JP3834957B2 - Manufacturing method of light metal alloy forged products - Google Patents

Manufacturing method of light metal alloy forged products Download PDF

Info

Publication number
JP3834957B2
JP3834957B2 JP26388897A JP26388897A JP3834957B2 JP 3834957 B2 JP3834957 B2 JP 3834957B2 JP 26388897 A JP26388897 A JP 26388897A JP 26388897 A JP26388897 A JP 26388897A JP 3834957 B2 JP3834957 B2 JP 3834957B2
Authority
JP
Japan
Prior art keywords
magnesium
phase
light metal
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26388897A
Other languages
Japanese (ja)
Other versions
JPH11100632A (en
Inventor
誠 藤田
幸男 山本
和夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26388897A priority Critical patent/JP3834957B2/en
Publication of JPH11100632A publication Critical patent/JPH11100632A/en
Application granted granted Critical
Publication of JP3834957B2 publication Critical patent/JP3834957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、軽金属合金、特に合金成分としてアルミニウムを含有するマグネシウム合金の成形性に優れた軽金属合金鍛造製品の製造方法に関する。
【0002】
【従来の技術】
アルミニウムまたはマグネシウムを母材とする軽金属合金、特にアルミニウムを合金成分とするマグネシウム合金は軽量でかつ鍛造等の塑性加工を施すことにより所定の機械的強度を確保できる素材として注目されている。しかしながら、通常の溶解鋳造法で型内に鋳込んだ鋳造品は鍛造等の塑性加工性に欠け、所定の機械的強度を確保するのが難しい。
【0003】
【発明が解決しようとする課題】
そこで、アルミニウムおよびマグネシムを含有する軽金属合金においてかかる塑性加工性に欠ける原因を探求すると、第1に、アルミニウムおよびマグネシムが併存する場合は粒界にAl12Mg17で示される化合物が生成し、これが塑性加工性に影響を与える。他方、溶解鋳造法で鋳込んだ鋳造品にはマグネシム初晶α相がないが、固相/液相が共存する半溶融状態で射出成形した成形品にはマグネシム初晶α相が存在する。したがって、この初晶α相の存否が上記AlMg化合物の影響を緩和し、塑性加工性の向上に影響を与えるものと思われる。
第2に、上記マグネシウムの初晶α相の粒径は固相/液相比率である固相率が小さくなるに伴い小さくなるが、それだけでは塑性加工性の向上はそれほど認められない。しかしながら、均質化熱処理に付する場合、短時間処理で塑性加工性が著しく向上することが見出された。これは溶解鋳造法では認められなかった効果である。
【0004】
そこで、本発明の第1の目的は、塑性加工性を向上させるマグネシウムの初晶α相を有する軽金属合金射出成形材およびその製造方法並びに軽合金鍛造製品を提供することにある。
本発明の第2の目的は均質化熱処理により塑性加工性を向上させることができる軽金属合金射出成形材およびその製造方法並びに軽合金鍛造製品を提供することにある。
【0005】
【問題を解決するための手段】
上記目的を達成するため、本発明は母材がマグネシウムであって、合金成分として少なくともアルミニウム5質量%以上を含有する軽金属合金を固相/液相が共存する半溶融状態であって固相率70%以下の半溶融状態とした後、射出成形して平均結晶粒径200μm以下並びにマグネシウム初晶α相が粒径120μm以下の成形物となし、その成形物を300〜500℃×30分〜10時間の範囲内で均質化熱処理して、射出成形品の粒界に存在するMgAl化合物を母材に固溶させ、該射出成形品を鍛造工程に付することを特徴とする軽金属合金鍛造製品の製造方法を提供するものである。
マグネシウムの初晶α相を生成させるためには射出成形を半溶融射出成形法に基づいて行う必要がある。ここで、半溶融射出成形法による射出成形とは、固相/液相が共存する半溶融状態とした後、射出成形することをいう。
【0006】
母材がマグネシウムである場合は、合金成分として少なくともアルミニウム5質量%以上を含有し、平均結晶粒径200μm以下であるのが好ましい。
アルミニウムが5質量%未満では、所定の機械強度が得られないからである。したがって、本発明において好ましいマグネシウム合金としては、ASTM規格のAZ61,AZ80,AZ91等、Mg−Al−Zn系合金が挙げられる。また、平均結晶粒径が200μm以上では塑性加工性の一つである鍛造時の限界据え込み率50%以下となるためである。
【0007】
特に、マグネシウム初晶α相が粒径120μm以下であって、均質化熱処理にて実質的にMgAl化合物を母材に固溶してなる射出成形材は従来の溶解鋳造法では得られなかった成形性の向上が認められ(図1参照)、射出成形材を直接鍛造成形に付すことが可能で、鍛造に至るプロセスを簡略化することができる。
【0009】
本発明方法は、特に軽金属合金が母材がマグネシウムであって、合金成分として少なくともアルミニウム5質量%以上を含有する場合に有効であり、固相率70%以下の半溶融状態で射出成形されると、マグネシウム初晶α相が粒径120μm以下となり、均質化熱処理効果が発揮されるようになる(図1参照)。
【0010】
均質化熱処理の条件は射出成形品の粒界に存在するMgAl化合物を母材に固溶させるに十分な300〜500℃×30分〜10時間の範囲内で選ばれる。すなわち、MgAl化合物の粒径及び(合金成分に関係する)量、成形品の質量などを考慮すべきである。
【0011】
本発明によって得られる軽金属合金射出成形材は限界据込み率60%以上の成形性を有するので、直接鍛造工程に付し軽合金鍛造製品を製造することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
以下の組成を有するAZ80のマグネシウム合金を用意し、図3に示す半溶融射出成形機(型式:JLM−450E,株式会社日本製鋼所製)を用いて次の条件下に射出成形を行った。この射出成形機は成形材料の固相線温度より上であって液相線温度より下の温度にスクリュー押出機中で合金を加熱して半溶融状態とし、高速射出機構により金型キャビティ内にショットするものである。
【0013】
【表1】
マグネシウム合金組成
(単位:質量%)
Al Zn Mn Fe Si Cu Ni Mg
合金A 8.1 0.45 0.27 0.0018 0.03 0.0025 0.0009 Bal.
【0014】
【表2】

Figure 0003834957
【0015】
マグネシウム合金は切削して切粉状となし、ホッパーに投入されるが、固相率(固相/液相)はシリンダー内の加熱温度で調整した。
種々の固相率における射出成形品の初晶α相の成否を顕微鏡写真で確認するとともにその平均粒径を測定した。結果は以下の表3の通りである。
【0016】
また、上記射出成形したままの材料と均質化熱処理(400℃×180分間)後空冷した材料とを以下の鍛造成形性評価方法により試験した。その結果、固相率70%以下で初晶α相120μm以下となり、固相率の低下とともに初晶α相の粒径は小さくなるが、成形性の向上はほとんど見られない。しかしながら、初晶α相が120μm以下から均質化熱処理効果が発揮され、初晶α相の粒径が小さくなる程その向上は著しいことが分かった。
上記鍛造成形性評価方法としては、円柱状テストピースを用いた据え込み試験により求めた限界据え込み率により評価する方法を用いた。即ち、直径16mm、高さ24mmの円柱状テストピースを、高さ方向に据え込み鍛造し、テストピースの割れが生じる時の高さHを測定し、以下の式(I)
【数1】
限界据え込み率(%)=((24−H)/24)×100 (I)
より限界据え込み率を求めて評価した。
【0017】
【表3】
Figure 0003834957
なお、第1成形性とは均質化熱処理前の300℃における成形性(限界据え込み率)をいい、第2成形性とは均質化熱処理後の300℃における成形性(限界据え込み率)をいう。
【0018】
以上の結果をグラフにすると図1に示す通りである。また、均質化熱処理前後の成形性の変化を固相率10%と70%の場合と同一組成のマグネシウム合金を連続鋳造した場合とを比較すると図2に示す通りである。すなわち、本発明以外では初晶α相の存在が認められないので、均質化熱処理の効果は認められず、本発明の場合でも固相率70%以下で均質化熱処理効果が発揮され始め、固相率が低下するぼど初晶α相の粒径が小さくなり、次第に成形性が向上することが認められる。
【0019】
上記マグネシウム合金を用い、固相率10%で射出成形した半溶融射出成形材A(図4)、固相率70%で射出成形した半溶融射出成形材B(図5)、ダイカストした場合C(図6)および金型鋳造(連続鋳造)した場合D(図7)を比較すると、前二者では初晶α相が認められるのに、後二者の場合は初晶α相が認められない。
【0020】
また、上記半溶融射出成形材AおよびBでは400℃で3時間という比較的短い均質化熱処理で粒界に存在するMg17Al12化合物がほとんど固溶して消失する(図8および図9参照)のに対し、金型鋳造材Dの場合は400℃で6時間均質化熱処理を施してもほとんど固溶しない(図10参照)。この結果は均質化熱処理の成形性の向上の存否に現れている。
【0021】
以上AZ80マグネシウム合金について種々の効果を確認したが、このマグネシウムの初晶α相はマグネシウムとアルミニウムを含有する軽合金を半溶融射出成形法で射出成形する限り晶出するものである。また、マグネシウムとアルミニウムを含有する軽金属合金を溶解鋳造する限り粒界に存在するMg17Al12化合物が析出する。したがって、本発明方法は広くマグネシウムとアルミニウムを含有する軽金属合金に適用可能である。
【0022】
【発明の効果】
以上説明したように本発明によれば、少なくともマグネシウムとアルミニウムとを含む軽合金において、射出成形によりマグネシウムの初晶α相が存在し、連続鋳造に比して優れた成形性を示す。特に上記初晶α相が120μm以下の場合は、粒界に析出するMg17Al12化合物が均質化熱処理により母材に固溶して消失するので、より優れた成形性を示すことになる。
このような本発明射出成形材を用いることにより鍛造成形が容易になり、マグネシウム合金の鍛造品を提供することができる。
【図面の簡単な説明】
【図1】 AZ80マグネシウム合金の半溶融射出成形における固相率と初晶α相の平均粒径、均質化熱処理前後の成形性の関係を示すグラフ。
【図2】 本発明による均質化熱処理前後の成形性に及ぼす効果と連続鋳造における均質化熱処理前後の成形性に及ぼす効果とを対比したグラフ。
【図3】 本発明で用いる半溶融成形機の概略図である。
【図4】 固相率10%で射出成形した半溶融射出成形材Aの組織を示す顕微鏡写真である。
【図5】 固相率70%で射出成形した半溶融射出成形材Bの組織を示す顕微鏡写真である。
【図6】 AZ80マグネシウム合金のダイカスト材の組織を示す顕微鏡写真である。
【図7】 AZ80マグネシウム合金の金型鋳造材の組織を示す顕微鏡写真である。
【図8】 図4で示す半溶融射出成形材を均質化熱処理した後の組織を示す顕微鏡写真である。
【図9】 図5で示す半溶融射出成形材を均質化熱処理した後の組織を示す顕微鏡写真である。
【図10】 図7で示す半溶融射出成形材を均質化熱処理した後の組織を示す顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a light metal alloy forged product excellent in formability of a light metal alloy, particularly a magnesium alloy containing aluminum as an alloy component.
[0002]
[Prior art]
A light metal alloy containing aluminum or magnesium as a base material, particularly a magnesium alloy containing aluminum as an alloy component, is attracting attention as a material that is lightweight and can secure a predetermined mechanical strength by performing plastic working such as forging. However, a cast product cast in a mold by a normal melt casting method lacks plastic workability such as forging, and it is difficult to ensure a predetermined mechanical strength.
[0003]
[Problems to be solved by the invention]
Therefore, when searching for the cause of lack of plastic workability in light metal alloys containing aluminum and magnesium, first, when aluminum and magnesium coexist, a compound represented by Al 12 Mg 17 is formed at the grain boundary. Affects plastic workability. On the other hand, a cast product cast by the melt casting method does not have a magnesium primary crystal α phase, but a molded product injection-molded in a semi-molten state in which a solid phase / liquid phase coexist has a magnesium primary crystal α phase. Therefore, it is considered that the presence or absence of the primary α phase relaxes the influence of the AlMg compound and affects the improvement of plastic workability.
Secondly, the particle size of the primary α phase of magnesium becomes smaller as the solid phase ratio, which is the solid phase / liquid phase ratio, becomes smaller. However, it has been found that when subjected to a homogenization heat treatment, the plastic workability is significantly improved in a short time treatment. This is an effect that was not recognized by the melt casting method.
[0004]
Accordingly, a first object of the present invention is to provide a light metal alloy injection-molded material having a primary α phase of magnesium that improves plastic workability, a method for producing the same, and a light alloy forged product.
A second object of the present invention is to provide a light metal alloy injection-molded material that can improve plastic workability by homogenization heat treatment, a method for producing the same, and a light alloy forged product.
[0005]
[Means for solving problems]
In order to achieve the above object, the present invention is a semi-molten state in which a solid metal / liquid phase coexists with a light metal alloy containing at least 5% by mass of aluminum as an alloy component and having a solid phase ratio After making into a semi-molten state of 70% or less , injection molding is performed to obtain a molded product having an average crystal grain size of 200 μm or less and a magnesium primary crystal α phase of 120 μm or less , and the molded product is 300 to 500 ° C. × 30 minutes to A light metal alloy forged product characterized by subjecting a MgAl compound present at the grain boundary of an injection molded product to a solid solution by subjecting it to a homogenization heat treatment within a range of 10 hours, and subjecting the injection molded product to a forging process. The manufacturing method of this is provided.
In order to generate the primary α phase of magnesium, it is necessary to perform injection molding based on a semi-melt injection molding method. Here, the injection molding by the semi-melt injection molding method refers to injection molding after a semi-molten state in which a solid phase / liquid phase coexist.
[0006]
When the base material is magnesium, it is preferable that the alloy component contains at least 5% by mass of aluminum and has an average crystal grain size of 200 μm or less.
This is because when the aluminum content is less than 5% by mass , a predetermined mechanical strength cannot be obtained. Therefore, preferred magnesium alloys in the present invention include Mg-Al-Zn alloys such as ASTM standards AZ61, AZ80, and AZ91. Further, if the average crystal grain size is 200 μm or more, the limit upsetting rate during forging, which is one of plastic workability, is 50% or less.
[0007]
In particular, an injection molding material in which the magnesium primary crystal α phase has a particle size of 120 μm or less and is substantially formed by dissolving a MgAl compound in a base material by homogenization heat treatment cannot be obtained by a conventional melt casting method. The improvement of the property is recognized (see FIG. 1), the injection molded material can be directly subjected to forging, and the process leading to forging can be simplified.
[0009]
The method of the present invention is particularly effective when the light metal alloy is made of magnesium as a base material and contains at least 5% by mass of aluminum as an alloy component, and is injection-molded in a semi-molten state with a solid phase ratio of 70% or less. Then, the magnesium primary crystal α phase has a particle size of 120 μm or less, and a homogenization heat treatment effect is exhibited (see FIG. 1).
[0010]
The conditions for the homogenization heat treatment are selected within a range of 300 to 500 ° C. × 30 minutes to 10 hours, which is sufficient to cause the MgAl compound present at the grain boundaries of the injection molded product to be dissolved in the base material. That is, the particle size and the amount (related to alloy components) of the MgAl compound, the mass of the molded product, and the like should be considered.
[0011]
Since the light metal alloy injection-molded material obtained by the present invention has a formability with a limit upsetting rate of 60% or more, a light alloy forged product can be produced by directly performing a forging process.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A magnesium alloy of AZ80 having the following composition was prepared and injection molded under the following conditions using a semi-melt injection molding machine (model: JLM-450E, manufactured by Nippon Steel Works, Ltd.) shown in FIG. This injection molding machine heats the alloy in a screw extruder to a temperature above the solidus temperature of the molding material and below the liquidus temperature to bring it into a semi-molten state, and into the mold cavity by a high-speed injection mechanism. It is something to be shot.
[0013]
[Table 1]
Magnesium alloy composition
(Unit:% by mass )
Al Zn Mn Fe Si Cu Ni Ni Mg
Alloy A 8.1 0.45 0.27 0.0018 0.03 0.0025 0.0009 Bal.
[0014]
[Table 2]
Figure 0003834957
[0015]
The magnesium alloy was cut into chips and put into a hopper, and the solid fraction (solid phase / liquid phase) was adjusted by the heating temperature in the cylinder.
The success or failure of the primary α phase of the injection molded product at various solid phase ratios was confirmed by micrographs and the average particle size was measured. The results are as shown in Table 3 below.
[0016]
Further, the material as it was injection-molded and the material that was air-cooled after homogenization heat treatment (400 ° C. × 180 minutes) were tested by the following forging formability evaluation method. As a result, the primary α phase is 120 μm or less when the solid phase ratio is 70% or less, and the particle size of the primary α phase decreases as the solid phase ratio decreases, but almost no improvement in moldability is observed. However, it was found that the effect of homogenization heat treatment was exhibited from the primary crystal α phase of 120 μm or less, and the improvement was remarkable as the particle size of the primary crystal α phase became smaller.
As the forge formability evaluation method, a method was used in which evaluation was performed based on a limit upsetting rate obtained by an upsetting test using a cylindrical test piece. That is, a cylindrical test piece having a diameter of 16 mm and a height of 24 mm is forged in the height direction, and the height H when the test piece is cracked is measured, and the following formula (I)
[Expression 1]
Limit upsetting rate (%) = ((24−H) / 24) × 100 (I)
The limit upsetting rate was calculated and evaluated.
[0017]
[Table 3]
Figure 0003834957
The first formability means formability at 300 ° C. before the homogenization heat treatment (limit upsetting rate), and the second formability means formability at 300 ° C. after the homogenization heat treatment (limit upsetting rate). Say.
[0018]
A graph of the above results is shown in FIG. Further, the change in formability before and after the homogenization heat treatment is as shown in FIG. 2 when comparing the case where the solid fraction is 10% and 70% and the case where a magnesium alloy having the same composition is continuously cast. That is, since the presence of the primary α phase is not observed except in the present invention, the effect of the homogenization heat treatment is not recognized. Even in the present invention, the effect of the homogenization heat treatment begins to be exhibited at a solid phase ratio of 70% or less. It can be seen that the grain size of the primary crystal α phase is decreased, and the moldability is gradually improved.
[0019]
Semi-molten injection molding material A (FIG. 4) injection-molded at a solid phase rate of 10% using the above magnesium alloy, semi-molten injection molding material B (FIG. 5) injection-molded at a solid phase rate of 70%, and C when die-casting Comparing (FIG. 6) and D (FIG. 7) in the case of mold casting (continuous casting), the first two cases show the primary α phase, but the second two show the primary α phase. Absent.
[0020]
In the semi-molten injection molding materials A and B, the Mg 17 Al 12 compound existing at the grain boundary is almost dissolved and disappears by a relatively short homogenization heat treatment at 400 ° C. for 3 hours (see FIGS. 8 and 9). On the other hand, in the case of the die casting material D, even if it is subjected to a homogenization heat treatment at 400 ° C. for 6 hours, it hardly dissolves (see FIG. 10). This result appears in the presence or absence of improvement in the formability of the homogenization heat treatment.
[0021]
As described above, various effects have been confirmed for the AZ80 magnesium alloy. This primary crystal α phase of magnesium is crystallized as long as a light alloy containing magnesium and aluminum is injection-molded by a semi-melt injection molding method. In addition, as long as a light metal alloy containing magnesium and aluminum is melt-cast, the Mg 17 Al 12 compound existing at the grain boundary is precipitated. Therefore, the method of the present invention is widely applicable to light metal alloys containing magnesium and aluminum.
[0022]
【The invention's effect】
As described above, according to the present invention, in a light alloy containing at least magnesium and aluminum, the primary crystal α phase of magnesium is present by injection molding and exhibits excellent formability compared to continuous casting. In particular, when the primary crystal α phase is 120 μm or less, the Mg 17 Al 12 compound precipitated at the grain boundaries dissolves and disappears in the base material by the homogenization heat treatment, and thus more excellent moldability is exhibited.
By using such an injection-molded material of the present invention, forging is facilitated, and a magnesium alloy forged product can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the solid phase ratio, the average particle diameter of primary α phase, and the formability before and after homogenization heat treatment in semi-melt injection molding of AZ80 magnesium alloy.
FIG. 2 is a graph comparing the effect on formability before and after homogenization heat treatment according to the present invention and the effect on formability before and after homogenization heat treatment in continuous casting.
FIG. 3 is a schematic view of a semi-melt molding machine used in the present invention.
FIG. 4 is a photomicrograph showing the structure of a semi-molten injection molded material A injection molded at a solid phase rate of 10%.
FIG. 5 is a photomicrograph showing the structure of a semi-molten injection molded material B injection molded at a solid phase ratio of 70%.
FIG. 6 is a photomicrograph showing the structure of a die-cast material of AZ80 magnesium alloy.
FIG. 7 is a photomicrograph showing the structure of an AZ80 magnesium alloy mold casting.
8 is a photomicrograph showing the structure after homogenization heat treatment of the semi-molten injection molded material shown in FIG.
9 is a photomicrograph showing the structure after homogenization heat treatment of the semi-molten injection molded material shown in FIG.
10 is a photomicrograph showing the structure after the homogenization heat treatment of the semi-molten injection molded material shown in FIG.

Claims (1)

母材がマグネシウムであって、合金成分として少なくともアルミニウム5質量%以上を含有する軽金属合金を固相/液相が共存する半溶融状態であって固相率70%以下の半溶融状態とした後、射出成形して平均結晶粒径200μm以下並びにマグネシウム初晶α相が粒径120μm以下の成形物となし、その成形物を300〜500℃×30分〜10時間の範囲内で均質化熱処理して、射出成形品の粒界に存在するMgAl化合物を母材に固溶させ、該射出成形品を鍛造工程に付することを特徴とする軽金属合金鍛造製品の製造方法。After a base metal is magnesium and a light metal alloy containing at least 5% by mass of aluminum as an alloy component is in a semi-molten state in which a solid phase / liquid phase coexist and a solid phase ratio is 70% or less, , Injection molded to form a molded product having an average crystal grain size of 200 μm or less and a magnesium primary crystal α-phase of 120 μm or less, and the molded product is subjected to a homogenization heat treatment within a range of 300 to 500 ° C. × 30 minutes to 10 hours. A method for producing a light metal alloy forged product , comprising dissolving a MgAl compound present in a grain boundary of an injection molded product in a base material and subjecting the injection molded product to a forging process.
JP26388897A 1997-09-29 1997-09-29 Manufacturing method of light metal alloy forged products Expired - Fee Related JP3834957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26388897A JP3834957B2 (en) 1997-09-29 1997-09-29 Manufacturing method of light metal alloy forged products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26388897A JP3834957B2 (en) 1997-09-29 1997-09-29 Manufacturing method of light metal alloy forged products

Publications (2)

Publication Number Publication Date
JPH11100632A JPH11100632A (en) 1999-04-13
JP3834957B2 true JP3834957B2 (en) 2006-10-18

Family

ID=17395655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26388897A Expired - Fee Related JP3834957B2 (en) 1997-09-29 1997-09-29 Manufacturing method of light metal alloy forged products

Country Status (1)

Country Link
JP (1) JP3834957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3551121B2 (en) 2000-04-07 2004-08-04 マツダ株式会社 Manufacturing method of light metal moldings

Also Published As

Publication number Publication date
JPH11100632A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
Baghni et al. Mechanical properties and potential applications of magnesium alloys
JP3861720B2 (en) Forming method of magnesium alloy
JP4415098B2 (en) Method for producing flame retardant magnesium alloy extruded material and extruded material
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JPH09272945A (en) Heat resistant magnesium alloy molded member, heat resistant magnesium alloy used for the molding and molding method therefor
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
WO2006050597A1 (en) Near liquidus injection molding process
JP2007169712A (en) Aluminum alloy for plastic working
KR950016975A (en) Magnesium Alloy Casting Materials for Plastic Processing
JP2001220639A (en) Aluminum alloy for casting
AU2003223800B2 (en) Process for injection molding semi-solid alloys
EP0905266B1 (en) Process for manufacturing light alloy products comprising semi-solid injection molding
CA2366610C (en) High strength creep resistant magnesium alloy
JP2009203516A (en) Aluminum alloy
US6416710B1 (en) High-strength aluminum alloy for pressure casting and cast aluminum alloy comprising the same
JP3834957B2 (en) Manufacturing method of light metal alloy forged products
JP2001247926A (en) Magnesium alloy excellent in fluidity and magnesium alloy material
US20050167011A1 (en) Casting of aluminum based wrought alloys and aluminum based casting alloys
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP2004292885A (en) Aluminum alloy casting material having excellent mechanical property
JP4544507B2 (en) Al-Si eutectic alloy, casting made of Al alloy, Al alloy for casting, and production method thereof
JP2001247925A (en) High ductility magnesium alloy excellent in fluidity and magnesium alloy material
JP2002361399A (en) Casting and forging method for aluminum alloy, and aluminum alloy for casting and forging
JPH06172948A (en) Production of heat resistant magnesium alloy
JP2002212692A (en) METHOD FOR PRODUCING Al-Si BASED ALLOY MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees