池制御用回路では過電圧信号を出力するためのフォトカプラ3と通信データを出力するためのフォトカプラ7の通電電流が11mAと全体の消費電流の21%を占めており、フォトカプラの消費電流が大きいことが組電池制御用回路全体の消費電流を大きくする要因となっていた。
【0007】
ここで、図4を参照して組電池制御用回路に流れる電流について検討すると、組電池制御用回路の消費電流Iは、第1電源部11の負荷となる第1電源部系負荷14に流れる第1電源部供給電流I1と第2電源部12の負荷となる第2電源部系負荷15に流れる第2電源部供給電流I2との和で表される。つまり、下記式(1)に示すように、消費電流Iは、第1電源系負荷電流I3、第2電源系負荷電流I4及びフォトカプラ13に通電されるフォトカプラ通電電流I5の和で表される。
【0008】
【数1】

Figure 0003835114
【0009】
一方、組電池制御用回路の消費電流を低減させるには、マイコン4や電圧検出部1の演算増幅器等の半導体素子を低消費電力素子に変更する方法もあるが、組電池制御用回路のコストが高くなる、という問題がある。
【0010】
本発明は上記事案に鑑み、低コストで消費電流の小さい組電池制御用回路及び該組電池制御用回路を備えたバッテリパックを提供することを課題とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために本発明は、第1電源部とこの第1電源部より高い電圧の第2電源部との2系統の電源で作動し、組電池を構成する各単電池の単電池電圧を検出して前記各単電池の容量を均一に調整する組電池制御用回路であって、フォトカプラを用いて外部に信号伝送を行う組電池制御用回路において、前記フォトカプラは前記第1電源部及び第2電源部に接続され、該フォトカプラの通電電流は前記第2電源部から供給され前記第1電源部の供給電流の一部となることを特徴とする。
【0012】
図1に示すように、本発明では、フォトカプラ13を第1電源部11とこの第1電源部11より高い電圧の第2電源部12とに接続し、第2電源部12から供給される電流でフォトカプラ13を作動させる。第2電源部12が組電池制御用回路に供給する電流は、第2電源部系負荷15を流れる第2電源部系負荷電流I4と、フォトカプラ13に通電されるフォトカプラ通電電流I5である。第1電源部11が組電池制御用回路に供給する電流は、第1電源部系負荷14を流れる第1電源部系負荷電流I3であるが、フォトカプラ通電電流I5が第1電源部系負荷電流I3の一部となるので、換言すれば、フォトカプラ通電電流I5が第1電源部11の供給電流の一部となるので、実際には第1電源部系負荷電流I3からフォトカプラ通電電流I5を引いた値となる。その結果、次式(2)に示すように、組電池制御用回路の消費電流Iは、第2電源部12と第1電源部11の供給電流の和、つまり第1電源部系負荷電流I3と第2電源部系負荷電流I4との和となる。
【0013】
【数2】
Figure 0003835114
【0014】
本発明によれば、式(2)に示すように、組電池制御用回路の消費電流Iは第1電源部系負荷電流I3と第2電源部系負荷電流I4の和となり、低消費電力素子を使用しなくても消費電流Iが従来の組電池制御用回路の消費電流より低減されるので、低コストかつ消費電流の小さい組電池制御用回路とすることができる。
【0015】
この場合において、フォトカプラ13による電圧降下が第2電源部12の電圧と第1電源部11の電圧との電圧差となるようにすれば、第1電源部系負荷14に第1電源部11と同電圧を供給することができる。また、バッテリパックを、リチウムイオン2次電池を複数個直列に接続した組電池と前記組電池用制御回路とを備えて構成すれば、低コストかつ省エネルギータイプのバッテリパックとすることができる。
【0016】
【発明の実施の形態】
以下、本発明が適用されるバッテリパックの実施の形態について説明する。なお、本実施形態は、図3に示した従来例の組電池制御回路において、通信出力部9に接続されるフォトカプラ7に本発明を適用したものである。
【0017】
図2に示すように、本実施形態のバッテリパックは、フォトカプラ7の発光素子(発光ダイオード)アノード側に抵抗R2を介して、第1電源部系負荷14に5Vの電圧を供給する第1電源部11と、第2電源部系負荷15に12Vの電圧を供給する第2電源部12と、が接続されている。フォトカプラ7の発光素子カソード側にはトランジスタTrのコレクタが接続されている。トランジスタTrのベースは抵抗R1を介してマイコン4に接続されており、エミッタはコンデンサCを介して第1電源部系負荷14に接続されている。なお、図2において図示を省略した第1電源部系負荷14及び第2電源部系負荷15の他端は共通のグランド(GND)に接続されている。
【0018】
本実施形態では、マイコン4からハイレベル信号が出力されると、トランジスタTrのベース・エミッタ間に微弱電流が流れ、コレクタ・エミッタ間にフォトカプラ7を作動させる作動電流(11mA)が第2電源部12から通電される。一方、マイコン4からローレベル信号が出力されるときには、トランジスタTrのコレクタ・エミッタ間にはフォトカプラ7を作動させる(発光素子を発光させる)作動電流が通電されない。このため、フォトカプラ7では、マイコン4のハイレベル信号、ローレベル信号の出力に応じて発光素子側が発光・消灯し、受光素子側で信号が生成され、信号出力部9から組電池制御用回路の外部となる自動車の制御部に通信信号が出力される。
【0019】
フォトカプラ7通電時のフォトカプラ7、抵抗R2及びトランジスタTrによる電圧降下は第2電源部12と第1電源部11との電圧差に相当する7Vであり、グランドを基準として第1電源部11の電圧と同電圧の5Vまで落とされる。フォトカプラ7の通電電流(11mA)は、トランジスタTrのエミッタから第1電源部系負荷14に供給される。従って、フォトカプラ7の通電電流は第2電源部12から供給され第1電源部11の供給電流の一部となるように供給される。
【0020】
この結果、従来の組電池制御用回路では全体の消費電流が52mAであったのに対して、フォトカプラ7を12Vの第2電源部12で作動させた本実施形態の組電池制御用回路の全体の消費電流は41mAとなり、従来の組電池制御用回路の消費電流を21%低減することができた。このように、本実施形態のバッテリパックは低消費電力素子を使用しなくても消費電流を低減することができる。
【0021】
【発明の効果】
以上説明したように、本発明によれば、組電池制御用回路の消費電流は第1電源部系負荷電流と第2電源部系負荷電流の和となり、低消費電力素子を使用しなくても消費電流が従来の組電池制御用回路の消費電流より低減されるので、低コストかつ消費電流の小さい組電池制御用回路とすることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の組電池制御用回路の消費電流を示す説明図である。
【図2】本発明を適用した実施形態のバッテリパックの部分ブロック回路図である。
【図3】従来の組電池制御用回路のブロック回路図である。
【図4】従来の組電池制御用回路の消費電流を示す説明図である。
【符号の説明】
1 電圧検出部
2 電圧比較部
3、6、7、13 フォトカプラ
4 マイコン
5 バイパス制御部
8 通信入力部
9 通信出力部
11 第1電源部
12 第2電源部
14 第1電源部系負荷
15 第2電源部系負荷
R1、R2 抵抗
Tr トランジスタ
C コンデンサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery control circuit and a battery pack, and in particular, operates with two power sources of a first power supply unit and a second power supply unit having a voltage higher than that of the first power supply unit, and constitutes an assembled battery. A battery pack control circuit that detects a battery voltage of a battery cell and uniformly adjusts the capacity of each battery cell, the battery pack control circuit performing signal transmission to the outside using a photocoupler, and the battery pack control circuit The battery pack provided with.
[0002]
[Prior art]
Conventionally, an assembled battery control circuit that controls an assembled battery in which a plurality of lithium ion secondary batteries (hereinafter referred to as cells) as single cells are connected in series includes a voltage detector that detects a cell voltage of each cell, A bypass control unit that controls the capacity of each cell to be substantially constant, a microcomputer that executes various arithmetic processes, a communication unit that communicates with the outside of the assembled battery, and the like.
[0003]
FIG. 3 shows an example of such an assembled battery control circuit. The voltage detector 1 converts each cell voltage of the cells B1 to B8 using the negative terminal of the cell B8 as a ground (GND), and specifically, a differential amplifier is used. The output of the voltage detection unit 1 is a voltage comparison unit that detects the overcharge / overdischarge (overvoltage) of the cells B1 to B8 by comparing the voltage value of each cell of the cells B1 to B8 with a preset voltage value. 2 input. When the cells B1 to B8 are overvoltage, an overvoltage signal is output to the outside through the photocoupler 3. Further, the microcomputer 4 takes in (detects) the cell voltages of the cells B1 to B8 via the built-in AD converter, and discharges them through the resistors so that the cell voltages of the cells B1 to B8 are substantially uniform. The bypass control unit 5 performs this function. Further, the microcomputer 4 communicates with the outside such as a control unit of an automobile through the photocouplers 6 and 7, for example.
[0004]
In the battery pack control circuit shown in FIG. 3, as the power source, the first power source unit 11 that operates the microcomputer 4, the photocouplers 3, 6, and 7, and the second power source that has a slightly higher voltage than the first power source unit 11. Part 12 is required. The voltage of the second power supply unit 12 is higher than the voltage of the first power supply unit 11 in this assembled battery control circuit because a differential amplifier is used to detect the cell voltages of the cells B1 to B8.
[0005]
Further, in an assembled battery control circuit that uses a photocoupler to generate a communication signal with the outside, a predetermined energization current is passed through the photocoupler so that reliable signal transmission is performed. In particular, in an automotive system in which spark noise occurs, it is necessary to apply a certain amount of current to the photocoupler in order to ensure signal transmission reliability.
[0006]
[Problems to be solved by the invention]
However, in the battery pack control circuit described above, the energizing current of the photocoupler 3 for outputting the overvoltage signal and the photocoupler 7 for outputting the communication data is 11 mA, accounting for 21% of the total consumption current. The large current consumption of the coupler is a factor that increases the current consumption of the entire battery pack control circuit.
[0007]
Here, when the current flowing through the battery pack control circuit is examined with reference to FIG. 4, the consumption current I of the battery pack control circuit flows through the first power supply unit load 14 serving as the load of the first power supply unit 11. This is expressed as the sum of the first power supply section supply current I1 and the second power supply section supply current I2 flowing through the second power supply section load 15 serving as the load of the second power supply section 12. That is, as shown in the following formula (1), the consumption current I is expressed as the sum of the first power supply system load current I3, the second power supply system load current I4, and the photocoupler conduction current I5 that is passed through the photocoupler 13. The
[0008]
[Expression 1]
Figure 0003835114
[0009]
On the other hand, in order to reduce the current consumption of the battery pack control circuit, there is a method of changing a semiconductor element such as the microcomputer 4 or the operational amplifier of the voltage detection unit 1 to a low power consumption element. There is a problem that becomes high.
[0010]
An object of the present invention is to provide a battery pack control circuit with low cost and low current consumption and a battery pack including the battery pack control circuit.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention operates with two power sources, a first power source unit and a second power source unit having a higher voltage than the first power source unit, and each unit cell constituting the assembled battery. An assembled battery control circuit that detects a voltage and uniformly adjusts the capacity of each unit cell, wherein the photocoupler is configured to perform signal transmission to the outside using a photocoupler. The energizing current of the photocoupler is connected to the power supply unit and the second power supply unit, and is supplied from the second power supply unit and becomes a part of the supply current of the first power supply unit.
[0012]
As shown in FIG. 1, in the present invention, a photocoupler 13 is connected to a first power supply unit 11 and a second power supply unit 12 having a higher voltage than the first power supply unit 11 and supplied from the second power supply unit 12. The photocoupler 13 is activated by the current. The currents that the second power supply unit 12 supplies to the assembled battery control circuit are the second power supply system load current I4 that flows through the second power supply system load 15 and the photocoupler energization current I5 that is supplied to the photocoupler 13. . The current supplied from the first power supply unit 11 to the assembled battery control circuit is the first power supply system load current I3 flowing through the first power supply system load 14, but the photocoupler conduction current I5 is the first power supply system load. Since it becomes a part of the current I3, in other words, the photocoupler energization current I5 becomes a part of the supply current of the first power supply unit 11, and actually the photocoupler energization current from the first power supply system load current I3. The value obtained by subtracting I5. As a result, as shown in the following equation (2), the consumption current I of the assembled battery control circuit is the sum of the supply currents of the second power supply unit 12 and the first power supply unit 11, that is, the first power supply system load current I3. And the second power supply system load current I4.
[0013]
[Expression 2]
Figure 0003835114
[0014]
According to the present invention, as shown in Expression (2), the consumption current I of the battery pack control circuit is the sum of the first power supply system load current I3 and the second power supply system load current I4. Since the current consumption I is reduced from the current consumption of the conventional battery pack control circuit without using the battery, the battery pack control circuit can be manufactured at low cost and with low current consumption.
[0015]
In this case, if the voltage drop due to the photocoupler 13 is a voltage difference between the voltage of the second power supply unit 12 and the voltage of the first power supply unit 11, the first power supply unit 11 is connected to the first power supply unit system load 14. The same voltage can be supplied. Further, if the battery pack includes an assembled battery in which a plurality of lithium ion secondary batteries are connected in series and the assembled battery control circuit, a low-cost and energy-saving battery pack can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a battery pack to which the present invention is applied will be described. In the present embodiment, the present invention is applied to the photocoupler 7 connected to the communication output unit 9 in the battery pack control circuit of the conventional example shown in FIG.
[0017]
As shown in FIG. 2, the battery pack of the present embodiment is configured to supply a voltage of 5 V to the first power supply system load 14 via the resistor R <b> 2 to the light emitting element (light emitting diode) anode side of the photocoupler 7. The power supply unit 11 and the second power supply unit 12 that supplies a voltage of 12 V to the second power supply unit system load 15 are connected. The collector of the transistor Tr is connected to the light emitting element cathode side of the photocoupler 7. The base of the transistor Tr is connected to the microcomputer 4 via the resistor R1, and the emitter is connected to the first power supply system load 14 via the capacitor C. Note that the other ends of the first power supply system load 14 and the second power supply system load 15 (not shown in FIG. 2) are connected to a common ground (GND).
[0018]
In the present embodiment, when a high level signal is output from the microcomputer 4, a weak current flows between the base and emitter of the transistor Tr, and the operating current (11 mA) for operating the photocoupler 7 between the collector and emitter is the second power source. Power is supplied from the unit 12. On the other hand, when a low level signal is output from the microcomputer 4, an operating current that operates the photocoupler 7 (lights the light emitting element) is not applied between the collector and emitter of the transistor Tr. For this reason, in the photocoupler 7, the light emitting element side emits and extinguishes in response to the output of the high level signal and low level signal of the microcomputer 4, and a signal is generated on the light receiving element side. A communication signal is output to the control unit of the automobile which is external to the vehicle.
[0019]
When the photocoupler 7 is energized, the voltage drop due to the photocoupler 7, the resistor R2, and the transistor Tr is 7V corresponding to the voltage difference between the second power supply unit 12 and the first power supply unit 11, and the first power supply unit 11 is based on the ground. The voltage is dropped to 5 V, which is the same voltage. The energizing current (11 mA) of the photocoupler 7 is supplied from the emitter of the transistor Tr to the first power supply system load 14. Accordingly, the energization current of the photocoupler 7 is supplied from the second power supply unit 12 and is supplied so as to be a part of the supply current of the first power supply unit 11.
[0020]
As a result, the total current consumption of the conventional battery pack control circuit was 52 mA, whereas the battery pack control circuit of the present embodiment in which the photocoupler 7 was operated by the 12 V second power supply unit 12 was used. The overall current consumption was 41 mA, and the current consumption of the conventional battery pack control circuit could be reduced by 21%. Thus, the battery pack of this embodiment can reduce current consumption without using a low power consumption element.
[0021]
【The invention's effect】
As described above, according to the present invention, the consumption current of the battery pack control circuit is the sum of the first power supply system load current and the second power supply system load current, and even without using a low power consumption element. Since the consumption current is reduced from the consumption current of the conventional assembled battery control circuit, it is possible to obtain an effect that the assembled battery control circuit can be manufactured at low cost and with low consumption current.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing current consumption of an assembled battery control circuit of the present invention.
FIG. 2 is a partial block circuit diagram of a battery pack according to an embodiment to which the present invention is applied.
FIG. 3 is a block circuit diagram of a conventional assembled battery control circuit.
FIG. 4 is an explanatory diagram showing current consumption of a conventional assembled battery control circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Voltage detection part 2 Voltage comparison part 3, 6, 7, 13 Photocoupler 4 Microcomputer 5 Bypass control part 8 Communication input part 9 Communication output part 11 1st power supply part 12 2nd power supply part 14 1st power supply part system load 15 1st 2 Power supply system load R1, R2 Resistance Tr Transistor C Capacitor

Claims (3)

第1電源部とこの第1電源部より高い電圧の第2電源部との2系統の電源で作動し、組電池を構成する各単電池の単電池電圧を検出して前記各単電池の容量を均一に調整する組電池制御用回路であって、フォトカプラを用いて外部に信号伝送を行う組電池制御用回路において、前記フォトカプラは前記第1電源部及び第2電源部に接続され、該フォトカプラの通電電流は前記第2電源部から供給され前記第1電源部の供給電流の一部となることを特徴とする組電池制御用回路。It operates with two power sources, a first power supply unit and a second power supply unit having a higher voltage than the first power supply unit, and detects the unit cell voltage of each unit cell constituting the assembled battery to detect the capacity of each unit cell. A battery pack control circuit for uniformly adjusting the battery pack, wherein the photocoupler is connected to the first power supply unit and the second power supply unit. An assembled battery control circuit, wherein an energization current of the photocoupler is supplied from the second power supply unit and becomes a part of a supply current of the first power supply unit. 前記フォトカプラ作動時の該フォトカプラによる電圧降下が前記第2電源部の電圧と前記第1電源部の電圧との電圧差となることを特徴とする請求項1に記載の組電池制御用回路。2. The assembled battery control circuit according to claim 1, wherein a voltage drop caused by the photocoupler when the photocoupler is operated is a voltage difference between the voltage of the second power supply unit and the voltage of the first power supply unit. . リチウムイオン2次電池を複数個直列に接続した組電池と請求項1又は請求項2に記載の組電池制御用回路とを備えたことを特徴とするバッテリパック。A battery pack comprising: an assembled battery in which a plurality of lithium ion secondary batteries are connected in series; and the assembled battery control circuit according to claim 1.
JP2000127050A 2000-04-27 2000-04-27 Battery control circuit and battery pack Expired - Fee Related JP3835114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127050A JP3835114B2 (en) 2000-04-27 2000-04-27 Battery control circuit and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127050A JP3835114B2 (en) 2000-04-27 2000-04-27 Battery control circuit and battery pack

Publications (2)

Publication Number Publication Date
JP2001314044A JP2001314044A (en) 2001-11-09
JP3835114B2 true JP3835114B2 (en) 2006-10-18

Family

ID=18636720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127050A Expired - Fee Related JP3835114B2 (en) 2000-04-27 2000-04-27 Battery control circuit and battery pack

Country Status (1)

Country Link
JP (1) JP3835114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2433359B (en) * 2005-12-16 2008-03-26 Amita Technologies Inc Ltd Protecting method for lithium battery and device thereof
JP5515997B2 (en) * 2010-04-09 2014-06-11 株式会社Ihi Power supply monitoring and control device

Also Published As

Publication number Publication date
JP2001314044A (en) 2001-11-09

Similar Documents

Publication Publication Date Title
JP4733079B2 (en) Battery management system and driving method thereof
US5850136A (en) Battery charger
KR101028291B1 (en) Apparatus and Method for switch control between battery pack and load, and Battery pack and Battery management system including the same
US8134338B2 (en) Battery management system and driving method thereof
US10670637B2 (en) Current measuring circuit, battery and motor vehicle
US7514905B2 (en) Battery management system
JP4531608B2 (en) Battery voltage measuring device
JP5274110B2 (en) Power supply for vehicle
EP1914861A2 (en) Battery management system and driving method thereof
JP5092812B2 (en) Battery monitoring device and failure diagnosis method
US11196273B2 (en) Battery overcharging prevention device and battery overcharging prevention method using same
JP2000184609A (en) Capacity leveling circuit of group battery
US11695281B2 (en) Battery overcharging prevention device and battery overcharging prevention method using same
JPWO2019111872A1 (en) Charge control device, power storage device, charging method
CN110879350A (en) Detection method of battery equalization circuit and battery management system
JPWO2020022344A1 (en) Power supply system and management equipment
JP3835114B2 (en) Battery control circuit and battery pack
KR20080054901A (en) Battery voltage measuring circuit
JPH05227676A (en) Power supply controller module for control assembly of storage battery belonging to device and storage battery having such module
CN112513652A (en) Internal resistance detection device and power supply device
JP2000356656A (en) Terminal voltage detector for battery
JP2019191032A (en) Onboard voltage detection circuit
JP2022523931A (en) Output control device and method for parallel multi-pack system
JPH09308121A (en) Power unit for vehicle having accumulation means
CN111196178A (en) Conversion circuit, battery equalization system and battery management system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees