JP3653930B2 - Air cleaner - Google Patents

Air cleaner Download PDF

Info

Publication number
JP3653930B2
JP3653930B2 JP14751097A JP14751097A JP3653930B2 JP 3653930 B2 JP3653930 B2 JP 3653930B2 JP 14751097 A JP14751097 A JP 14751097A JP 14751097 A JP14751097 A JP 14751097A JP 3653930 B2 JP3653930 B2 JP 3653930B2
Authority
JP
Japan
Prior art keywords
adsorption
decomposition
catalyst
air
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14751097A
Other languages
Japanese (ja)
Other versions
JPH10337436A (en
Inventor
範幸 米野
祐 福田
克彦 宇野
寛 竹山
邦弘 菅
宏明 藤井
邦男 荻田
充 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP14751097A priority Critical patent/JP3653930B2/en
Publication of JPH10337436A publication Critical patent/JPH10337436A/en
Application granted granted Critical
Publication of JP3653930B2 publication Critical patent/JP3653930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は室内空気中の煙草の臭気や建材、壁、家具から発生するアルデヒドなどの揮発性有機化合物、燃焼機などから発生する一酸化炭素などの無機ガスで代表される汚染ガスを焼却、分解して除去する空気清浄機に関するものである。
【0002】
【従来の技術】
従来よりこの種の機能を有する空気清浄機としては、活性炭などの脱臭フィルタに空気中の臭い等の汚染ガスを吸着除去するもの、また触媒やオゾンによって汚染ガスを分解する構成のものがあった。
【0003】
さらに、脱臭フィルターを初期性能に再生する空気清浄機として特開平6−154302号公報に記載されている様なものが知られている。この装置は図10に示すように空気中の臭いを除去するための吸着式脱臭フィルタ1と送風手段2を備えた空気清浄機において、前記吸着式脱臭フィルタ1が臭い吸着によって性能低下が進む過程で、性能の初期化に近づけるため機体内でフィルタを中心とした循環サイクルを構成して、この循環フィルタには、循環用送風部3、ヒータ等の空気加熱部4、オゾン発生器とオゾン分解フィルタからなる臭い分解手段5を備え、加熱による臭い再放出→オゾンによる臭い分解→オゾン除去のサイクルで脱臭フィルタをリフレッシュする。
【0004】
また、吸着型熱分解触媒によって脱臭フィルターを初期性能に再生する空気清浄機として特開平8−52325号公報に記載されている様なものが知られている。この装置は図11に示すように、吸着型熱分解触媒層を表面に設けた脱臭ヒーター6と送風用ファン7からなり、送風用ファンにより吸着型熱分解触媒層に悪臭成分を吸着させ、次にヒータによって吸着型熱分解触媒層を活性温度まで加熱し吸着していた臭気成分を酸化分解し吸着型熱分解触媒層の吸着能力を再生するものである。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の脱臭フィルタを設けただけの空気清浄器では長時間使用すると脱臭フィルタの極細孔が臭い成分で塞がるため吸着脱臭能力が低下する。このため、一定期間ごとにフィルタの交換が必要であった。
【0006】
また、オゾン方式、触媒方式で連続的に汚染ガスを処理するには家庭用空気清浄機であっても1m3/分〜4m3/分の処理風量が必要のため規模の大きな装置が必要であった。
【0007】
また、特開平6−154302号公報のような方式では、循環路が必要であり装置が大きくなり、熱容量が大きくなるため加熱による分解方式や、触媒による分解に対しては処理時間が長くなるとともに、多くの電力量が必要となる。
【0008】
さらに特開平8−52325号公報に記載されている様な方式では、小型のヒータの場合、表面に担持できる吸着型熱分解触媒層の量が限られるため、建材、壁、家具から連続的に発生するアルデヒドなどの揮発性有機化合物を除去するためには頻繁に再生を行わなければならない。また、吸着型熱分解触媒の脱着温度が熱分解の触媒活性温度より低い物質では、ヒータの通電直後、脱着のみが起こり臭いが発生する課題があった。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために、空気中のホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスを選択的かつ発生量を十分に吸着するゼオライト等の吸着材でできた吸着手段と、前記吸着手段を加熱して吸着した汚染ガスを脱離させる電気ヒータ等の脱着手段と、前記吸着手段から脱着した汚染ガスを分解する表面温度が550℃以上の電気発熱体からなる分解手段を本体の通風路に配置し、送風手段によって吸着手段に汚染ガスを含む空気を送風する構成とし、通風路中の吸着手段と分解手段の間に絞り部を設け、前記分解手段は前記吸着手段よりも重力方向で上方に位置して分解室中に設け、前記分解室は吸気口と排気口を有し、かつ前記排気口が前記分解室の天井面よりも下に位置させて前記通風路中に設けたものである。
【0010】
上記発明によれば、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、送風手段のみを駆動し、本体外の空気を吸着手段に導き、吸着手段に吸着させる。吸着手段に所定量の汚染ガスが吸着すると、次に再生モードに入る。送風手段を停止または送風量を減じた後、分解手段を駆動し、脱着手段を駆動することで汚染ガスは吸着手段から脱着し、分解手段である高温の電気発熱体に接触し瞬間的に酸化され揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。吸着手段は元の状態に再生されるので再び汚染ガスを吸着することができ、吸着手段の交換などのメンテナンスを不要とすることができる。
【0011】
【発明の実施の形態】
本発明は空気中のホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスを選択的かつ発生量を十分に吸着するコルゲート形状にゼオライト等の吸着材でできた吸着手段と、前記吸着手段を加熱して吸着した汚染ガスを脱離させる電気発熱体等の脱着手段と、前記吸着手段から脱離した汚染ガスを分解する表面温度が550℃以上の電気発熱体からなる分解手段を本体の通風路に配置し、ファン等の送風手段によって吸着手段に汚染ガスを含む空気を送風する構成とし、通風路中の吸着手段と分解手段の間に絞り部を設け、前記分解手段は前記吸着手段よりも重力方向で上方に位置して分解室中に設け、前記分解室は吸気口と排気口を有し、かつ前記排気口が前記分解室の天井面よりも下に位置させて前記通風路中に設けたものである。
【0012】
上記発明によれば、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、前記送風手段のみを駆動し、本体外の空気を前記吸着手段に導き、吸着手段に吸着させる。吸着手段に所定量の汚染ガスが吸着すると、次に再生モードに入る。送風手段を停止または送風量を減じた後、分解手段を駆動し、脱着手段を駆動することで汚染ガスは吸着手段から脱着し、分解手段である高温の電気発熱体に接触し瞬間的に酸化され揮発性有機化合物や一酸化炭素は水や二酸化炭素に分解される。吸着手段は元の状態に再生されるので再び汚染ガスを吸着することができ、吸着手段の交換などのメンテナンスを不要とすることができる。
【0013】
また、通風路中の吸着手段と分解手段の間に絞り部を設けたので、分解手段を小型にで きるため、電気発熱体の単位面積当たりの発熱量が大きくなり、同じ消費電力で電気発熱体や触媒の温度をより高温にできるため、再生モードで吸着手段から脱着した汚染ガスの酸化能力が大きくでき、再生時の臭いを抑えることができる。
【0014】
また、通風路中に、吸気口と排気口を持ち排気口が天井面よりも下にある分解室を設け、分解室中に分解手段を設置したので、再生モードで吸着手段から脱着した汚染ガスが吸気口から分解室中に入り、高温の電気発熱体や触媒で加熱され上昇気流となり分解室の天井面から排気口へ向かう流れを生じる事から、分解室で高温に滞留している時間が長くなり、再生モードで吸着手段から脱着した汚染ガスの酸化能力が大きくでき、再生時の臭いを抑える事ができる。
【0015】
また、分解手段を吸着手段よりも重力方向で上方に設置したので、脱着過程で発生した高温の汚染ガスは浮力で重力方向上方向に上昇してくるため、汚染ガスを効率よく分解手段で分解することができる。
【0016】
また、分解手段としてパンチング板に白金等の触媒を担持する構成においては吸着モードで、ホルムアルデヒドのように常温で触媒による酸化反応を起こす物質を吸着し、再生モードで吸着手段から脱着した汚染ガスを水や二酸化炭素に分解することができる。
【0017】
さらに、分解手段が電気発熱体と白金等の触媒の場合は、再生モードで電気発熱体によって、触媒温度が活性温度の190℃以上になるように触媒を加熱し、吸着手段から脱着した汚染ガスを触媒表面で水や二酸化炭素に分解することができる。
【0018】
また、分解手段が触媒を担持した電気発熱体の場合は分解手段の熱容量が小さいため触媒を電気発熱体で間接的に加熱するより短時間に触媒温度が活性温度の190℃以上にすることができ再生初期の臭いを抑える事ができる。
【0019】
さらに、分解手段がチタニア等の半導体からなる光触媒と紫外線灯のような波長が400nmの紫外線照射手段からなる場合、再生モードで吸着手段から脱着した汚染ガスは、熱分解ではなく、光触媒作用で二酸化炭素に分解することができ再生時の温度上昇を抑えることができる。
【0020】
【実施例】
(実施例1)
図1は本発明の実施例1の空気清浄機の断面図である。10は通風路11を有する本体であり、前記通風路11には空気中のホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスを選択的に吸着するコルゲート形状にゼオライト等の吸着材でできた吸着手段12と、前記吸着手段12を吸着材の脱着温度である200℃加熱して吸着した汚染ガスを脱着させる電気ヒータ等の脱着手段13と、前記吸着手段12から脱着した汚染ガスを分解する表面温度が550℃以上の電気発熱体14からなる分解手段15を配置し、ファン等の送風手段16によって前記吸着手段12に汚染ガスを含む本体10外の空気を送風する構成としたものである。
【0021】
上記発明によれば、部屋の空気に含まれる汚染ガスを除去する吸着モードの際は、前記送風手段16のみを駆動し、本体外の空気を前記吸着手段12に導き、吸着手段12に吸着させる。吸着手段12に所定量の汚染ガスが吸着すると、次に再生モードに入る。送風手段16を停止または送風量を減じた後、分解手段15を駆動し、脱着手段13を駆動することで汚染ガスは吸着手段12の温度上昇とともに吸着手段12から脱着、浮力によって上昇する。次に分解手段15である高温の電気発熱体14に接触し瞬間的に(表1)に示すような550℃以上となり揮発性有機化合物は水や二酸化炭素に熱分解される。吸着手段12は元の状態に再生されるので再び汚染ガスを吸着することができ、吸着手段の交換などのメンテナンスを不要とすることができる。
【0022】
【表1】

Figure 0003653930
【0023】
なお、吸着手段12が独立しているため、家具や建材から発生する揮発性有機化合物のように室内で常に発生しているようなものでも吸着材の大きさを最適に設定できる。
【0024】
なお、図1に示すように分解手段15を吸着手段12よりも重力方向で上方に設置した構成では、脱着過程で発生した高温の汚染ガスは浮力で重力方向上方向に上昇してくるため、汚染ガスを効率よく分解手段15で分解することができる。
【0025】
なお、脱着手段13としては真空ポンプのような減圧手段を用いても同様の効果が得られる。
【0026】
(実施例2)
図2は、本発明の実施例2の空気清浄機の断面図である。
【0027】
実施例1と異なる点は分解手段17として、パンチング板に白金等の貴金属を担持した触媒18を使用したところである。
【0028】
上記構成においては吸着モードで、ホルムアルデヒドのように常温で触媒による酸化反応を起こす物質を選択的に吸着する。次に再生モードで吸着手段12から脱離した汚染ガスを触媒18で水や二酸化炭素に低消費電力で分解することができる。
【0029】
(実施例3)
図3は、本発明の実施例3の空気清浄機の断面図である。
【0030】
実施例1と異なる点は分解手段19が電気発熱体20とパンチング板に白金等の貴金属を担持した触媒21としたところである。
【0031】
吸着モード終了後の再生モードでは、電気発熱体20によって、触媒温度が活性温度の190℃以上になるように触媒21を加熱し、脱着手段13を駆動し吸着手段12から脱着した汚染ガスを触媒21表面に導く。(表2)に示すような触媒の活性温度以上ではホルムアルデヒドやトルエンなどの揮発性有機化合物からなる汚染ガスは熱分解が起こり、少ない消費電力で水や二酸化炭素に分解することができる。
【0032】
【表2】
Figure 0003653930
【0033】
(実施例4)
図4は、本発明の実施例4の空気清浄機の断面図であり、図5は図4の分解手段の拡大図である。
【0034】
実施例1と異なる点は、分解手段22が電気発熱体23表面に白金等の貴金属を担持した触媒24を担持したところにある。
【0035】
上記構成において吸着モード終了後の再生モードでは、触媒24と電気発熱体23が一体化しており分解手段22の熱容量が小さいため触媒を電気発熱体で間接的に加熱するより短時間に触媒温度が活性温度の190℃以上にすることができ再生初期の臭いを抑えることができる。
【0036】
(実施例5)
図6は、本発明の実施例5の空気清浄機の断面図である。
【0037】
実施例1と異なる点は、分解手段25をパンチング板に白金等の貴金属を担持したチタニア等の半導体を担持した光触媒26と紫外線灯のような波長が400nmの紫外線照射手段27としたところである。
【0038】
吸着モード終了後の再生モードでは、吸着手段から脱着した汚染ガスは、熱分解ではなく、光触媒作用で二酸化炭素に分解することができ再生時の温度上昇を抑える事ができる。
【0039】
(実施例6)
図7は、本発明の実施例6の空気清浄機の断面図である。
【0040】
実施例1と異なる点は、通風路11中の吸着手段12と分解手段15の間に絞り部28を設けたところである。
【0041】
吸着モード終了後の再生モードでは、吸着手段12から脱着した汚染ガスは浮力によって通風路11を上昇するが、絞り部によって流れが絞られ、分解手段15に導かれる。上記構成では分解手段15は小型にできるため、電気発熱体14の単位面積当たりの発熱量が大きくなり、同じ消費電力で電気発熱体や触媒の温度をより高温にできるため、再生モードで吸着手段12から脱着した汚染ガスの酸化能力が大きくでき、再生時の臭いをより抑えることができる。
【0042】
なお、分解手段15は、電気発熱体と触媒または触媒を担持した電気発熱体であっても同様の効果を得ることができる。
【0043】
(実施例7)
図8は、本発明の実施例7の空気清浄機の断面図であり、図9は図8の分解室の拡大断面図である。
【0044】
実施例1と異なる点は、通風路11中に、吸気口29と排気口30を持ち前記排気口30が天井面31よりも下にある分解室32を設け、前記分解室32中に分解手段15を設置したところにある。
【0045】
上記構成では、吸着モード終了後の再生モードでは、吸着手段12から脱着した汚染ガス33は浮力によって通風路11を上昇し吸気口29から分解室32中に入り、高温の電気発熱体14からなる分解手段15で加熱され矢印で示す上昇気流34となり分解室の天井面から排気口へ向かう流れ35を生じる事から、分解室31で高温に滞留している時間が長くなり、汚染ガスの酸化能力が大きくでき、再生時の臭いを抑える事ができる。
【0046】
なお、分解手段15は、電気発熱体と触媒または触媒を担持した電気発熱体であっても同様の効果を得ることができる。
【0047】
【発明の効果】
以上説明したように本発明の空気清浄機は、以下に述べる効果を有する物である。
【0048】
(1)脱着手段により吸着手段から汚染ガスを脱着し、高温の電気発熱体からなる分解手段で揮発性有機化合物を熱分解することによって、吸着手段は元の状態に再生されるので再び汚染ガスを吸着することができ、吸着手段の交換などのメンテナンスを不要とする空気清浄機を実現できる。
【0049】
(2)分解手段として触媒を備えた構成においては、吸着手段から脱着したホルムアルデヒドのように常温で触媒による酸化反応を起こす汚染ガスを水や二酸化炭素に分解することができる。
【0050】
(3)分解手段が電気発熱体と白金等の触媒の場合は、再生モードで電気発熱体によって、触媒温度が活性温度となるよう加熱することで吸着手段から脱着した汚染ガスを熱分解できるので、少ない消費電力でメンテナンスを不要とする空気清浄機を実現できる。
【0051】
(4)分解手段が触媒を担持した電気発熱体の場合は短時間に触媒温度が活性温度の190℃以上にすることができ再生初期の臭いを抑えることができる。
【0052】
(5)分解手段が光触媒と紫外線照射手段からなる場合、光触媒作用で二酸化炭素に分解することができ再生時の温度上昇を抑えることができる。
【0053】
(6)通風路中の吸着手段と分解手段の間に絞り部を設けたので、電気発熱体の単位面積当たりの発熱量が大きくなり、再生時の臭いを抑えることができる。
【0054】
(7)通風路中に、吸気口と排気口を持ち排気口が天井面よりも下にある分解室を設け、分解室中に分解手段を設置したので、分解室で高温に滞留している時間が長くなり、再生時の臭いを抑えることができる。
【0055】
(8)分解手段を吸着手段よりも重力方向で上方に設置したので、脱着過程で発生した高温の汚染ガスは浮力で重力方向上方向に上昇してくるため、汚染ガスを効率よく分解手段で分解することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の空気清浄機の断面図
【図2】 本発明の実施例2の空気清浄機の断面図
【図3】 本発明の実施例3の空気清浄機の断面図
【図4】 本発明の実施例4の空気清浄機の断面図
【図5】 同空気清浄機の分解手段の拡大図
【図6】 本発明の実施例5の空気清浄機の断面図
【図7】 本発明の実施例6の空気清浄機の断面図
【図8】 本発明の実施例7の空気清浄機の断面図
【図9】 同空気清浄機の分解室の拡大図断面図
【図10】 従来の空気清浄機の断面図
【図11】 従来の空気清浄機の断面図
【符号の説明】
10 本体
11 通風路
12 吸着手段
13 脱着手段
14,20,23 電気発熱体
15,17,19,22 分解手段
16 送風手段
18 触媒
21 触媒
24 触媒
26 光触媒
27 紫外線照射手段
28 絞り部
29 吸気口
30 排気口
31 天井面
32 分解室[0001]
BACKGROUND OF THE INVENTION
The present invention incinerates and decomposes odors of cigarettes in indoor air, volatile organic compounds such as aldehyde generated from building materials, walls, furniture, and inorganic gases such as carbon monoxide generated from combustors. It is related with the air cleaner removed.
[0002]
[Prior art]
Conventionally, as an air purifier having this type of function, there is one that adsorbs and removes pollutant gases such as odors in the air on a deodorizing filter such as activated carbon, and one that decomposes pollutant gases with a catalyst or ozone. .
[0003]
Further, as an air cleaner for regenerating the deodorizing filter to the initial performance, there is known an air purifier described in JP-A-6-154302. As shown in FIG. 10, this apparatus is an air purifier having an adsorption deodorizing filter 1 for removing odors in the air and an air blowing means 2, and the adsorption deodorizing filter 1 undergoes a process in which the performance decreases due to odor adsorption. In order to bring the performance closer to initialization, a circulation cycle centered on a filter is configured in the machine body. The circulation filter includes a circulation air blower 3, an air heating unit 4 such as a heater, an ozone generator and ozone decomposition. Odor decomposition means 5 comprising a filter is provided, and the deodorizing filter is refreshed in a cycle of odor re-emission by heating → odor decomposition by ozone → ozone removal.
[0004]
Further, as an air purifier that regenerates a deodorizing filter to an initial performance by using an adsorption-type thermal decomposition catalyst, one described in Japanese Patent Laid-Open No. 8-52325 is known. As shown in FIG. 11, this apparatus comprises a deodorizing heater 6 provided with an adsorption-type pyrolysis catalyst layer on the surface and a blower fan 7. The blower fan adsorbs malodorous components to the adsorption-type pyrolysis catalyst layer, In addition, the adsorption-type pyrolysis catalyst layer is heated to an activation temperature by a heater to oxidatively decompose the adsorbed odor component to regenerate the adsorption ability of the adsorption-type pyrolysis catalyst layer.
[0005]
[Problems to be solved by the invention]
However, in the case of using the above-mentioned conventional air purifier with only the deodorizing filter, the adsorption / deodorizing ability is lowered because the pores of the deodorizing filter are blocked with odorous components when used for a long time. For this reason, it is necessary to replace the filter at regular intervals.
[0006]
In addition, in order to continuously treat polluted gases using ozone and catalyst systems, a large-scale apparatus was required even for household air purifiers because a processing air volume of 1 m3 / min to 4 m3 / min was required. .
[0007]
Further, in the method as disclosed in Japanese Patent Laid-Open No. 6-154302, a circulation path is required, the apparatus becomes large, and the heat capacity increases, so that the treatment time for the decomposition method by heating and the decomposition by the catalyst becomes longer. A lot of power is required.
[0008]
Furthermore, in the method as described in JP-A-8-52325, in the case of a small heater, the amount of the adsorption-type pyrolysis catalyst layer that can be supported on the surface is limited. Regeneration must be performed frequently to remove volatile organic compounds such as aldehydes that are generated. In addition, when the desorption temperature of the adsorption-type thermal decomposition catalyst is lower than the catalytic activation temperature of the thermal decomposition, there is a problem that immediately after the heater is energized, only desorption occurs and odor is generated.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an adsorption means made of an adsorbent such as zeolite that selectively adsorbs a generation amount of pollutant gas composed of volatile organic compounds such as formaldehyde and toluene in the air, and Desorption means such as an electric heater for desorbing contaminated gas adsorbed by heating the adsorption means, and decomposition means comprising an electric heating element having a surface temperature of 550 ° C. or more for decomposing the contaminated gas desorbed from the adsorption means Arranged in the ventilation path, and the air containing pollutant gas is blown to the adsorption means by the blowing means, and a constriction is provided between the adsorption means and the decomposition means in the ventilation path, and the decomposition means is more than the adsorption means. Located in the direction of gravity and provided in the decomposition chamber, the decomposition chamber has an intake port and an exhaust port, and the exhaust port is positioned below the ceiling surface of the decomposition chamber in the ventilation path provided Tamo It is.
[0010]
According to the above invention, in the adsorption mode for removing the pollutant gas contained in the room air, only the air blowing means is driven, the air outside the main body is guided to the adsorption means, and is adsorbed by the adsorption means. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means, the regeneration mode is entered next. After stopping the air blowing means or reducing the air flow rate, the decomposition means is driven, and the desorption means is driven, so that the pollutant gas is desorbed from the adsorption means and comes into contact with the high-temperature electric heating element, which is the decomposition means, and instantly oxidizes. Volatile organic compounds and carbon monoxide are decomposed into water and carbon dioxide. Since the adsorption means is regenerated to the original state, the contaminated gas can be adsorbed again, and maintenance such as replacement of the adsorption means can be eliminated.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an adsorbing means made of an adsorbent such as zeolite in a corrugated shape that selectively adsorbs a pollutant gas composed of volatile organic compounds such as formaldehyde and toluene in the air, and heats the adsorbing means. A desorption means such as an electric heating element for desorbing the adsorbed pollutant gas and an electric heating element having a surface temperature of 550 ° C. or higher for decomposing the polluted gas desorbed from the adsorbing means And the air containing pollutant gas is blown to the adsorbing means by the air blowing means such as a fan, and a throttle part is provided between the adsorbing means and the decomposing means in the ventilation path, and the decomposing means is more than the adsorbing means. Located in the direction of gravity and provided in the decomposition chamber, the decomposition chamber has an intake port and an exhaust port, and the exhaust port is positioned below the ceiling surface of the decomposition chamber in the ventilation path provided Tamo It is.
[0012]
According to the above invention, in the adsorption mode for removing the pollutant gas contained in the room air, only the air blowing means is driven, the air outside the main body is guided to the adsorption means, and is adsorbed by the adsorption means. When a predetermined amount of contaminated gas is adsorbed on the adsorbing means, the regeneration mode is entered next. After stopping the air blowing means or reducing the air flow rate, the decomposition means is driven, and the desorption means is driven, so that the pollutant gas is desorbed from the adsorption means and comes into contact with the high-temperature electric heating element, which is the decomposition means, and instantly oxidizes. Volatile organic compounds and carbon monoxide are decomposed into water and carbon dioxide. Since the adsorption means is regenerated to the original state, the contaminated gas can be adsorbed again, and maintenance such as replacement of the adsorption means can be eliminated.
[0013]
Further, since there is provided a throttle portion between the suction means and the separating means in the air passage, for as possible out of the decomposition unit in a small amount of heat generated increases per unit area of the electric heating element, electric heating with the same power consumption Since the temperature of the body and the catalyst can be made higher, the ability to oxidize the pollutant gas desorbed from the adsorption means in the regeneration mode can be increased, and the smell during regeneration can be suppressed.
[0014]
In addition, since a disassembly chamber with an intake port and an exhaust port in the ventilation path and an exhaust port below the ceiling surface is provided, and the disassembly means is installed in the decomposition chamber, the polluted gas desorbed from the adsorption means in the regeneration mode Enters the decomposition chamber from the intake port, is heated by a high-temperature electric heating element or catalyst, and becomes a rising airflow, creating a flow from the ceiling surface of the decomposition chamber to the exhaust port. The oxidization capability of the polluted gas desorbed from the adsorption means in the regeneration mode can be increased, and the odor during regeneration can be suppressed.
[0015]
In addition, since the decomposition means is installed above the adsorption means in the direction of gravity, the hot pollutant gas generated during the desorption process rises upward in the direction of gravity due to buoyancy, so the pollution gas is efficiently decomposed by the decomposition means. can do.
[0016]
Also, in a configuration in which a catalyst such as platinum is supported on a punching plate as a decomposition means, an adsorption mode is used to adsorb a substance that causes an oxidation reaction by a catalyst at room temperature, such as formaldehyde, and a polluted gas desorbed from the adsorption means in a regeneration mode. It can be decomposed into water and carbon dioxide.
[0017]
Further, when the decomposition means is an electric heating element and a catalyst such as platinum, the contaminated gas desorbed from the adsorption means by heating the catalyst so that the catalyst temperature becomes 190 ° C. or higher of the activation temperature in the regeneration mode. Can be decomposed into water and carbon dioxide on the catalyst surface.
[0018]
In the case where the decomposition means is an electric heating element carrying a catalyst, the heat capacity of the decomposition means is small, so that the catalyst temperature may be increased to 190 ° C. or higher of the activation temperature in a shorter time than when the catalyst is indirectly heated by the electric heating element. And can suppress the smell of the initial stage of playback.
[0019]
Further, when the decomposition means comprises a photocatalyst made of a semiconductor such as titania and an ultraviolet irradiation means having a wavelength of 400 nm such as an ultraviolet lamp, the pollutant gas desorbed from the adsorption means in the regeneration mode is not thermally decomposed but is oxidized by photocatalysis. It can be decomposed into carbon and temperature rise during regeneration can be suppressed.
[0020]
【Example】
(Example 1)
1 is a cross-sectional view of an air cleaner according to a first embodiment of the present invention. Reference numeral 10 denotes a main body having a ventilation path 11, and the ventilation path 11 is made of an adsorbent such as zeolite in a corrugated shape that selectively adsorbs a pollutant gas composed of volatile organic compounds such as formaldehyde and toluene in the air. The adsorption means 12, the desorption means 13 such as an electric heater for desorbing the adsorbed contaminant gas by heating the adsorbent means 200 ° C. which is the desorption temperature of the adsorbent, and the contaminated gas desorbed from the adsorption means 12 are decomposed. A disassembling means 15 comprising an electric heating element 14 having a surface temperature of 550 ° C. or more is arranged, and air outside the main body 10 containing pollutant gas is blown to the adsorption means 12 by a blowing means 16 such as a fan. .
[0021]
According to the above invention, in the adsorption mode for removing the pollutant gas contained in the room air, only the air blowing means 16 is driven, the air outside the main body is guided to the adsorption means 12 and adsorbed by the adsorption means 12. . When a predetermined amount of contaminated gas is adsorbed on the adsorbing means 12, the regeneration mode is entered next. After stopping the air blowing means 16 or reducing the air flow rate, the decomposing means 15 is driven and the desorption means 13 is driven so that the pollutant gas is desorbed from the adsorption means 12 and rises by buoyancy as the temperature of the adsorption means 12 rises. Next, it comes into contact with the high-temperature electric heating element 14 as the decomposition means 15 and instantaneously reaches 550 ° C. or higher as shown in (Table 1), and the volatile organic compound is thermally decomposed into water and carbon dioxide. Since the adsorbing means 12 is regenerated to the original state, the contaminated gas can be adsorbed again, and maintenance such as replacement of the adsorbing means can be made unnecessary.
[0022]
[Table 1]
Figure 0003653930
[0023]
In addition, since the adsorption | suction means 12 are independent, even if what is always generate | occur | producing indoors like the volatile organic compound which generate | occur | produces from furniture and building materials, the magnitude | size of an adsorbent can be set optimally.
[0024]
As shown in FIG. 1, in the configuration in which the decomposition means 15 is installed above the adsorption means 12 in the gravity direction, the high-temperature pollutant gas generated in the desorption process rises upward in the gravity direction by buoyancy. The contaminated gas can be efficiently decomposed by the decomposition means 15.
[0025]
The same effect can be obtained by using a decompression means such as a vacuum pump as the desorption means 13.
[0026]
(Example 2)
FIG. 2 is a cross-sectional view of the air cleaner according to the second embodiment of the present invention.
[0027]
The difference from Example 1 is that a catalyst 18 having a punching plate supporting a noble metal such as platinum is used as the decomposition means 17.
[0028]
In the above configuration, in the adsorption mode, a substance that causes an oxidation reaction by a catalyst at room temperature, such as formaldehyde, is selectively adsorbed. Next, the contaminated gas desorbed from the adsorption means 12 in the regeneration mode can be decomposed into water or carbon dioxide by the catalyst 18 with low power consumption.
[0029]
(Example 3)
FIG. 3 is a cross-sectional view of the air cleaner according to the third embodiment of the present invention.
[0030]
The difference from the first embodiment is that the decomposition means 19 is an electric heating element 20 and a catalyst 21 having a punching plate carrying a noble metal such as platinum.
[0031]
In the regeneration mode after completion of the adsorption mode, the electric heating element 20 heats the catalyst 21 so that the catalyst temperature becomes 190 ° C. or higher of the activation temperature, drives the desorption means 13, and removes the polluted gas desorbed from the adsorption means 12. 21 Lead to the surface. Above the activation temperature of the catalyst as shown in Table 2, the polluted gas composed of volatile organic compounds such as formaldehyde and toluene undergoes thermal decomposition and can be decomposed into water and carbon dioxide with low power consumption.
[0032]
[Table 2]
Figure 0003653930
[0033]
(Example 4)
4 is a sectional view of an air cleaner according to a fourth embodiment of the present invention, and FIG. 5 is an enlarged view of the disassembling means of FIG.
[0034]
The difference from Example 1 is that the decomposition means 22 carries a catalyst 24 carrying a noble metal such as platinum on the surface of the electric heating element 23.
[0035]
In the above-described configuration, in the regeneration mode after completion of the adsorption mode, the catalyst 24 and the electric heating element 23 are integrated, and the thermal capacity of the decomposition means 22 is small, so that the catalyst temperature is reduced in a shorter time than indirectly heating the catalyst with the electric heating element. The activation temperature can be raised to 190 ° C. or higher, and the odor at the initial stage of regeneration can be suppressed.
[0036]
(Example 5)
FIG. 6 is a cross-sectional view of an air cleaner according to a fifth embodiment of the present invention.
[0037]
The difference from the first embodiment is that the decomposition means 25 is a photocatalyst 26 carrying a semiconductor such as titania carrying a noble metal such as platinum on a punching plate and an ultraviolet irradiation means 27 having a wavelength of 400 nm such as an ultraviolet lamp.
[0038]
In the regeneration mode after completion of the adsorption mode, the polluted gas desorbed from the adsorption means can be decomposed into carbon dioxide by photocatalysis rather than thermal decomposition, and the temperature rise during regeneration can be suppressed.
[0039]
(Example 6)
FIG. 7 is a cross-sectional view of an air cleaner according to a sixth embodiment of the present invention.
[0040]
The difference from the first embodiment is that a throttle portion 28 is provided between the suction means 12 and the disassembling means 15 in the ventilation path 11.
[0041]
In the regeneration mode after completion of the adsorption mode, the polluted gas desorbed from the adsorption unit 12 rises in the ventilation path 11 by buoyancy, but the flow is throttled by the throttle unit and guided to the decomposition unit 15. In the above configuration, since the disassembling means 15 can be reduced in size, the amount of heat generated per unit area of the electric heating element 14 can be increased, and the temperature of the electric heating element and catalyst can be increased with the same power consumption. The oxidizing ability of the polluted gas desorbed from 12 can be increased, and the odor during regeneration can be further suppressed.
[0042]
The decomposition means 15 can obtain the same effect even if it is an electric heating element and a catalyst or an electric heating element carrying a catalyst.
[0043]
(Example 7)
8 is a cross-sectional view of an air cleaner according to a seventh embodiment of the present invention, and FIG. 9 is an enlarged cross-sectional view of the decomposition chamber of FIG.
[0044]
The difference from the first embodiment is that a decomposition chamber 32 having an intake port 29 and an exhaust port 30 in the ventilation path 11 and having the exhaust port 30 below the ceiling surface 31 is provided in the ventilation path 11. 15 is in place.
[0045]
In the above configuration, in the regeneration mode after the end of the adsorption mode, the polluted gas 33 desorbed from the adsorption means 12 rises through the ventilation path 11 by buoyancy and enters the decomposition chamber 32 from the intake port 29, and consists of the high-temperature electric heating element 14. Since it is heated by the decomposition means 15 and becomes an ascending air flow 34 shown by an arrow, a flow 35 from the ceiling surface of the decomposition chamber to the exhaust port is generated. Can be increased and the odor during reproduction can be suppressed.
[0046]
The decomposition means 15 can obtain the same effect even if it is an electric heating element and a catalyst or an electric heating element carrying a catalyst.
[0047]
【The invention's effect】
As described above, the air cleaner of the present invention has the following effects.
[0048]
(1) By desorbing the pollutant gas from the adsorbing means by the desorbing means and thermally decomposing the volatile organic compound by the decomposition means comprising a high-temperature electric heating element, the adsorbing means is regenerated to its original state. Can be adsorbed, and an air cleaner that does not require maintenance such as replacement of the adsorbing means can be realized.
[0049]
(2) In a configuration provided with a catalyst as the decomposition means, a pollutant gas that causes an oxidation reaction by the catalyst at room temperature, such as formaldehyde desorbed from the adsorption means, can be decomposed into water or carbon dioxide.
[0050]
(3) When the decomposition means is an electric heating element and a catalyst such as platinum, the pollutant gas desorbed from the adsorption means can be thermally decomposed by heating the electric heating element so that the catalyst temperature becomes the active temperature in the regeneration mode. An air purifier that requires less power and does not require maintenance can be realized.
[0051]
(4) When the decomposition means is an electric heating element carrying a catalyst, the catalyst temperature can be raised to the activation temperature of 190 ° C. or higher in a short time, and the odor at the initial stage of regeneration can be suppressed.
[0052]
(5) When the decomposing means comprises a photocatalyst and an ultraviolet irradiation means, it can be decomposed into carbon dioxide by photocatalytic action, and an increase in temperature during regeneration can be suppressed.
[0053]
(6) is provided with the throttle portion between the suction means and the separating means in the air passage, the amount of heat generated per unit area of the electrical heating element is increased, it is possible to suppress the odor of the playback.
[0054]
(7) in the air passage, the decomposition chamber outlet having an exhaust port and the intake port is below the ceiling surface is provided, since the installed decomposing means during the decomposition chamber, remaining in the high temperature cracking chamber The time becomes longer and the odor during playback can be suppressed.
[0055]
(8) Since the decomposition means is disposed above gravity direction than the adsorption means, because the contamination gas having a high temperature generated in the desorption process will come to rise in the gravity direction improvement direction by buoyancy, the contaminated gas efficiently separating means Can be disassembled.
[Brief description of the drawings]
1 is a cross-sectional view of an air cleaner according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of an air cleaner according to a second embodiment of the present invention. FIG. 3 is a cross-sectional view of an air cleaner according to a third embodiment of the present invention. FIG. 4 is a sectional view of an air cleaner according to a fourth embodiment of the present invention. FIG. 5 is an enlarged view of a disassembling means of the air cleaner. FIG. 6 is a sectional view of an air cleaner according to a fifth embodiment of the present invention. 7 is a sectional view of an air cleaner according to a sixth embodiment of the present invention. FIG. 8 is a sectional view of an air cleaner according to the seventh embodiment of the present invention. FIG. 9 is an enlarged sectional view of a decomposition chamber of the air cleaner. Fig. 10 Cross section of a conventional air purifier [Fig. 11] Cross section of a conventional air purifier [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Main body 11 Ventilation path 12 Adsorption means 13 Desorption means 14, 20, 23 Electric heating element 15, 17, 19, 22 Decomposition means 16 Blower means 18 Catalyst 21 Catalyst 24 Catalyst 26 Photocatalyst 27 Ultraviolet irradiation means 28 Restriction part 29 Inlet 30 Exhaust port 31 Ceiling surface 32 Decomposition chamber

Claims (2)

通風路を有する本体と、前記通風路に配置した空気中の汚染ガスを吸着する吸着手段と、前記吸着手段で吸着した汚染ガスを脱着させる脱着手段と、前記吸着手段から脱着した汚染ガスを分解する分解手段と、前記吸着手段に空気を送風する送風手段とを備え、通風路中の吸着手段と分解手段の間に絞り部を設け、前記分解手段は前記吸着手段よりも重力方向で上方に位置して分解室中に設け、前記分解室は吸気口と排気口を有し、かつ前記排気口が前記分解室の天井面よりも下に位置させて前記通風路中に設けたことを特徴とする空気清浄機。A main body having a ventilation path, an adsorption means for adsorbing pollutant gas in the air arranged in the ventilation path, a desorption means for desorbing the contaminated gas adsorbed by the adsorption means, and decomposing the contaminated gas desorbed from the adsorption means Disassembling means and a blowing means for blowing air to the adsorption means, and a throttle portion is provided between the adsorption means and the decomposition means in the ventilation path, and the decomposition means is located above the adsorption means in the direction of gravity. It is located in the decomposition chamber, the decomposition chamber has an intake port and an exhaust port, and the exhaust port is positioned below the ceiling surface of the decomposition chamber and is provided in the ventilation path. And air purifier. 分解手段は電気発熱体、または触媒、または電気発熱体と触媒、または触媒を担持した電気発熱体、または光触媒と紫外線照射手段であることを特徴とする請求項1記載の空気清浄機。 2. The air cleaner according to claim 1, wherein the decomposition means is an electric heating element or a catalyst, or an electric heating element and a catalyst, an electric heating element carrying a catalyst, or a photocatalyst and an ultraviolet irradiation means .
JP14751097A 1997-06-05 1997-06-05 Air cleaner Expired - Fee Related JP3653930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14751097A JP3653930B2 (en) 1997-06-05 1997-06-05 Air cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14751097A JP3653930B2 (en) 1997-06-05 1997-06-05 Air cleaner

Publications (2)

Publication Number Publication Date
JPH10337436A JPH10337436A (en) 1998-12-22
JP3653930B2 true JP3653930B2 (en) 2005-06-02

Family

ID=15431993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14751097A Expired - Fee Related JP3653930B2 (en) 1997-06-05 1997-06-05 Air cleaner

Country Status (1)

Country Link
JP (1) JP3653930B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007029639A (en) * 2005-07-29 2007-02-08 Central Japan Railway Co Air cleaner
EP2144685A4 (en) 2007-04-23 2012-01-25 Enbion Inc Air cleaner having regenerative filter, and method for regenerative of air cleaner filter
KR101598000B1 (en) * 2014-03-28 2016-02-29 주식회사 포시 Smoking booth
WO2021076596A1 (en) * 2019-10-14 2021-04-22 Bluezone Ip Holding Llc Method and apparatus for air treatment employing catalyst material
CN114811809A (en) * 2022-04-18 2022-07-29 浙江创特新材科技有限公司 Purifier module and air purification method

Also Published As

Publication number Publication date
JPH10337436A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US11730849B2 (en) Air treatment method
JP2008522822A (en) Photocatalyst protection method
JP2002276999A (en) Air ventilating-cleaning device
US20220133942A1 (en) Method and apparatus for air treatment including light baffle catalyst
JP3653930B2 (en) Air cleaner
WO2019152996A1 (en) System and method for air treatment
US20210108810A1 (en) Method and apparatus for air treatment employing catalyst material
JP2002238981A (en) Air cleaning device
JP2000217897A (en) Air purifying material and air purifying device using same
JP6092733B2 (en) Equipment
JP2004267360A (en) Apparatus and method for removing volatile organic compound
JPH11155937A (en) Air cleaning device
JPH11156138A (en) Air cleaner
JP2000146236A (en) Air cleaner and air conditioner
JP3769939B2 (en) Air purifier
JPH11267457A (en) Air cleaner
JP3834972B2 (en) Air purifier
JP2000015036A (en) Air cleaning apparatus
KR102388946B1 (en) Harmful gas removal device using zeolite
JP2000350910A (en) Air cleaner
JP2002011087A (en) Air purifying device
JP2000350911A (en) Air cleaner
JP2001178803A (en) Air cleaner and method of cleaning air
JPH11128648A (en) Air purifying device
JP3549574B2 (en) Deodorizing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees