JP3834972B2 - Air purifier - Google Patents

Air purifier Download PDF

Info

Publication number
JP3834972B2
JP3834972B2 JP33143397A JP33143397A JP3834972B2 JP 3834972 B2 JP3834972 B2 JP 3834972B2 JP 33143397 A JP33143397 A JP 33143397A JP 33143397 A JP33143397 A JP 33143397A JP 3834972 B2 JP3834972 B2 JP 3834972B2
Authority
JP
Japan
Prior art keywords
air
air passage
vent
adsorption
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33143397A
Other languages
Japanese (ja)
Other versions
JPH11165021A (en
Inventor
範幸 米野
祐 福田
克彦 宇野
邦男 荻田
宕明 藤井
直仁 朝見
由隆 森川
充 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33143397A priority Critical patent/JP3834972B2/en
Publication of JPH11165021A publication Critical patent/JPH11165021A/en
Application granted granted Critical
Publication of JP3834972B2 publication Critical patent/JP3834972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は室内空気中の煙草の臭気や建材、壁、家具から発生するアルデヒドなどの揮発性有機化合物、燃焼機などから発生する一酸化炭素などの無機ガスで代表される汚染ガスを焼却、分解して除去する空気清浄装置に関するものである。
【0002】
【従来の技術】
従来よりこの種の機能を有する空気清浄装置としては、活性炭などの吸着材に空気中の臭い等の汚染ガスを吸着し除去するもの、また触媒やオゾンによって汚染ガスを分解する構成のものがあった。しかしながら、上記従来の脱臭フィルタを設けただけの空気清浄器では長時間使用すると脱臭フィルタの極細孔が臭い成分で塞がるため吸着脱臭能力が低下する。このため、一定期間ごとにフィルタの交換が必要であった。また、オゾン方式、触媒方式で連続的に汚染ガスを処理するには家庭用空気清浄装置であっても1m3/分〜4m3/分の処理風量が必要のため規模の大きな装置が必要であった。
【0003】
また、吸着材を初期性能に再生する空気清浄装置として特開平3−21323号公報に記載されている様なものが知られている。この装置は図9に示すように、臭気を含むガスを内部に吐出させるための吐出部を上部に有するダクト内に、上方から第1のヒータ、前記第1のヒーターにより加熱される熱分解触媒、吸着材、前記吸着材を加熱する第2のヒータ、およびファンを設置し、脱臭時には前記ファンを作動させ吸着材に臭気を吸着させ、前記吸着材の再生時には前記第1および第2のヒータに通電を行うとともに前記ファンを停止する構成とし、吸着材を加熱することで臭気を脱着させ、脱着した臭気ガスを加熱した熱分解触媒で分解し吸着材を初期状態に再生するものである。さらに再生時に臭気ガスが吐出部から臭気ガスが漏れるのを防ぐために、再生時に形状記憶合金ばねや風圧によって閉じるダンパを吐出部につけた構成が考案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の脱臭フィルタを設けただけの空気清浄器では長時間使用すると脱臭フィルタの極細孔が臭い成分で塞がるため吸着脱臭能力が低下する。このため、一定期間ごとにフィルタの交換が必要であった。
【0005】
また、オゾン方式、触媒方式で連続的に汚染ガスを処理するには家庭用空気清浄装置であっても1m3/分〜4m3/分の処理風量が必要のため規模の大きな装置が必要であった。
【0006】
また、特開平3−21323号公報のような方式では、図9に示すように、吐出部6が上部にあるため、第1のヒーター3および第2のヒーター5で発生した上昇気流が抵抗なく吐出部からダクト外に抜けるため、上昇気流による風量が大きくなり、熱分解触媒で脱着した臭気ガスが完全に分解しきれず、臭気ガスがダクト外に漏れる。臭気ガスの漏れを防止するには、吐出部の面積を小さくすれば良いが、脱臭時は圧力損失が大きくなり、ファン9の大型化や騒音の増大などの課題があった。
【0007】
このため、再生時に形状記憶合金ばね8や風圧によって閉じるダンパ7を吐出部につけた構成が考案されている。しかし、ダンパー取り付けのため構成が複雑になることや、形状記憶合金ばね等でダンパーを開閉する構成では、外気温の変動等によって開閉が不安定になりやすく臭気ガスが漏れる、風圧ダンパーの構成ではヒーターからの熱でダンパーが昇温・熱膨張し動作が不安定になり臭気ガスが漏れるという課題があった。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、吸込口と吹出口を持ち内部に浄化風路を有する本体と、前記浄化風路に空気を送風する送風手段と、浄化風路内に設けられた吸着手段と、吸着手段を加熱するように配置された加熱手段と、前記吸着手段上部に近接もしくは接触して配置された分解手段と、前記分解手段の上部に配置された通気口を持った滞留室を備え、前記通気口が前記滞留室天井面よりも下にあり、前記通気口に下向きの通気口ルーバーを設けた空気清浄装置とする
【0009】
上記発明によれば、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、送風手段のみを駆動し、本体外の空気を吸込口から通気口に導き、浄化風路内の分解手段、吸着手段の順に導き、吸着手段に吸着させる。吸着手段に所定量の汚染ガスが吸着すると、次に再生モードに入る。送風手段を停止した後、分解手段を駆動し、加熱手段を駆動することで汚染ガスは吸着手段から高温の汚染ガスとして脱着し、上昇気流となって分解手段である高温の電気発熱体や酸化分解触媒に接触し酸化され、揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。分解後の水や二酸化炭素等のガスは上昇気流となって滞留室内を上昇し、滞留室天面から溜まっていき、順次押し出される形で下降し天面より下部に設けられた通気口から排気され、吸込口から部屋に排気される。このため、再生モードのほうが吸着モードの場合よりもガスが通過する流路が長く、送風抵抗が大きい。したがって再生モード、吸着モードとも同じ流路となる図9に示す従来例の構成のように、吸着モードの通気抵抗が同じ条件でも可動ダンパをつけなくても再生モードの流量を小さくすることができる。
【0010】
【発明の実施の形態】
本発明は、吸込口と吹出口を持ち内部に浄化風路を有する本体と、前記浄化風路に空気を送風する送風手段と、浄化風路内に設けられた吸着手段と、吸着手段を加熱するように配置された加熱手段と、前記吸着手段上部に近接もしくは接触して配置された分解手段と、前記分解手段の上部に配置された通気口を持った滞留室を備え、前記通気口が前記滞留室天井面よりも下にあり、前記通気口に下向きの通気口ルーバーを設けた空気清浄装置とする。そして部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、送風手段のみを駆動し、本体外の空気を吸込口から通気口に導き、浄化風路内の分解手段、吸着手段の順に導き、吸着手段に吸着させる。吸着手段に所定量の汚染ガスが吸着すると、次に再生モードに入る。送風手段を停止した後、分解手段を駆動し、加熱手段を駆動することで汚染ガスは吸着手段から高温の汚染ガスとして脱着し、上昇気流となって分解手段である高温の電気発熱体や酸化分解触媒に接触し酸化され、揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。分解後の水や二酸化炭素等のガスは上昇気流となって滞留室内を上昇し、滞留室天面から溜まっていき、順次押し出される形で下降し天面より下部に設けられた通気口から排気され、吸込口から部屋に排気される。このため、再生モードのほうが吸着モードの場合よりもガスが通過する流路が長く、送風抵抗が大きい。したがって可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段で脱離したガスを完全に分解することができる。
【0011】
また、通気口に下向きの通気口ルーバを設けることにより、再生モードの場合、分解手段で分解後の水や二酸化炭素等のガスは通気口ルーバの上方から溜まっていき順次押し出される形で通気口ルーバ面に沿って下降し通気口ルーバ下部から排気され、吸込口から部屋に排気される。したがって吸着モードの通気抵抗が同じ条件で可動ダンパをつけなくても再生モードの流量をより小さくすることができ、分解手段の分解性能をより向上させることができる。
【0012】
また、吸込口と吹出口を持ち内部に浄化風路を有する本体と、前記浄化風路に空気を送風する送風手段と、浄化風路内に設けられた吸着手段と、吸着手段を加熱するように配置された加熱手段と、前記吸着手段上部に近接もしくは接触して配置された分解手段と、前記分解手段の上部に配置された通気口を持った滞留室と、通気風路を備え、前記通気風路の一端が前記通気口に連通し他端が前記通気口よりも下にある構成では、再生モードの場合、分解手段で分解後の水や二酸化炭素等のガスは通気風路の上方から溜まっていき順次押し出される形で通気風路を下降し通気風路他端から排気され、吸込口から部屋に排気される。したがって、吸着モードの通気抵抗が同じ条件で可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段で脱離したガスを完全に分解することができる。
【0013】
また、上記構成において通気風路がノズル構造になっている場合、吸着モード時は汚染ガスを含んだ部屋の空気はノズルで滑らかに絞られノズル構造でない場合に比べて圧損が小さくなるとともに、再生モード時は分解手段で分解後の水や二酸化炭素等のガスは通気風路の上方から溜まっていき順次押し出される形で通気風路のノズル面を下降し通気風路他端から排気され、吸込口から部屋に排気される。したがって、吸着モードの通気抵抗が同じ条件で可動ダンパをつけなくてもノズル構造でない構成よりもさらに再生モードの流量を小さくすることができ、送風手段の小型化および分解手段の能力向上を実現できる。
【0014】
また、通気風路途中に分離口が設けられ、分離口が浄化風路の吸着手段と分解手段の間に設けられた集合口に連通している構成では、再生モードの場合、分解手段通過後のガスは通気風路の上方から溜まっていき順次押し出される形で通気風路を下降し、通気風路他端から排気されるとともに、一部は集合口から再び分解手段に送られる。このため、一度に大量の脱離ガスが吸着手段から脱離し分解手段の処理能力を越え一部の未分解ガスが通気風路に漏れた場合においても、全量が通気風路他端から漏れるのを防止することができる。
【0015】
また、分離口が集合口よりも下に設けられた構成では、再生モードで、吸着手段から脱離した汚染ガスは上昇気流となって上昇するため、集合口から分離口を通って通気風路に漏れることがないので、本体が多少傾いても再生時の汚染ガスの漏れがない。
【0016】
また、滞留室内部に通気口より分解手段方向に空気の流れを変える変向ルーバーを設けたことを特徴とする構成では、吸着モードの場合通気口から滞留室に導かれた部屋の汚染ガスは変向ルーバで風向きを分解手段の方向へ滑らかに変えられ分解手段、吸着手段の順に導き、吸着手段に吸着させる。このため変向ルーバがない場合に比べて圧力損失を小さくすることができ、送風手段を小型化できる。
【0017】
【実施例】
(実施例1)
図1は本発明の実施例1の要部切欠き斜視図であり、図2は図1の縦断面図である。
【0018】
10は吸込口11と吹出口12を持ち内部に浄化風路13を有する本体であり、14は浄化風路内13に部屋内の空気中のホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスを選択的かつ発生量を十分に吸着するゼオライト等の吸着材でできた吸着手段であり、前記浄化風洞13内には前記吸着手段14を加熱して吸着した汚染ガスを脱着させる電気ヒータ等の加熱手段15と、前記吸着手段14から脱着した汚染ガスを分解する電気発熱体や酸化分解触媒からなる分解手段16を吸着手段上部に近接もしくは接触して配置し、さらに、前記分解手段16の上部には通気口18が天井面よりも下に設けられた滞留室17を設置し、前記浄化風路13に空気を送風する送風手段19によって前記吸着手段14に汚染ガスを含む空気を送風する構成としたものである。
【0019】
実施例1では、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、送風手段19のみを駆動し、本体外の空気を吸込口11から通気口18に導き、浄化風路内13の分解手段16、吸着手段14の順に導き、前記吸着手段14に吸着させる。吸着モードでの空気の流れを破線矢印で示す。吸着手段14に所定量の汚染ガスが吸着すると、次に再生モードに入る。前記送風手段19を停止した後、分解手段16を駆動し、加熱手段15を駆動することで汚染ガスは吸着手段14から高温の汚染ガスとして脱着し、上昇気流となって分解手段16である高温の電気発熱体や酸化分解触媒に接触し酸化され、揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。分解後の水や二酸化炭素等のガスは上昇気流となって滞留室内17を上昇し、滞留室天面から溜まっていき、順次押し出される形で下降し天面より下部に設けられた通気口18から排気され、吸込口11から部屋に排気される。再生モードでの空気の流れを実線矢印で示す。このため、再生モードのほうが吸着モードの場合よりもガスが通過する流路が長く、送風抵抗が大きい。したがって再生モード、吸着モードとも同じ流路となる図9に示す従来例の構成のように、吸着モードの通気抵抗が同じ条件において可動ダンパをつけなくても再生モードの流量を小さくすることができ分解手段で脱離したガスを完全に分解することができる。
【0020】
(実施例2)
図3は、本発明の実施例2の断面図である。
【0021】
実施例1の構成に加え、通気口18に下向きの通気口ルーバ20を設けた点にある。本実施例においては、再生モードの場合、分解手段16で分解後の水や二酸化炭素等のガスは通気口ルーバの上方から溜まっていき順次押し出される形で通気口ルーバ面に沿って下降し通気口ルーバ下部から排気され、吸込口から部屋に排気される。再生モードでの空気の流れを実線矢印で示す。したがって吸着モードの通気抵抗が同じ条件で可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段の分解性能をより向上させることができる。
【0022】
(実施例3)
図4は、本発明の実施例3の断面図である。
【0023】
10は吸込口11と吹出口12を持ち内部に浄化風路13を有する本体であり、14は浄化風路内13に部屋内の空気中のホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスを選択的かつ発生量を十分に吸着するゼオライト等の吸着材でできた吸着手段であり、前記浄化風洞13内には前記吸着手段14を加熱して吸着した汚染ガスを脱着させる電気ヒータ等の加熱手段15と、前記吸着手段14から脱着した汚染ガスを分解する電気発熱体や酸化分解触媒からなる分解手段16を吸着手段上部に近接もしくは接触して配置し、さらに、前記分解手段16の上部には通気口18が設けられた滞留室17を設置し、前記通気口には一端22が連通し、他端23が前記通気口よりも下にある通気風路21がつながっている。
【0024】
そして前記浄化風路13に空気を送風する送風手段19によって前記吸着手段14に汚染ガスを含む空気を送風する構成としたものである。
【0025】
実施例3では、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、送風手段19のみを駆動し、本体外の空気を吸込口11から通気風路21そして通気口18に導き、浄化風路内13の分解手段16、吸着手段14の順に導き、前記吸着手段14に吸着させる。吸着モードでの空気の流れを破線矢印で示す。吸着手段14に所定量の汚染ガスが吸着すると、次に再生モードに入る。前記送風手段19を停止した後、分解手段16を駆動し、加熱手段15を駆動することで汚染ガスは吸着手段14から高温の汚染ガスとして脱着し、上昇気流となって分解手段16である高温の電気発熱体や酸化分解触媒に接触し酸化され、揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。分解後の水や二酸化炭素等のガスは上昇気流となって滞留室内17を上昇し、滞留室天面から溜まっていき、順次押し出される形で通気口18から排気され、吸込口11から通気風路21に入り、通気風路を通って吸込口11から部屋に排気される。再生モードでの空気の流れを実線矢印で示す。このため、再生モードのほうが吸着モードの場合よりもガスが通過する流路が長く、送風抵抗が大きい。したがって再生モード、吸着モードとも同じ流路となる図9に示す従来例の構成のように、吸着モードの通気抵抗が同じ条件において可動ダンパをつけなくても再生モードの流量を小さくすることができ分解手段で脱離したガスを完全に分解することができる。
【0026】
(実施例4)
図5は、本発明の実施例4の断面図である。
【0027】
実施例3と異なる点は、通気風路21がノズル構造になっている場合、吸着モード時は汚染ガスを含んだ部屋の空気は通気風路21のノズルで滑らかに絞られる。破線矢印に吸着モードの際の空気の流れを示す。本発明の構成では実施例3の構成比べて圧力損失が小さくなるとともに、再生モード時は分解手段14で分解後の水や二酸化炭素等のガスは通気風路の上方から溜まっていき順次押し出される形で通気風路21のノズル面を下降し通気風路他端23から排気され、吸込口11から部屋に排気される。したがって、吸着モードの通気抵抗が同じ条件で可動ダンパをつけなくてもノズル構造でない構成よりもさらに再生モードの流量を小さくすることができ、送風手段の小型化および分解手段の能力向上を実現できる。
【0028】
(実施例5)
図6は、本発明の実施例5の断面図である。
【0029】
実施例3の構成に加え、通気風路21の途中に分離口24が設けられ、前記分離口24が浄化風路13の吸着手段14と分解手段16の間に設けられた集合口25に連通している事にある。本発明では吸着モードの場合、送風手段19のみを駆動し、本体外の空気を吸込口11から通気風路21に導き、空気の一部は分離口24と集合口25を通って吸着手段14に導くとともに、残りの空気は浄化風路内13の分解手段16、吸着手段14の順に導き、前記吸着手段14に吸着させる。吸着モードでの空気の流れを破線矢印で示す。したがって吸着モードの場合、実施例3に示す構成よりも圧力損失を小さくすることができ、ファン等の送風手段19の小型化が図れる。また再生モードの場合、分解手段16通過後のガスは通気風路21の上方から溜まっていき順次押し出される形で通気風路を下降し、通気風路21他端23から排気され、吸込口11から部屋へ排気されるとともに、一部は分離口24および集合口25を通って再び分解手段14に送られる。再生モードの空気の流れを実線矢印で示す。このため、一度に大量の脱離ガスが吸着手段14から脱離し分解手段16の処理能力を越え一部の未分解ガスが通気風路21に漏れた場合においても、全量が吸込口11から漏れるのを防止することができる。
【0030】
(実施例6)
図7は、本発明の実施例6の断面図である。
【0031】
実施例5と異なる点は、分離口24が集合口25よりも下に設けられていることにある。本発明において再生モードでは、吸着手段14から脱離した汚染ガスは上昇気流となって上昇するため、本体が多少傾いていても集合口25から分離口24を通って通気風路21に漏れることなく分解手段16に導かれ分解手段である高温の電気発熱体や酸化分解触媒に接触し酸化され、揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。分解手段16通過後のガスは通気風路21の上方から溜まっていき順次押し出される形で通気風路を下降し、通気風路21他端23から排気され、吸込口11から部屋へ排気されるとともに、一部は分離口24および集合口25を通って再び分解手段14に送られる。再生モードの空気の流れを実線矢印で示す。このため、一度に大量の脱離ガスが吸着手段14から脱離し分解手段16の処理能力を越え一部の未分解ガスが通気風路21に漏れた場合においても、全量が吸込口11から漏れるのを防止することができる。
【0032】
(実施例7)
図8は、本発明の実施例7の断面図である。
【0033】
本発明は、実施例1の構成に加え、滞留室17内部に、通気口18より分解手段16方向に空気の流れを変える変向ルーバー26を設けた構成となっている。吸着モードの場合、通気口18から滞留室17に導かれた部屋の汚染ガスは変向ルーバ26で風向きを分解手段16の方向へ滑らかに変えられ分解手段16、吸着手段14の順に導き、吸着手段14に吸着させる。吸着モードの空気の流れを破線矢印に示す。このため実施例1の構成に比べ、圧力損失を小さくすることができ、送風手段19を小型化できる。なお、再生モードでは、分解手段16を通過した、分解後の水や二酸化炭素等のガスは上昇気流となって滞留室17内を上昇し、滞留室17天面から溜まっていき、順次押し出される形で下降し天面より下部に設けられた通気口18から排気され、吸込口13から部屋に排気される。
【0034】
したがって可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段の分解性能をより向上させることができる。
【0035】
【発明の効果】
以上説明したように本発明の空気清浄装置は、以下に述べる効果を有する物である。
【0036】
(1)分解手段の上部に、天井面よりも下に通気口を持った滞留室を設けた構成により、再生モードの際に自然対流によるガスの流れの送風抵抗を大きくし、可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段で脱離したガスを完全に分解することができる空気清浄装置を実現できる。
【0037】
(2)滞留室の通気口に下向きの通気口ルーバを設けたことを特徴とする構成においては、再生モードの際に自然対流によるガスの流れの送風抵抗をさらに大きくし、可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段で脱離したガスをより完全に分解することができる空気清浄装置を実現できる。
【0038】
(3)一端が滞留室の通気口に連通し他端が前記通気口よりも下にある通気風路を設けた構成では、再生モードの際に自然対流によるガスの流れの送風抵抗をさらに大きくし、可動ダンパをつけなくても再生モードの流量を小さくすることができ、分解手段で脱離したガスをより完全に分解することができる空気清浄装置を実現できる。
【0039】
(4)通気風路がノズル構造になっている場合、吸着モード時は圧損が小さくなるとともに、再生モードでは自然対流によるガスの流れの送風抵抗をさらに大きくできるため、送風手段の小型化および分解手段の能力向上を実現できる。
【0040】
(5)通気風路の途中に分離口が設けられ、分離口が浄化風路の吸着手段と分解手段の間に設けられた集合口に連通している構成では、一度に大量の脱離ガスが吸着手段から脱離し分解手段の処理能力を越え一部の未分解ガスが通気風路に漏れた場合においても、通気風路中の未分解ガスが再び分解手段に送られるため、全量が通気風路他端から漏れるのを防止することができる。
【0041】
(6)分離口が集合口よりも下に設けられた構成では、本体が多少傾いても集合口から分離口を通って通気風路に漏れることがないので、再生時の汚染ガスの漏れがない空気清浄装置を実現できる。
【0042】
(7)滞留室内部に通気口より分解手段方向に空気の流れを変える変向ルーバーを設けたことを特徴とする構成では、吸着モード時の圧力損失を小さくすることができ、送風手段を小型化できる。
【図面の簡単な説明】
【図1】 本発明の実施例1の空気清浄装置の要部切欠き斜視図
【図2】同空気清浄装置の断面図
【図3】 本発明の実施例2の空気清浄装置の断面図
【図4】 本発明の実施例3の空気清浄装置の断面図
【図5】 本発明の実施例4の空気清浄装置の断面図
【図6】 本発明の実施例5の空気清浄装置の断面図
【図7】 本発明の実施例6の空気清浄装置の断面図
【図8】 本発明の実施例7の空気清浄装置の断面図
【図9】 従来の空気清浄装置の断面図
【符号の説明】
10 本体
11 吸込口
12 吹出口
13 浄化風路
14 吸着材
15 加熱手段
16 分解手段
17 滞留室
18 通気口
19 送風手段
20 通気口ルーバー
24 分離口
25 集合口
26 変向ルーバー
[0001]
BACKGROUND OF THE INVENTION
The present invention incinerates and decomposes odors of cigarettes in indoor air, volatile organic compounds such as aldehyde generated from building materials, walls, furniture, and inorganic gases such as carbon monoxide generated from combustors. It is related with the air purifying apparatus removed by doing.
[0002]
[Prior art]
Conventionally, air purifiers having this type of function include those that adsorb and remove pollutant gases such as odors in the air on adsorbents such as activated carbon, and those that decompose pollutant gases with catalysts and ozone. It was. However, in the case of using the above-mentioned conventional air purifier with only the deodorizing filter, the adsorption / deodorizing ability is lowered because the pores of the deodorizing filter are blocked with odorous components when used for a long time. For this reason, it is necessary to replace the filter at regular intervals. Moreover, in order to continuously treat polluted gases using ozone and catalyst systems, a large-scale device is required because a processing air volume of 1 m3 / min to 4 m3 / min is required even for a domestic air purifier. .
[0003]
In addition, as an air cleaning device for regenerating the adsorbent to the initial performance, a device as described in JP-A-3-21323 is known. As shown in FIG. 9, this apparatus has a first heater and a pyrolysis catalyst heated by the first heater from above in a duct having a discharge section for discharging a gas containing odor inside. An adsorbent, a second heater for heating the adsorbent, and a fan are installed to operate the fan during deodorization to adsorb odor to the adsorbent, and to regenerate the adsorbent, the first and second heaters The odor is desorbed by heating the adsorbent and the desorbed odor gas is decomposed by a heated thermal decomposition catalyst to regenerate the adsorbent to the initial state. Further, in order to prevent the odor gas from leaking from the discharge portion during regeneration, a configuration has been devised in which a damper that is closed by a shape memory alloy spring or wind pressure at the time of regeneration is attached to the discharge portion.
[0004]
[Problems to be solved by the invention]
However, in the case of using the above-mentioned conventional air purifier with only the deodorizing filter, the adsorption / deodorizing ability is lowered because the pores of the deodorizing filter are blocked with odorous components when used for a long time. For this reason, it is necessary to replace the filter at regular intervals.
[0005]
Moreover, in order to continuously treat polluted gases using ozone and catalyst systems, a large-scale device is required because a processing air volume of 1 m3 / min to 4 m3 / min is required even for a domestic air purifier. .
[0006]
Further, in the system as disclosed in Japanese Patent Laid-Open No. 3-21323, as shown in FIG. 9, since the discharge unit 6 is at the upper part, the ascending airflow generated in the first heater 3 and the second heater 5 has no resistance. Since the air flows out of the duct from the discharge part, the air volume due to the rising air flow increases, and the odor gas desorbed by the thermal decomposition catalyst cannot be completely decomposed, and the odor gas leaks out of the duct. In order to prevent leakage of odorous gas, the area of the discharge portion may be reduced. However, pressure loss increases during deodorization, and there are problems such as an increase in the size of the fan 9 and an increase in noise.
[0007]
For this reason, a configuration has been devised in which a shape memory alloy spring 8 and a damper 7 that is closed by wind pressure at the time of regeneration are attached to the discharge part. However, because the configuration is complicated due to the installation of the damper, or when the damper is opened and closed with a shape memory alloy spring or the like, the opening and closing tends to become unstable due to fluctuations in the outside temperature, etc., and odor gas leaks. There was a problem that the damper heated up and thermally expanded due to the heat from the heater, resulting in unstable operation and odor gas leaking.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has a main body having a suction port and a blower outlet and having a purification air passage inside, a blowing means for blowing air into the purification air passage, and an adsorption provided in the purification air passage. A retention chamber having a means, a heating means arranged to heat the adsorption means, a decomposition means arranged close to or in contact with the upper part of the adsorption means, and a vent arranged above the decomposition means And the air vent is located below the ceiling surface of the retention chamber, and the air vent is provided with a downward vent louver .
[0009]
According to the above invention, in the adsorption mode for removing the pollutant gas contained in the room air, only the air blowing means is driven, the air outside the main body is guided from the suction port to the vent hole, and the decomposition means in the purification air passage Then, the adsorbing means is led in order and adsorbed by the adsorbing means. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means, the regeneration mode is entered next. After stopping the air blowing means, the decomposition means is driven, and the heating means is driven, so that the pollutant gas is desorbed from the adsorption means as a high-temperature pollutant gas and becomes an ascending air current, which is a high-temperature electric heating element or oxidizer as the decomposition means Oxidized by contact with the decomposition catalyst, volatile organic compounds and carbon monoxide are decomposed into water and carbon dioxide. After decomposition, gas such as water and carbon dioxide rises into the residence chamber, rises from the top of the residence chamber, accumulates from the top of the residence chamber, descends in a push-out manner, and exhausts from a vent provided below the top surface. And exhausted from the suction port to the room. For this reason, the flow path through which gas passes is longer in the regeneration mode than in the adsorption mode, and the blowing resistance is larger. Accordingly, the flow rate in the regeneration mode can be reduced even when the movable damper is not attached even if the ventilation resistance in the suction mode is the same as in the configuration of the conventional example shown in FIG. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention includes a main body having a suction port and a blower outlet and having a purification air passage inside, a blower means for blowing air to the purification air passage, an adsorption means provided in the purification air passage, and heating the adsorption means Heating means arranged so as to dispose, decomposition means arranged close to or in contact with the upper part of the adsorption means, and a residence chamber having an air vent arranged on the upper part of the decomposition means, The air purifier is located below the ceiling surface of the retention chamber and has a downward vent louver at the vent . And in the adsorption mode to remove the pollutant gas contained in the room air, only the air blowing means is driven, the air outside the main body is led from the suction port to the ventilation port, the decomposition means in the purification air passage, the adsorption means in this order Guide and adsorb to adsorption means. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means, the regeneration mode is entered next. After stopping the air blowing means, the decomposition means is driven, and the heating means is driven, so that the pollutant gas is desorbed from the adsorption means as a high-temperature pollutant gas and becomes an ascending air current, which is a high-temperature electric heating element or oxide Oxidized by contact with the decomposition catalyst, volatile organic compounds and carbon monoxide are decomposed into water and carbon dioxide. After decomposition, gas such as water and carbon dioxide rises into the residence chamber, rises from the top of the residence chamber, accumulates from the top of the residence chamber, descends in a push-out manner, and exhausts from a vent provided below the top surface. And exhausted from the suction port to the room. For this reason, the flow path through which gas passes is longer in the regeneration mode than in the adsorption mode, and the blowing resistance is larger. Therefore, the flow rate in the regeneration mode can be reduced without attaching a movable damper, and the gas desorbed by the decomposition means can be completely decomposed.
[0011]
Further, by kicking setting a downward vent louvers vents, if the playback mode, gas water and carbon dioxide after the decomposition by the decomposition means in the form of sequentially pushed gradually accumulated from above the vent louver It descends along the vent louver surface, exhausts from the lower part of the vent louver, and exhausts from the suction port to the room. Therefore, the flow rate in the regeneration mode can be further reduced without attaching the movable damper under the same suction resistance in the suction mode, and the disassembling performance of the disassembling means can be further improved.
[0012]
A main body having a suction port and a blower outlet and having a purification air passage inside; a blowing means for blowing air into the purification air passage; an adsorption means provided in the purification air passage; and heating the adsorption means A heating means arranged in the above, a decomposition means arranged close to or in contact with the upper part of the adsorption means, a staying chamber having a vent arranged in the upper part of the decomposition means, and a ventilation air passage, In the configuration in which one end of the ventilation air passage communicates with the air vent and the other end is below the air vent, in the regeneration mode, water such as water and carbon dioxide after decomposition by the decomposition means is above the ventilation air passage. From the other end of the ventilation air passage, it is exhausted from the other end of the ventilation air passage and exhausted into the room. Therefore, the flow rate in the regeneration mode can be reduced without attaching a movable damper under the same adsorption resistance in the adsorption mode, and the gas desorbed by the decomposing means can be completely decomposed.
[0013]
Also, in the above configuration, when the ventilation air passage has a nozzle structure, the air in the room containing the pollutant gas is smoothly squeezed by the nozzle in the adsorption mode, and the pressure loss is smaller than that in the case where the nozzle structure is not used. In the mode, water such as water and carbon dioxide after being decomposed by the decomposition means accumulates from above the ventilation air passage and is sequentially pushed out, descends the nozzle surface of the ventilation air passage and is exhausted from the other end of the ventilation air passage. It is exhausted from the mouth to the room. Accordingly, the flow rate in the regeneration mode can be further reduced as compared with the configuration without the nozzle structure even if the movable damper is not attached under the same conditions of the suction resistance in the suction mode, and the downsizing of the blowing means and the improvement of the ability of the disassembling means can be realized. .
[0014]
Further, in a configuration in which a separation port is provided in the middle of the ventilation air passage and the separation port communicates with a collecting port provided between the adsorption means and the decomposition means of the purification air passage, in the regeneration mode, after the passage of the decomposition means The gas accumulates from above the ventilation air passage and descends in the form of being sequentially pushed out, exhausted from the other end of the ventilation air passage, and partly sent again to the disassembling means from the collecting port. For this reason, even if a large amount of desorbed gas is desorbed from the adsorbing means at a time and exceeds the processing capacity of the decomposing means, and part of the undecomposed gas leaks into the ventilation air passage, the entire amount leaks from the other end of the ventilation air passage. Can be prevented.
[0015]
Further, in the configuration in which the separation port is provided below the collection port, in the regeneration mode, the polluted gas desorbed from the adsorption means rises as an updraft, so the ventilation air passage from the collection port through the separation port Therefore, even if the main body is tilted slightly, there is no leakage of contaminated gas during regeneration.
[0016]
Further, in the configuration characterized in that a direction changing louver that changes the flow of air from the vent in the direction of the decomposition means is provided in the stay chamber, in the adsorption mode, the pollutant gas in the room led from the vent to the stay chamber is The direction of the wind is smoothly changed in the direction of the disassembling means by the turning louver, and the disassembling means and the adsorbing means are guided in this order and adsorbed by the adsorbing means. For this reason, pressure loss can be made small compared with the case where there is no turning louver, and a ventilation means can be reduced in size.
[0017]
【Example】
Example 1
FIG. 1 is a cutaway perspective view of an essential part of Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view of FIG.
[0018]
Reference numeral 10 denotes a main body having a suction port 11 and an outlet 12 and a purification air passage 13 inside. Reference numeral 14 denotes a pollutant gas composed of volatile organic compounds such as formaldehyde and toluene in the air in the room in the purification air passage 13. Is an adsorption means made of an adsorbent such as zeolite that selectively adsorbs the generated amount sufficiently, and an electric heater that desorbs the adsorbed contaminant gas by heating the adsorption means 14 in the purification wind tunnel 13 A heating means 15 and a decomposition means 16 comprising an electric heating element or an oxidative decomposition catalyst for decomposing the polluted gas desorbed from the adsorption means 14 are arranged close to or in contact with the upper portion of the adsorption means. Is provided with a staying chamber 17 in which a vent 18 is provided below the ceiling surface, and the adsorbing means 14 contains pollutant gas by a blowing means 19 for sending air to the purification air passage 13. It is obtained by a structure for blowing air.
[0019]
In the first embodiment, in the adsorption mode for removing the pollutant gas contained in the room air, only the air blowing means 19 is driven to guide the air outside the main body from the suction port 11 to the ventilation port 18, and in the purification air passage 13. The decomposing means 16 and the adsorbing means 14 are guided in this order and adsorbed by the adsorbing means 14. The flow of air in the adsorption mode is indicated by broken line arrows. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means 14, the regeneration mode is entered next. After stopping the blowing means 19, the decomposition means 16 is driven, and the heating means 15 is driven so that the pollutant gas is desorbed from the adsorption means 14 as a high-temperature pollutant gas and becomes an ascending air current. The volatile organic compound and carbon monoxide are decomposed into water and carbon dioxide. Gases such as water and carbon dioxide after decomposition rise as an updraft in the retention chamber 17, accumulate from the top of the retention chamber, descend in a form that is sequentially pushed out, and vents 18 provided below the top surface. The air is exhausted from the suction port 11 and exhausted to the room. The air flow in the regeneration mode is indicated by solid arrows. For this reason, the flow path through which gas passes is longer in the regeneration mode than in the adsorption mode, and the blowing resistance is larger. Therefore, the flow rate in the regeneration mode can be reduced without the use of a movable damper under the same conditions of the ventilation resistance in the suction mode as in the configuration of the conventional example shown in FIG. The gas desorbed by the decomposition means can be completely decomposed.
[0020]
(Example 2)
FIG. 3 is a cross-sectional view of Embodiment 2 of the present invention.
[0021]
In addition to the configuration of the first embodiment, the vent 18 is provided with a downward vent louver 20. In the present embodiment, in the regeneration mode, water such as water and carbon dioxide after being decomposed by the decomposition means 16 accumulates from above the vent louver and descends along the vent louver surface in such a manner that it is sequentially pushed out. It is exhausted from the lower part of the mouth louver and exhausted from the suction port to the room. The air flow in the regeneration mode is indicated by solid arrows. Therefore, the flow rate in the regeneration mode can be reduced without attaching the movable damper under the same suction resistance in the suction mode, and the disassembling performance of the disassembling means can be further improved.
[0022]
Example 3
FIG. 4 is a cross-sectional view of Embodiment 3 of the present invention.
[0023]
Reference numeral 10 denotes a main body having a suction port 11 and an outlet 12 and a purification air passage 13 inside. Reference numeral 14 denotes a pollutant gas composed of volatile organic compounds such as formaldehyde and toluene in the air in the room in the purification air passage 13. Is an adsorption means made of an adsorbent such as zeolite that selectively adsorbs the generated amount sufficiently, and an electric heater that desorbs the adsorbed contaminant gas by heating the adsorption means 14 in the purification wind tunnel 13 A heating means 15 and a decomposition means 16 comprising an electric heating element or an oxidative decomposition catalyst for decomposing the polluted gas desorbed from the adsorption means 14 are arranged close to or in contact with the upper portion of the adsorption means. Is provided with a stay chamber 17 provided with a vent hole 18, and one end 22 communicates with the vent hole and a vent air passage 21 with the other end 23 located below the vent hole is connected.
[0024]
And it is set as the structure which ventilates the air containing a pollutant gas to the said adsorption | suction means 14 by the ventilation means 19 which ventilates the said purification | cleaning air path 13. FIG.
[0025]
In Example 3, in the adsorption mode for removing pollutant gas contained in room air, only the air blowing means 19 is driven, and air outside the main body is guided from the suction port 11 to the ventilation air passage 21 and the ventilation port 18. The decomposing means 16 and the adsorbing means 14 in the purification air passage 13 are led in this order and adsorbed by the adsorbing means 14. The flow of air in the adsorption mode is indicated by broken line arrows. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means 14, the regeneration mode is entered next. After stopping the blowing means 19, the decomposition means 16 is driven, and the heating means 15 is driven so that the pollutant gas is desorbed from the adsorption means 14 as a high-temperature pollutant gas and becomes an ascending air current. The volatile organic compound and carbon monoxide are decomposed into water and carbon dioxide. Gases such as water and carbon dioxide after the decomposition rise as an updraft in the stay chamber 17, accumulate from the top of the stay chamber, are exhausted from the vent 18 in a form that is sequentially pushed out, and ventilate from the suction port 11. The air enters the passage 21 and is exhausted from the suction port 11 to the room through the ventilation air passage. The air flow in the regeneration mode is indicated by solid arrows. For this reason, the flow path through which gas passes is longer in the regeneration mode than in the adsorption mode, and the blowing resistance is larger. Therefore, the flow rate in the regeneration mode can be reduced without the use of a movable damper under the same conditions of the ventilation resistance in the suction mode as in the configuration of the conventional example shown in FIG. The gas desorbed by the decomposition means can be completely decomposed.
[0026]
Example 4
FIG. 5 is a cross-sectional view of Embodiment 4 of the present invention.
[0027]
The difference from the third embodiment is that when the ventilation air passage 21 has a nozzle structure, the air in the room containing the contaminated gas is smoothly throttled by the nozzle of the ventilation air passage 21 in the adsorption mode. The broken line arrow shows the air flow during the adsorption mode. In the configuration of the present invention, the pressure loss is smaller than in the configuration of the third embodiment, and in the regeneration mode, the gas such as water and carbon dioxide after decomposition is accumulated from above the ventilation air passage and sequentially pushed out by the decomposition means 14. In this manner, the nozzle surface of the ventilation air passage 21 is lowered, exhausted from the other end 23 of the ventilation air passage, and exhausted to the room from the suction port 11. Accordingly, the flow rate in the regeneration mode can be further reduced as compared with the configuration without the nozzle structure even if the movable damper is not attached under the same conditions of the suction resistance in the suction mode, and the downsizing of the blowing means and the improvement of the ability of the disassembling means can be realized. .
[0028]
(Example 5)
FIG. 6 is a cross-sectional view of Embodiment 5 of the present invention.
[0029]
In addition to the configuration of the third embodiment, a separation port 24 is provided in the middle of the ventilation air passage 21, and the separation port 24 communicates with a collecting port 25 provided between the adsorption means 14 and the decomposition means 16 of the purification air passage 13. There is in doing. In the present invention, in the adsorption mode, only the air blowing means 19 is driven, air outside the main body is guided from the suction port 11 to the ventilation air passage 21, and a part of the air passes through the separation port 24 and the collecting port 25, and the adsorption means 14. The remaining air is led in the order of the disassembling means 16 and the adsorbing means 14 in the purification air passage 13 and is adsorbed by the adsorbing means 14. The flow of air in the adsorption mode is indicated by broken line arrows. Therefore, in the case of the adsorption mode, the pressure loss can be reduced as compared with the configuration shown in the third embodiment, and the blower 19 such as a fan can be downsized. In the regeneration mode, the gas that has passed through the decomposition means 16 accumulates from above the ventilation air passage 21, descends in the ventilation air passage while being sequentially pushed out, and is exhausted from the other end 23 of the ventilation air passage 21. As a result, the air is exhausted to the room and part thereof is sent again to the disassembling means 14 through the separation port 24 and the collecting port 25. The air flow in the regeneration mode is indicated by solid arrows. For this reason, even when a large amount of desorbed gas is desorbed from the adsorbing means 14 at one time and exceeds the processing capacity of the decomposing means 16, and a part of the undecomposed gas leaks into the ventilation air passage 21, the entire amount leaks from the inlet 11. Can be prevented.
[0030]
(Example 6)
FIG. 7 is a cross-sectional view of Embodiment 6 of the present invention.
[0031]
The difference from the fifth embodiment is that the separation port 24 is provided below the assembly port 25. In the present invention, in the regeneration mode, the polluted gas desorbed from the adsorbing means 14 rises as an updraft, and therefore leaks from the collecting port 25 through the separation port 24 to the ventilation air passage 21 even if the main body is slightly inclined. Without being led to the decomposition means 16, the decomposition means comes into contact with a high-temperature electric heating element or oxidative decomposition catalyst and is oxidized, and volatile organic compounds and carbon monoxide are decomposed into water and carbon dioxide. The gas after passing through the decomposing means 16 accumulates from above the ventilation air passage 21 and descends in the form of being sequentially pushed out, exhausted from the other end 23 of the ventilation air passage 21, and exhausted from the suction port 11 to the room. At the same time, a part is sent again to the disassembling means 14 through the separation port 24 and the collecting port 25. The air flow in the regeneration mode is indicated by solid arrows. For this reason, even when a large amount of desorbed gas is desorbed from the adsorbing means 14 at one time and exceeds the processing capacity of the decomposing means 16, and a part of the undecomposed gas leaks into the ventilation air passage 21, the entire amount leaks from the inlet 11. Can be prevented.
[0032]
(Example 7)
FIG. 8 is a cross-sectional view of Embodiment 7 of the present invention.
[0033]
In addition to the configuration of the first embodiment, the present invention has a configuration in which a turning louver 26 that changes the air flow from the vent 18 toward the disassembling means 16 is provided inside the stay chamber 17. In the case of the adsorption mode, the pollutant gas in the room led from the vent 18 to the staying chamber 17 is smoothly changed in the direction of the decomposition means 16 by the direction change louver 26 and guided to the decomposition means 16 and the adsorption means 14 in this order. Adsorbed on the means 14. The air flow in the adsorption mode is indicated by a broken-line arrow. For this reason, compared with the structure of Example 1, pressure loss can be made small and the ventilation means 19 can be reduced in size. In the regeneration mode, the decomposed gas such as water and carbon dioxide that has passed through the decomposition means 16 becomes an ascending current, rises in the retention chamber 17, accumulates from the top of the retention chamber 17, and is sequentially pushed out. Then, the air is exhausted from the vent 18 provided below the top surface and exhausted from the suction port 13 to the room.
[0034]
Therefore, the flow rate in the regeneration mode can be reduced without attaching a movable damper, and the disassembling performance of the disassembling means can be further improved.
[0035]
【The invention's effect】
As described above, the air cleaning device of the present invention has the following effects.
[0036]
(1) With a structure in which a staying chamber with a vent hole below the ceiling surface is provided above the disassembling means, the blowing resistance of the gas flow due to natural convection is increased in the regeneration mode, and a movable damper is attached. Even if it is not, the flow rate in the regeneration mode can be reduced, and an air purifier capable of completely decomposing the gas desorbed by the decomposing means can be realized.
[0037]
(2) In the configuration characterized in that a downward vent louver is provided at the vent of the stay chamber, the blowing resistance of the gas flow due to natural convection is further increased in the regeneration mode, and a movable damper is not attached. Even in this case, the flow rate in the regeneration mode can be reduced, and an air cleaning device that can completely decompose the gas desorbed by the decomposition means can be realized.
[0038]
(3) In a configuration in which one end communicates with the vent of the retention chamber and the other end is below the vent, the ventilation resistance of the gas flow due to natural convection is further increased in the regeneration mode. In addition, the flow rate in the regeneration mode can be reduced without attaching a movable damper, and an air purifier capable of completely decomposing the gas desorbed by the decomposing means can be realized.
[0039]
(4) When the ventilation air passage has a nozzle structure, the pressure loss is reduced in the adsorption mode, and in the regeneration mode, the blowing resistance of the gas flow due to natural convection can be further increased. Improve the ability of the means.
[0040]
(5) In a configuration in which a separation port is provided in the middle of the ventilation air passage, and the separation port communicates with a collecting port provided between the adsorption means and the decomposition means of the purification air passage, a large amount of desorbed gas at a time Even when some of the undecomposed gas leaks into the ventilation air passage because it desorbs from the adsorption means and exceeds the processing capacity of the decomposition means, the undecomposed gas in the ventilation air passage is sent again to the decomposition means. Leakage from the other end of the air passage can be prevented.
[0041]
(6) In the configuration in which the separation port is provided below the collection port, even if the main body is tilted slightly, it does not leak from the collection port through the separation port to the ventilating air passage. No air purification device can be realized.
[0042]
(7) In the configuration characterized in that a turning louver that changes the air flow from the vent toward the disassembling means is provided in the staying chamber, the pressure loss in the adsorption mode can be reduced, and the blowing means is made small. Can be
[Brief description of the drawings]
FIG. 1 is a perspective cutaway view of a main part of an air cleaning device according to a first embodiment of the present invention. FIG. 2 is a sectional view of the air cleaning device. FIG. 3 is a sectional view of an air cleaning device according to a second embodiment of the present invention. FIG. 4 is a cross-sectional view of an air purifying apparatus according to a third embodiment of the present invention. FIG. 5 is a cross-sectional view of an air purifying apparatus according to a fourth embodiment of the present invention. 7 is a cross-sectional view of an air purifying apparatus according to Embodiment 6 of the present invention. FIG. 8 is a cross-sectional view of an air purifying apparatus according to Embodiment 7 of the present invention. FIG. 9 is a cross-sectional view of a conventional air purifying apparatus. ]
DESCRIPTION OF SYMBOLS 10 Main body 11 Suction inlet 12 Outlet 13 Purification air path 14 Adsorbent 15 Heating means 16 Decomposition means 17 Retention chamber 18 Ventilation hole 19 Ventilation means 20 Ventilation hole louver 24 Separation port 25 Collecting port 26 Diversion louver

Claims (6)

吸込口と吹出口を持ち内部に浄化風路を有する本体と、前記浄化風路に空気を送風する送風手段と、浄化風路内に設けられた吸着手段と、吸着手段を加熱するように配置された加熱手段と、前記吸着手段上部に近接もしくは接触して配置された分解手段と、前記分解手段の上部に配置された通気口を持った滞留室を備え、前記通気口が前記滞留室天井面よりも下にあり、前記通気口に下向きの通気口ルーバーを設けた空気清浄装置。A main body having a suction port and a blower outlet and having a purification air passage inside, an air blowing means for blowing air into the purification air passage, an adsorption means provided in the purification air passage, and arranged to heat the adsorption means And a decomposing unit disposed close to or in contact with the upper part of the adsorption unit, and a staying chamber having a vent port disposed on the upper part of the decomposing unit, wherein the venting port is a ceiling of the staying chamber. An air purifier provided below the surface and provided with a downward vent louver on the vent . 吸込口と吹出口を持ち内部に浄化風路を有する本体と、前記浄化風路に空気を送風する送風手段と、浄化風路内に設けられた吸着手段と、吸着手段を加熱するように配置された加熱手段と、前記吸着手段上部に近接もしくは接触して配置された分解手段と、前記分解手段の上部に配置された通気口を持った滞留室と、通気風路を備え、前記通気風路の一端が前記通気口に連通し他端が前記通気口よりも下にあることを特徴とする空気清浄装置。  A main body having a suction port and a blower outlet and having a purification air passage inside, an air blowing means for blowing air into the purification air passage, an adsorption means provided in the purification air passage, and arranged to heat the adsorption means A heating unit, a decomposition unit arranged in proximity to or in contact with the upper part of the adsorption unit, a staying chamber having a vent arranged at the upper part of the decomposition unit, and a ventilation air passage, One end of a path communicates with the vent and the other end is below the vent. 通気風路がノズル構造となっていることを特徴とする請求項2記載の空気清浄装置。  The air purifier according to claim 2, wherein the ventilation air passage has a nozzle structure. 通気風路途中に分離口が設けられ、分離口が浄化風路の吸着手段と分解手段の間に設けられた集合口に連通していることを特徴とする請求項2または3記載の空気清浄装置。  4. The air purifier according to claim 2, wherein a separation port is provided in the middle of the ventilation air passage, and the separation port communicates with a collecting port provided between the adsorption means and the decomposition means of the purification air passage. apparatus. 分離口が集合口よりも下に設けられたことを特徴とする請求項4記載の空気清浄装置。  The air purifier according to claim 4, wherein the separation port is provided below the collecting port. 滞留室内部に通気口より分解手段方向に空気の流れを変える変向ルーバーを設けたことを特徴とする請求項1ないし5のいずれか1項記載の空気清浄装置。  6. The air purifier according to claim 1, further comprising a turning louver that changes the flow of air in the direction of the disassembling means from the vent in the staying chamber.
JP33143397A 1997-12-02 1997-12-02 Air purifier Expired - Fee Related JP3834972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33143397A JP3834972B2 (en) 1997-12-02 1997-12-02 Air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33143397A JP3834972B2 (en) 1997-12-02 1997-12-02 Air purifier

Publications (2)

Publication Number Publication Date
JPH11165021A JPH11165021A (en) 1999-06-22
JP3834972B2 true JP3834972B2 (en) 2006-10-18

Family

ID=18243619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33143397A Expired - Fee Related JP3834972B2 (en) 1997-12-02 1997-12-02 Air purifier

Country Status (1)

Country Link
JP (1) JP3834972B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901849B2 (en) * 2008-12-15 2012-03-21 バブコック日立株式会社 Air purifier, analysis room, and air purification method
JP5204909B1 (en) * 2012-03-27 2013-06-05 株式会社長府製作所 Air conditioner

Also Published As

Publication number Publication date
JPH11165021A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
US8500882B2 (en) Air purifier having dehumidification function
KR20090058815A (en) Vehicle air purifier system
WO1990000081A1 (en) Exhaust smoke purifier
JPH06101864A (en) Air cleaner
JP3834972B2 (en) Air purifier
JPH11285611A (en) Dust removing and deodorizing apparatus
JP2007044432A (en) Deodorizer
WO2021076596A1 (en) Method and apparatus for air treatment employing catalyst material
JPS6030946A (en) Fan heater
JP2008144975A (en) Exhaust treatment system
JP3653930B2 (en) Air cleaner
JPH10113522A (en) Air cleaner
JP5101070B2 (en) Air conditioner and filter regeneration control method for air conditioner
JP6092733B2 (en) Equipment
JP4736616B2 (en) Deodorizer
JP2002126054A (en) Deodorizing device
JP2000217897A (en) Air purifying material and air purifying device using same
JP2006017425A (en) Air conditioner
JP4692149B2 (en) Deodorizer
JP2006263171A (en) Voc removing device
CN215809043U (en) Fresh air system for ventilation
JP2000350911A (en) Air cleaner
JP3834973B2 (en) Air purifier
KR20050080286A (en) Air cleaning system with ventilator
KR200375836Y1 (en) Air cleaning and ventilating unit for high filtering efficiency to polluted air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees