JP3834631B2 - Method for producing photocatalyst comprising titania-based crystal formed on substrate - Google Patents

Method for producing photocatalyst comprising titania-based crystal formed on substrate Download PDF

Info

Publication number
JP3834631B2
JP3834631B2 JP2002295668A JP2002295668A JP3834631B2 JP 3834631 B2 JP3834631 B2 JP 3834631B2 JP 2002295668 A JP2002295668 A JP 2002295668A JP 2002295668 A JP2002295668 A JP 2002295668A JP 3834631 B2 JP3834631 B2 JP 3834631B2
Authority
JP
Japan
Prior art keywords
titania
sol
anatase
substrate
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002295668A
Other languages
Japanese (ja)
Other versions
JP2004130171A (en
Inventor
健二 和田
ショウチク ショ
井上  悟
迪 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002295668A priority Critical patent/JP3834631B2/en
Publication of JP2004130171A publication Critical patent/JP2004130171A/en
Application granted granted Critical
Publication of JP3834631B2 publication Critical patent/JP3834631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、基体上に形成されたチタニア系結晶体からなるナノ構造体、特に、ガラス等の透明基体上に直接接合して規則配列した、高い比表面積を持ち、有害有機化合物等を高効率で分解除去できるセルディメンション(セルの大きさ)及び化学組成からなる耐久性と強度に優れた光触媒特性を有するナノ構造体を利用したナターゼ型チタニア系結晶体からなる光触媒の製造方法に関する。
【0002】
【従来の技術】
光触媒特性を持つアナターゼ型酸化チタンは既に良く知られている。この結晶は、一般的には、例えば、原料の酸化チタン粉末を約700〜800℃で焼成したりして作成するが、およそ1000℃以上の加熱では徐々に安定なルチル型に転移し、これに伴い光触媒特性も徐々に低下する。
【0003】
これに対して、溶液法のゾル−ゲル法では、約400〜500℃程度の低温加熱処理で容易にアナターゼ型となり、600℃以上ではルチル型に転移する利点をもつ。また、このとき、ゾル−ゲル法により形成したチタニア膜は、粒子が小さく、PVD、CVD等の蒸着法で形成した膜よりも比表面積が大きいことも知られている。
【0004】
今日、市販されている光触媒用チタニアの作成は湿式法が多く、粒状原料を用いて焼成して得た平滑な基板や表面凹凸のある基板等が多く用いられている。一方、これらの触媒体の形状は、用途によって異なるが、通常はナノチューブ、ナノロッド等のナノ構造体が配列したほどには微細ではなく、大きなディメンションの構造体である。
【0005】
従来品のチタニア基板は、表面のクラックや大きな粒子の界面を利用したり、表面にスタンパー等で押印した大きな凹凸模様による表面を利用したりするものであり、比表面積は一般的にあまり大きくはない。これらの微細構造はμm〜サブμm程度である。また、従来のゾル−ゲル法では、基板上のゲル表面積の凹凸や膜内の大小様々なクラックを利用し比表面積を高めているものもあるが、比表面積はあまり大きくならず限界がある。他の方法として、陽極酸化皮膜の細孔内にチタニア等の光触媒粒子を充填するものがある(特許文献1〜5)。
【0006】
最近、急激にナノマテリアルの分野が注目され、新たな視点からのナノ構造体の見直しが始まっている。現在は、ナノ構造体としての多孔質皮膜のみならず、皮膜細孔中の電析物や浸入物質等を含めたナノ構造体に関する多くの知見が見られる。特に、最近では、皮膜をテンプレートとして応用する研究が盛んで、皮膜の細孔中にCVD法、PVD法、ゾル−ゲル法、めっき法、及び有機膜法等により、種々の金属、無機物、有機物を浸入させて、ナノドット、ナノロッド、ナノチューブ及びナノファイバ等が配列したナノ構造体の作製例がある(特許文献6〜11、非特許文献1〜4)。
【0007】
上記のような背景を踏まえ、本発明者らは、導電層付き基体の利用展開を目指して、特に、この基体表面と金属の陽極酸化皮膜層との密着性と成膜形態に注目しつつ、陽極酸化法とゾル−ゲル法を組み合わせたチタニアナノチューブ等のナノ構造体の作製上の様々な利点に着目し、これらの技術の総合統一化を図ること、そして、実用化を視野に入れつつ先端技術への展開と地球環境保全のための新たな材料開発手段を開発した(非特許文献5)。
【0008】
【特許文献1】
特開平9−71897号公報
【特許文献2】
特開平10−249212号公報
【特許文献3】
特開平11−267514号公報
【特許文献4】
特開2001−205101号公報
【特許文献5】
特開2001−303296号公報
【特許文献6】
特開平11−200090号公報
【特許文献7】
特開2000−31462号公報
【特許文献8】
特開2000−314714号公報
【特許文献9】
特開2001−162600号公報
【特許文献10】
特開2001−278700号公報
【特許文献11】
特開2002−175621号公報
【0009】
【非特許文献1】
Masuda,H., Tanaka, H., Baba, N., Bull. Chem. Soc. Jpn., 1993, 66, 305.
【非特許文献2】
Martin, C. R., Science, 1994, 266, 1961.
【非特許文献3】
Lakshimi,B. B., Patrissi, C. J., Martin, C. R., Chem. Mater., 1997, 9, 2544.
【非特許文献4】
Kyotani,T., Paradhan, B. K., Tomita, A., Bull. Chem. Soc. Jpn., 1999, 72, 1957.
【非特許文献5】
社団法人 表面技術協会「第103回講演大会講演要旨集」、205〜206頁、2001年3月5日発行
【0010】
【発明が解決しようとする課題】
チタニアの中でもアナターゼ型の酸化チタンが紫外光によって光触媒特性を有し、抗菌、脱臭、防汚作用、浄化作用等の効果を示し、有機物を分解することは既によく知られている。そして、最近は、ガス、汚泥、粉塵等の汚染の激しい環境では、省エネルギーやメンテナンスフリー用のパネル(外装材)や空気清浄機用フィルター、土壌や地下水中の揮発性有機化合物(VOC)の除去材等として広く利用され、環境保全材料として今後ますますの発展が期待され、開発研究が活発に行われている。
【0011】
さらなる開発課題としては、チタニアの結晶度及び活性度の向上、耐汚染性、耐久性、リユース性、物理的強度の向上、比表面積の増大、及び太陽光波長域での応用拡大等が挙げられる。特に、チタニアの触媒活性度の向上はアナターゼの結晶性の向上及び比表面積の増大とともに重要な因子である。
【0012】
ナノレベルで制御された多孔質型及びナノチューブ配列型を含むナノ構造体は、(1)高効率の光触媒体、(2)太陽電池用の高効率フォトセル、(3)ナノレベルの多機能フォトニックス材料、(4)ナノレベルの高性能垂直磁気記録媒体、(5)ナノレベルハイブリッド化による回路実装分野等への展開が図れ、極めて興味深い材料である。
【0013】
そこで、本発明は、ガラス等の基体上へのアナターゼ型チタニア系ナノ構造体の構築とその配列化により、比表面積を増大させ、また、例えば、開放表面孔を持つ中空型ナノ構造体を形成し、特に光触媒活性のいっそうの効率化を図った製造容易なアナターゼ型チタニア系結晶体からなる光触媒の製造方法の提供を課題とする。
【0014】
【課題を解決するための手段】
アルミニウム陽極酸化皮膜は、高密度の多孔質構造であるため、高い比表面積を持つことが知られている。本発明は、多孔質アルミナ皮膜とゾル−ゲル法とを組み合わせることによりさらに優れた特性を有するアナターゼ型チタニア系ナノ構造体を開発した。
【0015】
すなわち、本発明は、下記のとおりである。
(1)基体の表面に2〜200nmの深さの微細凹凸構造を有する透明導電層を形成し、該導電層上にアルミニウムを蒸着し、陽極酸化により基体上に多孔質アルミナ皮膜からなる規則化配列した、径が80nm以上250nm以下である細孔を形成して、該細孔にチタニアゾル液を浸入させてゲル化させ、これを加熱してアナターゼ型チタニア系結晶体を形成する方法において、粘度が2.4cSt−20℃のチタニアゾル中に粘度が2.1cSt−20℃以下の酸化物ゾルを1〜20重量%添加することによって粘度を低くした複合ゾル液中に該細孔を形成した基体を浸漬して複合ゾル液を該細孔内に浸入させ、続いて、乾燥して複合ゾルを複合ゲル化した後、500〜600℃で加熱して該細孔壁と密着した開放表面孔を持つアナターゼ型チタニア系結晶の中空構造を形成することを特徴とするアナターゼ型チタニア系結晶体からなる光触媒の製造方法。
【0016】
(2)前記酸化物ゾルが、Al 、TiO 、SiO 、ZrO 、SnO 、またはTaO あることを特徴とする上記(1)のアナターゼ型チタニア系結晶体からなる光触媒の製造方法。
【0018】
)前記酸化物ゾルがシリカゾルと酸化テルルゾルの混合物であることを特徴とする上
記(1)のアナターゼ型チタニア系結晶体からなる光触媒の製造方法。
【0019】
)上記1ないしのいずれかに記載の方法によりアナターゼ型チタニア結晶体を形成した後、多孔質アルミナ皮膜を溶解除去することを特徴とするアナターゼ型チタニア系結晶体からなる光触媒の製造方法。
【0020】
本発明は、アナターゼ型チタニア系ナノ構造体の光触媒デバイス分野への実用化に向けて、優れた耐化学性、物理的強度、機械加工性等を得るために、チタニアゾルへの種々の特性を持つ物質を添加した複合ゾルを用いることを特徴とする。
【0021】
チタニアゾルへシリカ(SiO 酸化テルル(TeO 等の低温加熱でガラス化する酸化物を添加すると、ゾルと細孔壁との濡れ性の改善、ゲルの緻密化による高強度化及び耐化学性等の向上化が図れ、チタニア単独では得られない様々な相乗効果が生まれ、実用化に向けての光触媒体の特性改善が図れる。また、例えば、RuOのような可視光及び紫外光の吸収を強める化合物を含めることができ、さらに光触媒特性を高めることもできる。
【0022】
多孔質アルミナ皮膜体を利用して、CVD法やPVD法のような乾式(ドライ)法等により細孔の内壁部に金属や無機物等を吸着及び浸入させてナノ構造体を作成する方法は知られている。しかし、こうした研究では、一般的にナノ多孔体内に種々の物質をいかに制御して浸入させるかが重要であり、通常はゾルと壁との濡れ性、ゾルの粘度、細孔径及び細孔のアスペクト比(アスペクト比=細孔の長さ/細孔の孔径)が重要な問題となる。また、細孔表面の孔径が小さくなるほど、物質の浸入は難しくなる。
【0023】
特に、細孔が小さい場合には、アスペクト比が大きくなるほど必然的に細孔の奥(深部)への物質の浸入は容易でなくなる。一般的にPVD等のドライなプロセスでは、多孔質ナノ構造体の奥に浸入できるアスペクト比はおよそ1〜2程度であり、限界値は10を超すことはない。これに対して、ゾル−ゲル法のような溶液法による方法では、ゾルが浸入できるアスペクト比がおよそ3000程度までは可能である。
【0024】
例えば、ダイオキシンやアセトアルデヒドのような有害物質を効率的に分解するには、ある程度以上の大きさの細孔径とアスペクト比が必要である。つまり、細孔中へのガスの出入りが容易な微細構造を設計し、作成することが必要となる。
【0025】
有害気体等の一分子のみを出入りさせるには、細孔径は最小およそ4nm以上必要である。したがって、実用化を目指して有害物質を効率的に分解させるために、開放表面孔を持つナノ構造体が望ましい。そのためには、ゾルの浸入のしやすさ及びゲル層を結晶化させるに必要な厚さを考えると、アルミナ多孔質皮膜の細孔径はおよそ80nm〜250nmの範囲が適切である。勿論、250nm以上でもよいが、その場合には比表面積が低下することもある。
【0026】
また、チタニア結晶粒子の大きさから考えると、チタニアゲル層を結晶化させるに適切な厚さは、チタニア結晶粒子の大きさのおよそ2倍以上必要である。このため、酸化チタン等の光触媒効率を高め、かつゾル−ゲル液が細孔壁に沿って浸入しやすくするために、適度な孔径のアルミナ多孔質構造を作成する必要があり、そのために主として電解液の種類、電解電圧、化学溶解等の条件やプロセスを適切に制御する。
【0027】
しかし、こうして作成したアルミナ多孔体へのチタニアゲル単独コーティングにおいても限界があり、ゾルの粘性、ゲル粒子の大きさ、加熱温度によるゲルと細孔壁との密着性や結晶化度等の基本的な問題、及び光触媒体としての実用化に向けたチタニア改質多孔質ナノ構造体の耐化学性、物理的強度、リユース性等のさらなる改善が求められる。
【0028】
本発明はこうした問題解決のために、チタニア単独ではなく、チタニアの本来の光触媒特性を活かしつつ実用化に向けた諸特性の改善のために、目的に応じた各種化合物を添加した複合ゾルを用い、アルミナ多孔質ナノ構造体の細孔壁をゾル−ゲルコーティングにより改質し、複合強化を図った。
【0029】
こうして得られた複合ナノ多孔質構造体を『多孔質複合ナノ構造体』と定義する。そして更に、この多孔質複合ナノ構造体を化学溶解法でアルミナ皮膜のみを除去したアナターゼ型チタニアを主成分とする結晶体からなり、その構造がチューブ状のナノ構造体を『ナノチューブ配列構造体』と定義する。このような、『多孔質複合ナノ構造体』又は『ナノチューブ配列構造体』が、本発明の製造方法で得られるアナターゼ型チタニア系結晶体からなる光触媒の特有の構造である。
【0030】
本発明の方法で製造する多孔質複合ナノ構造体は、細孔がナノオーダであることに加え、さらに細孔中のチタニア結晶粒子が小さいため(約4〜8nm)、比表面積は従来品に比べて格段に大きく、従来品の平面型酸化チタン基板に比較して、およそ200倍以上となる。
【0031】
また、本発明の方法で製造する多孔質複合ナノ構造体は、ナノチューブ、ナノドット、ナノロッド、ナノファイバ、又はナノワイア(アスペクト比:5〜3000)から選ばれた少なくとも1種類からなる形状を有するが、特に、ナノチューブ配列構造体は、分解物質の出入りが容易な中空型であるため、チューブの内壁又はチューブの内壁と外壁の全ての表面を有効に利用でき、光照射により有害化学物質を効率的に分解することができる。
【0032】
本発明の方法で製造する多孔質複合ナノ構造体及びナノチューブ配列構造体は、光触媒作用によりダイオキシン類、アセトアルデヒド、窒素酸化物、悪臭のような有害気体、及び大腸菌、ウイールス等の有害物質の分解による無害化、防汚、脱臭に利用することができる。
【0033】
【発明の実施の形態】
本発明の製造方法において、基体上へのチタニア系複合ナノ構造体の作製工程を図に基づいて説明する。図1のa)に示すように、基体1の表面に導電層2、例えば、ITO、SnO、ZnO、又はSrCu及びこれらの物質へのドープ元素(例えば、Sn、Sb、F、Al、Ga)を含む化合物のうちのいずれかのような透明導電層を形成する。基体1はガラス、アルミナ、ダイヤモンド、又は有機膜等の透明材料や炭化ケイ素、窒化ケイ素等の耐熱性に優れた半透明及び不透明材料を使用できる。
【0034】
導電層2が存在しない場合は、蒸着金属層3を完全に酸化させることができず、陽極酸化によって形成されるバリヤー層/基体界面に金属が一部残留して透明性が劣るものとなり、透明材料を基体として用いても基体の透明度が低くダイオキシン類の分解用途には利用できない。
【0035】
また、導電層は、表面が平坦過ぎると蒸着する金属との密着性が悪く、完全に陽極酸化した後、又は加熱処理時に剥離が起こり利用できない。したがって、導電層表面には、蒸着する金属及びその陽極酸化皮膜との密着性を高めるためのアンカー効果を発現する微細凹凸構造が存在するものを用いるほどよい。このアンカー効果を発現する微細凹凸構造は、2〜200nmの深さが必要で、これにより種々の大きさの蒸着金属粒子との密着性が高まる。
【0036】
導電層の形成方法は真空蒸着法、イオンプレーティング法及びスパッタリング法等で行うことができる。導電層の膜厚や表面の微細凹凸構造の深さは、目的により該形成方法の使い分けや成膜速度及び基体温度等を制御することによって調整する。
【0037】
次に、導電層2上に蒸着金属層3を形成する。金属の蒸着は、真空蒸着法、イオンプレーティング法及びスパッタリング法等で成膜されたものを使用できるが、その成膜条件及び膜質等は、次の工程の陽極酸化により細孔がシリンダー状に整然と配列するようにすることが重要である。例えば、通常は成膜速度は0.2nm/秒程度であるが、本発明のスパッタリング法では少なくともこの条件を1〜2nm/秒の範囲で制御し、蒸着粒子が小さく、柱状配向性のない緻密な膜とし、かつ表面の平滑性も可能な限り均一で平らになるように配慮する。
【0038】
次に、図1のb)に示すように、蒸着金属層3を陽極酸化する。蒸着金属の陽極酸化では、ダイオキシン類等の有機物が浸入し易い多孔質アルミナ皮膜4の構造を作ることが重要である。ところが、伝統的かつJISやISOに規定された標準的な電解条件で行うと、電圧が上げられないだけでなく、細孔径Aも、例えば、硫酸皮膜10〜15nm、シュウ酸皮膜20〜50nm、リン酸皮膜30〜60nm程度であるため、有機物等の浸入は不十分である。
【0039】
このため、例えば、分解のための有機物の大きさとその浸入及び酸化物ゾルの大きさ(TiOゾルでは粒子の大きさは約3〜20nmである)等を考慮して、これらの物質が浸入できるのに容易な多孔質アルミナ皮膜4の構造として、細孔径Aがおよそ80nm〜250nmになるような電解液、電解条件、製造プロセスを総合的に選択する。つまり、電解液は化学溶解性の高いリン酸溶液、シュウ酸溶液を選択し、電解電圧はセル径(のbのCで示す孔壁の中心と中心間の距離)が300〜600nmと大きくなるように高電圧をかけ、液温度も高電圧がかけられるようにできるだけ低温、好ましくはおよそ10℃以下とする。
【0040】
多孔質陽極酸化皮膜4と導電層2との密着性が優れた金属蒸着基体1は、90〜200Vもの高電圧電解でも多孔質アルミナ皮膜4の構造が破壊されることもなく、導電層2からの剥離もなくなり、シリンダー状細孔の配列した強固な皮膜が形成する。つまり、この密着性が考慮されない一般的な陽極酸化では、例えば、シュウ酸皮膜では電圧をおよそ40V以上にすることができず、また、リン酸皮膜でもおよそ60V以上での電解は困難である。この電圧を超えると、大電流が流れて皮膜溶解と皮膜破壊が同時に起こり、また導電層からの皮膜剥離も起こり、電解処理できない。
【0041】
次に、該細孔中にチタニア系複合ナノ構造体物質をゾル−ゲルコーティング法により充填する。ゾル−ゲルコーティング法により、ゾルが孔壁を伝って浸入し、さらに、細孔底部の微細凹凸構造を有する導電体層まで浸入して導電体層と強固に直接接合する。さらに、ゾルは、上記のとおり、蒸着時に形成された孔壁の隙間状の境界領域の隙間にも浸入してゲル化する。これにより、ゾル溶液は、基体上に形成された多孔質陽極酸化皮膜の細孔内壁及び細孔中に充填される。
【0042】
さらに、化学溶解により、アルミナ細孔壁を選択溶解し、ナノチューブ配列構造体を作製して、ナノチューブの外壁の利用も可能である。従って、これらの複合ナノ構造体は比表面積が高く、有害物質と有効に接触できるため高い光触媒特性が得られる。
【0043】
本発明の方法では、ゾル−ゲルコーティングを以下の方法により行い、光触媒特性及び実用化に向けたその他の諸特性の高性能化を図る。
(1)チタニアゾル中に粘度の低い酸化物ゾルを添加する。
チタニアゾルの粘度は約2.4cSt−20℃であり、これに粘度の低い酸化物ゾルとして、粘度が2.1cSt−20℃以下のAl、TiO、SiO、ZrO、SnO、TaO等のゾルを添加する。粘度がこれより高いものでは効果が乏しくなる。特にSiOは粘度が低く、チタニアの光触媒特性に及ぼす影響が少なく、アルミナ多孔体の細孔壁とチタニアゾルとの濡れ性を改善する効果も大きい。酸化物ゾルを添加して混合ゾルの粘度を低くするほど濡れ性は改善されるが、過剰な添加はかえって光触媒効果を減ずるので、添加量は1〜20重量%の範囲内で調整する。なお、粘度は、ASTM及びJISに準拠して製作されたガラス製毛管式粘度計(ウベローデ)を用いて、規定の条件において、一定量の液体が毛細管を流れる時間を20℃で測定し、流出時間(秒)に粘度計定数を乗じて求めた動粘度(cSt:センチストークス)である。
【0044】
これにより、乾燥中にゲルの収縮によって起こる細孔壁からの剥離やゲル体の割れを防止できる。またチタニア粒子の凝集を抑制でき、チタニアゾルの細孔中への浸入を容易にする。つまり、改質層の緻密化による高強度化及び耐久性の向上化及び改質層と細孔底部とのアンカー効果による高密着性化ができる。よって、その後の加熱処理によるアルミナ細孔壁との密着性が高まり、開放表面孔を持つ中空構造(図1−dの6)を形成できる。また、ゲルの成膜性も高め、ゲル粒子及びチタニア結晶間を埋め、ゲル層の強度、緻密性や接着性等も高めることができる。
【0045】
(2)チタニアゾル中への300〜400℃の低温加熱でガラス化できる酸化物は、TeO、LiO、NaO、Nb、Al、TiO、PbO、WO、SrO、La、Ta、BaO、ZnO、MgO等であり、その添加量は0.5〜10重量%の範囲内で調整する。過剰な添加は光触媒効果を減少させる。例えば、TeOのようなゾルの添加によりゲル粒子同士の接合性の強化を図ることによりチタニアと基体及びアルミナ細孔壁との密着性がさらに強化される。また、SiOと同様にゲルの成膜性、ゲル層の強度、緻密性や接着性等も高めることができる。これにより、チタニア系複合ナノ構造体の耐久性等の実用化上重要な特性の向上が図れる。
【0046】
(3)チタニアゾル中へ可視光吸収特性を有する酸化物ゾルを添加する。
可視光吸収特性を有する酸化物は、現在RuOがその代表であるが、この他にも、Nd、Zr、Hf、La、Ce、U等の酸化物は有効である。これらの添加量は一般的には微量でも効果がある。本発明では0.1〜5重量%の範囲内で調整するが、特に過剰な添加はかえってその効果を失う。例えば、Ru錯体は、酸化ルテニウムとしての導電性を利用する太陽光、特に、可視光領域の波長の吸収による光増感効果が見込めるため、光触媒効果の利用に留まらず、複合機能の展開を可能にし、例えば、太陽電池分野へも応用できる。
【0047】
(4)チタニアゾルにTi−Oの結合のバンドギャップを狭める物質を添加して、紫外光及び可視光の両方の吸収特性を併せ持つ光触媒体とする。
現在、これに該当する添加元素として、窒素のみが知られる。本発明では窒素を含み、比較的作業性の良好なものとして、硝酸又はアンモニア溶液を選択し、これらの添加量を0.1〜10重量%の範囲内で調整する。こうして形成した窒素を含む物質は、酸化チタンのTi−O結合のバンド幅を狭くする効果を生じ、光触媒反応に必要とするエネルギーが減少するため、紫外光領域の光触媒効果が増加し、さらに可視光領域への利用も可能となる。
【0048】
このようにして形成された多孔質複合酸化物ナノ構造体(図1−dの6参照)は、さらに、図1−eに示すように、例えば、5重量%リン酸と2重量%クロム酸との混酸等の酸溶液、又は2重量%〜5重量%濃度の水酸化ナトリウム等のアルカリ溶液による化学溶解工程でエッチングすると、アルミニウムの陽極酸化皮膜のみが溶解して、チタニア系ナノチューブ配列構造体7が導電層2を介して基体1上に直接接合して基体面と垂直方向に伸びて基体面に規則的に配列させることができる。
【0049】
すなわち、これによって、基体1及び導電層2として共に透明材料を用いた場合は、
に示すように、透明基体1及び透明導電層2上に光触媒特性を有し、比表面積の大きな透明で密着性に優れたチタニア系ナノチューブ配列構造体7の規則化配列体を形成できる。
【0050】
【実施例】
以下、実施例により本発明を具体的に示すが、本発明はこれに限定されるものではなく、適宜、本発明の範囲内で変更できるものである。
実施例1
表面に120nmの厚さのITO層をスパッタコーティングした透明ガラス基板を用いて、この上にさらにAlを2μmほどRFスパッタリングした基板を用い、前処理としてアセトン中で10分間超音波洗浄した試料を陽極酸化に供した。陽極酸化は、10容量%リン酸溶液中で130Vにて定電位電解によった。次に、陽極酸化により形成されたアルミナ多孔質膜の孔径を拡大するため、試料を30℃の5容量%リン酸溶液中に浸漬して孔径をおよそ180nmに調整した。
【0051】
その後、TiOゾルに2.5重量%SiOゾルと2.5重量%TeOゾルを添加した組成の複合ゾル液中に試料を浸漬して、ディップコーティングによりアルミナ多孔質膜の孔内に複合ゾルを浸入させて充填した。続いて、長時間(12時間以上)乾燥して複合ゾルを複合ゲル化した後、500℃で2時間の加熱処理により複合ゲルをアナターゼ型チタニア結晶を主とする構造体とした。最後に、5容量%リン酸と2容量%クロム酸との混酸溶液(70℃)中で陽極酸化皮膜のみを化学溶解除去し、透明ガラス基板上に基板面と垂直方向に伸びたナノチューブを基板面に規則的に配列したチタニア系複合ナノ構造体(図1の7)の試料1を製造した。
【0052】
実施例2
実施例1と同じITO及びAlスパッタリングした透明ガラス基板を用いて、前処理、陽極酸化、細孔拡大及びゾル−ゲル処理まで、実施例1と全く同様のプロセスで試料を作成した。次に、このディップコーティングした複合型の試料を陽極酸化皮膜を化学溶解せずに、最後に500℃で2時間加熱処理してアナターゼ型チタニア結晶を主とする多孔質チタニア系複合ナノ構造体(図1の6)の試料2を製造した。
【0053】
実施例3
実施例1と同じITO及びAlスパッタリングした透明ガラス基板を用いて、前処理、陽極酸化、細孔拡大及びゾル−ゲル処理までも実施例1と全く同様のプロセスで試料を作成した。次に、このディップコーティングした複合型の試料を陽極酸化皮膜を化学溶解せずに、最後に600℃で2時間加熱処理してルチル型とアナターゼ型の混ざったチタニア結晶を主とする多孔質チタニア系複合ナノ構造体の試料3を製造した。
【0054】
実施例4
表面に厚さおよそ120nmのITO層をスパッタリングした透明ガラス基板を用いて、この上に、さらに2μmほどのAlをRFスパッタリングした基板を用い、前処理としてアセトン中で10分間超音波洗浄した試料を陽極酸化に供した。陽極酸化は、3重量%のシュウ酸溶液中で40Vの定電位電解した。陽極酸化により形成されたアルミナ多孔質膜の孔径拡大は、試料を30℃の5容量%リン酸溶液中に浸漬して孔径をおよそ80nmに調整した。
【0055】
その後、実施例1と同じ組成、濃度のゾル中に試料を浸漬して、ディップコーティングした。最後に500℃にて2時間加熱処理してアナターゼ型チタニア結晶を主とする多孔質チタニア系複合ナノ構造体の試料4を製造した。
【0056】
実施例5
実施例4までと同じAlスパッタリングしたガラス基板を用いて、前処理、陽極酸化、孔径拡大処理までは実施例1と全く同じプロセス、組成、条件により処理した孔径約180nmのリン酸陽極酸化皮膜を作成した。次いで、TiOゾルに5重量%SiOゾルと5重量%TeOゾルを添加した組成のゾル中に試料を浸漬してディップコーティングし、最後に600℃で2時間加熱処理してアナターゼ型チタニア結晶を主とする多孔質チタニア系複合ナノ構造体の試料5を製造した。
【0057】
実施例6
実施例5までと同じAlスパッタリングしたガラス基板を用いて、続く前処理から孔径拡大処理までは実施例1と全く同じプロセス、組成、条件により処理した孔径約180nmのリン酸陽極酸化皮膜を作成した。次いで、TiOゾルに2重量%RuOゾルを添加した組成のゾル中に試料を浸漬し、最後に500℃で2時間加熱処理してアナターゼ型チタニア結晶を主とする多孔質チタニア系複合ナノ構造体の試料6を製造した。
【0058】
本発明のチタニア系複合ナノ構造体の光触媒特性の評価のために、有害化学物質の代表として、アセトアルデヒドガスを用いてUV光照射により、COと水とする無害化のための光分解実験を行った。表1は、上記の実施例1〜6の6種類のチタニア系複合ナノ構造体(ナノチューブ配列型及び多孔質型)の試料1〜6と参考試料、標準試料からなるチタニア系ナノ構造体の合計8種類の試料を用いて、紫外線照射下における照射時間の経過に伴うアセトアルデヒドガスの光分解反応初速度の比較としてまとめたものである。
【0059】
【表1】

Figure 0003834631
【0060】
光触媒特性の比較のために、標準試料として、市販品のDegussa P25 純チタニア粉末を用いた。参考試料は、ゾル−ゲルコーティング時のゾル組成がTiO単独ゾルであることを除き、作成プロセス及び条件等は、全て実施例2と同一とした多孔質チタニア系ナノ構造体である。
【0061】
アセトアルデヒドの光分解反応の初速度は、表1から明らかなように、標準試料が0.37であるのに対して、本発明の6種類の試料は全て5倍以上の値であり、特に、試料1〜4については9倍以上で、最高値はナノチューブの配列した試料1の17.6倍であり、極めて優れた性能を持つことが明らかになった。
【図面の簡単な説明】
【図1】図1は、本発明の『多孔質複合ナノ構造体』の製造工程を示す概念図である。
【図2】図2は、本発明の『ナノチューブ配列構造体』の構造を示す概念図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention is a nanostructure comprising a titania-based crystal formed on a substrate, particularly a high specific surface area that is directly bonded and arranged on a transparent substrate such as glass and has high efficiency for harmful organic compounds. Cell dimensions that can be disassembled and removed with(Cell size)And a nanostructure having chemical properties and photocatalytic properties with excellent durability and strengthOf photocatalysts consisting of natase-type titania crystalsIt relates to the manufacturing method.
[0002]
[Prior art]
  Anatase-type titanium oxide having photocatalytic properties is already well known. This crystal is generally prepared by, for example, firing a raw material titanium oxide powder at about 700 to 800 ° C., but when it is heated to about 1000 ° C. or more, it gradually changes to a stable rutile type. Along with this, the photocatalytic properties gradually decrease.
[0003]
  On the other hand, the sol-gel method of the solution method has an advantage that it easily becomes anatase type by low-temperature heat treatment at about 400 to 500 ° C., and transitions to the rutile type at 600 ° C. or higher. At this time, it is also known that the titania film formed by the sol-gel method has small particles and has a larger specific surface area than a film formed by a vapor deposition method such as PVD or CVD.
[0004]
  Today, many commercially available titania for photocatalysts are prepared by a wet method, and a smooth substrate obtained by firing using a granular raw material or a substrate having surface irregularities is often used. On the other hand, although the shapes of these catalyst bodies differ depending on the application, they are usually not as fine as the arrangement of nanostructures such as nanotubes and nanorods, but are large dimension structures.
[0005]
  Conventional titania substrates use cracks on the surface and the interface of large particles, or use a surface with a large concavo-convex pattern stamped on the surface with a stamper etc., and the specific surface area is generally too large Absent. These microstructures are about μm to sub-μm. In addition, some conventional sol-gel methods increase the specific surface area by utilizing unevenness of the gel surface area on the substrate and various cracks in the film, but the specific surface area is not so large and has a limit. Another method is to fill photocatalyst particles such as titania into the pores of the anodized film (Patent Documents 1 to 5).
[0006]
  Recently, the field of nanomaterials has attracted attention, and the review of nanostructures from a new perspective has begun. At present, not only a porous film as a nanostructure but also a lot of knowledge about nanostructures including electrodeposits and infiltrating substances in the pores of the film can be seen. In particular, research on application of a film as a template has recently been actively conducted, and various metals, inorganic substances, and organic substances are formed in the pores of the film by CVD, PVD, sol-gel, plating, and organic film methods. There are examples of manufacturing nanostructures in which nanodots, nanorods, nanotubes, nanofibers, and the like are arranged (Patent Documents 6 to 11 and Non-Patent Documents 1 to 4).
[0007]
  Based on the background as described above, the present inventors aimed at the utilization development of the substrate with a conductive layer, and in particular, paying attention to the adhesion between the surface of the substrate and the metal anodized film layer and the film formation mode, Focusing on various advantages in the production of nanostructures such as titania nanotubes that combine anodizing and sol-gel methods, we aim to unify these technologies and to put them to practical use A new material development means for technology development and global environmental conservation was developed (Non-patent Document 5).
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-71897
[Patent Document 2]
JP-A-10-249212
[Patent Document 3]
JP-A-11-267514
[Patent Document 4]
JP 2001-205101 A
[Patent Document 5]
JP 2001-303296 A
[Patent Document 6]
Japanese Patent Laid-Open No. 11-200090
[Patent Document 7]
JP 2000-31462 A
[Patent Document 8]
JP 2000-314714 A
[Patent Document 9]
JP 2001-162600 A
[Patent Document 10]
JP 2001-278700 A
[Patent Document 11]
JP 2002-175621 A
[0009]
[Non-Patent Document 1]
Masuda, H .; , Tanaka, H .; Baba, N .; , Bull. Chem. Soc. Jpn. 1993, 66, 305.
[Non-Patent Document 2]
Martin, C.I. R. , Science, 1994, 266, 1961.
[Non-Patent Document 3]
Lakshimi, B.H. B. Patrissi, C.I. J. et al. Martin, C .; R. Chem. Mater. , 1997, 9, 2544.
[Non-Patent Document 4]
Kyotani, T .; Paradhan, B .; K. Tomita, A. , Bull. Chem. Soc. Jpn. 1999, 72, 1957.
[Non-Patent Document 5]
The Surface Technology Association of Japan “Abstracts of the 103rd Lecture Meeting”, pp. 205-206, published on March 5, 2001
[0010]
[Problems to be solved by the invention]
  Among titania, anatase-type titanium oxide has photocatalytic properties by ultraviolet light, exhibits effects such as antibacterial effect, deodorization, antifouling action and purification action, and is already well known to decompose organic substances. And recently, in environments where gas, sludge, dust, etc. are heavily polluted, energy-saving and maintenance-free panels (exterior materials), filters for air purifiers, removal of volatile organic compounds (VOC) in soil and groundwater It is widely used as a material, etc., and further development is expected as an environmental conservation material, and development research is actively conducted.
[0011]
  Further development issues include improvements in titania crystallinity and activity, stain resistance, durability, reusability, physical strength, specific surface area, and application expansion in the solar wavelength range. . In particular, improvement of the catalytic activity of titania is an important factor along with improvement of anatase crystallinity and specific surface area.
[0012]
  Nanostructures, including nano-level controlled porous and nanotube array types, are (1) high-efficiency photocatalysts, (2) high-efficiency photocells for solar cells, and (3) nano-level multifunctional photo It is a very interesting material because it can be developed in the field of nicks materials, (4) nano-level high-performance perpendicular magnetic recording media, and (5) nano-level hybrid circuit mounting.
[0013]
  Therefore, the present invention increases the specific surface area by constructing and arranging anatase-type titania-based nanostructures on a substrate such as glass and forms a hollow nanostructure having, for example, open surface pores. Especially photocatalytic activityMoreIncrease efficiencyWas,Made of anatase-type titania crystals that are easy to manufacturephotocatalystOf manufacturing methodIs an issue.
[0014]
[Means for Solving the Problems]
  Since an aluminum anodic oxide film has a high-density porous structure, it is known to have a high specific surface area. The present invention has developed an anatase titania-based nanostructure having further excellent characteristics by combining a porous alumina film and a sol-gel method.
[0015]
  That is, the present invention is as follows.
(1)SubstrateA transparent conductive layer having a fine concavo-convex structure with a depth of 2 to 200 nm is formed on the surface of the conductive layer;Aluminum was vapor-deposited on it, and anodized and ordered arrangement of porous alumina film on the substrate.The diameter is not less than 80 nm and not more than 250 nmIn a method of forming pores, allowing a titania sol solution to enter into the pores to be gelled, and heating this to form anatase-type titania-based crystal,Viscosity is 2.4 cSt-20 ° CAdd 1 to 20% by weight of oxide sol with a viscosity of 2.1cSt-20 ° C or less in titania solAfter immersing the substrate in which the pores are formed in the composite sol liquid having a reduced viscosity to allow the composite sol liquid to enter the pores, and subsequently drying to form a composite gel of the composite sol, Forming a hollow structure of anatase-type titania crystal with open surface pores in close contact with the pore walls by heating at 500-600 ° CIt is characterized byAnatase typeMade of titania crystalphotocatalystManufacturing method.
[0016]
(2) The oxide sol is Al 2 O 3 TiO 2 , SiO 2 , ZrO 2 , SnO 2 Or TaO 2 A method for producing a photocatalyst comprising the anatase-type titania crystal of (1) above,
[0018]
(3) The oxide sol is a mixture of silica sol and tellurium oxide sol.
A method for producing a photocatalyst comprising the anatase-type titania crystal of (1).
[0019]
(41) to 1 above3A method for producing a photocatalyst comprising an anatase-type titania crystal, comprising forming an anatase-type titania crystal by the method according to any one of the methods and then dissolving and removing the porous alumina film.
[0020]
  The present invention has various characteristics to titania sol in order to obtain excellent chemical resistance, physical strength, machinability and the like for practical application of anatase-type titania-based nanostructures to the field of photocatalytic devices. A composite sol to which a substance is added is used.
[0021]
  To titania solsilica(SiO2 )AndTellurium oxide (TeO2 )Addition of an oxide that vitrifies by low-temperature heating, such as improving the wettability between the sol and pore walls, increasing the strength by densifying the gel, and improving the chemical resistance, etc. Various synergistic effects are born, and the characteristics of the photocatalyst can be improved for practical use. For example, RuO2Such a compound that enhances absorption of visible light and ultraviolet light can be included, and photocatalytic properties can be further enhanced.
[0022]
  There is a known method for making nanostructures by using porous alumina coatings to adsorb and infiltrate metals and inorganic substances into the inner wall of pores by dry methods such as CVD and PVD. It has been. However, in these studies, it is generally important to control and infiltrate various substances into the nanoporous body, and usually the wettability between sol and wall, sol viscosity, pore diameter and pore aspect. The ratio (aspect ratio = pore length / pore diameter) is an important issue. Further, the smaller the pore diameter on the pore surface, the more difficult the substance enters.
[0023]
  In particular, when the pores are small, the larger the aspect ratio, the more inevitably the substance enters the back (depth) of the pores. Generally, in a dry process such as PVD, the aspect ratio that can penetrate into the interior of the porous nanostructure is about 1 to 2, and the limit value does not exceed 10. On the other hand, in a method using a solution method such as a sol-gel method, the aspect ratio into which the sol can enter can be up to about 3000.
[0024]
  For example, in order to efficiently decompose harmful substances such as dioxin and acetaldehyde, a pore size and an aspect ratio larger than a certain size are required. That is, it is necessary to design and create a fine structure in which gas can easily enter and exit the pores.
[0025]
  In order to allow only one molecule such as harmful gas to enter and exit, the minimum pore size is about 4 nm or more. Therefore, nanostructures with open surface pores are desirable in order to efficiently decompose harmful substances for practical use. For this purpose, considering the ease of sol penetration and the thickness required to crystallize the gel layer, the pore diameter of the alumina porous film is suitably in the range of about 80 nm to 250 nm. Of course, it may be 250 nm or more, but in that case, the specific surface area may decrease.
[0026]
  Considering the size of the titania crystal particles, the thickness appropriate for crystallizing the titania gel layer needs to be about twice or more the size of the titania crystal particles. For this reason, it is necessary to create an alumina porous structure with an appropriate pore size in order to increase the photocatalytic efficiency of titanium oxide and the like and to make the sol-gel solution easily enter along the pore walls. Appropriately control conditions and processes such as liquid type, electrolysis voltage, and chemical dissolution.
[0027]
  However, there is a limit to the titania gel single coating on the alumina porous body thus prepared, and there are fundamental limitations such as the viscosity of the sol, the size of the gel particles, the adhesion between the gel and the pore wall depending on the heating temperature, and the degree of crystallinity. There is a need for further improvements in the chemical resistance, physical strength, reusability, etc. of the titania-modified porous nanostructure for practical application as a photocatalyst.
[0028]
  In order to solve such problems, the present invention uses not a titania alone but a composite sol to which various compounds according to the purpose are added in order to improve various properties for practical use while utilizing the original photocatalytic properties of titania. The pore walls of the alumina porous nanostructure were modified by sol-gel coating to strengthen the composite.
[0029]
  The composite nanoporous structure thus obtained is defined as “porous composite nanostructure”. Furthermore, this porous composite nanostructure is composed of a crystal composed mainly of anatase-type titania from which only the alumina film is removed by a chemical dissolution method. It is defined asSuch “porous composite nanostructure” or “nanotube array structure” is a unique structure of a photocatalyst composed of anatase-type titania crystal obtained by the production method of the present invention.
[0030]
  Of the present inventionManufactured by the methodSince the porous composite nanostructure has nanopores in the pores and the titania crystal particles in the pores are small (about 4 to 8 nm), the specific surface area is much larger than the conventional products. Compared to the planar type titanium oxide substrate, it is about 200 times or more.
[0031]
  In addition, the present inventionManufactured by the methodThe porous composite nanostructure has at least one shape selected from nanotubes, nanodots, nanorods, nanofibers, or nanowires (aspect ratio: 5 to 3000). In particular, the nanotube array structure is decomposed. Since it is a hollow type in which a substance can easily enter and exit, all the surfaces of the inner wall of the tube or the inner wall and the outer wall of the tube can be used effectively, and harmful chemical substances can be efficiently decomposed by light irradiation.
[0032]
  Of the present inventionPorous composite produced by the methodNanostructureAnd nanotube array structureCan be used for detoxification, antifouling, and deodorization by decomposition of harmful gases such as dioxins, acetaldehyde, nitrogen oxides, offensive odors, and harmful substances such as Escherichia coli and viruses by photocatalysis.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
  Of the present inventionIn the manufacturing method,A process for producing a titania-based composite nanostructure on a substrate will be described with reference to the drawings. As shown in FIG. 1 a), a conductive layer 2 such as ITO or SnO is formed on the surface of the substrate 1.2, ZnO, or SrCu2O2And a transparent conductive layer such as any one of compounds containing doping elements (for example, Sn, Sb, F, Al, Ga) into these substances. The substrate 1 can be made of a transparent material such as glass, alumina, diamond, or an organic film, or a translucent and opaque material excellent in heat resistance such as silicon carbide or silicon nitride.
[0034]
  When the conductive layer 2 is not present, the deposited metal layer 3 cannot be completely oxidized, and a part of the metal remains at the barrier layer / substrate interface formed by anodic oxidation, resulting in poor transparency and transparency. Even if a material is used as a substrate, the transparency of the substrate is low and it cannot be used for dioxin decomposition.
[0035]
  Further, when the surface of the conductive layer is too flat, the adhesion with the metal to be deposited is poor, and peeling occurs during complete anodic oxidation or during heat treatment. Therefore, it is better to use a conductive layer having a fine uneven structure that exhibits an anchor effect for enhancing the adhesion between the deposited metal and its anodized film. The fine concavo-convex structure that expresses the anchor effect needs to have a depth of 2 to 200 nm, thereby improving the adhesion with various sizes of deposited metal particles.
[0036]
  The conductive layer can be formed by vacuum deposition, ion plating, sputtering, or the like. The film thickness of the conductive layer and the depth of the fine concavo-convex structure on the surface are adjusted by controlling the proper use of the forming method, the film forming speed, the substrate temperature, and the like according to the purpose.
[0037]
  Next, the deposited metal layer 3 is formed on the conductive layer 2. The metal can be deposited by vacuum deposition, ion plating, sputtering, etc., but the film formation conditions and film quality are such that the pores are formed into cylinders by anodic oxidation in the next step. It is important to arrange in an orderly manner. For example, the film forming speed is usually about 0.2 nm / sec. However, in the sputtering method of the present invention, at least this condition is controlled in the range of 1 to 2 nm / sec, and the deposited particles are small and dense with no columnar orientation. And make sure that the surface is as smooth and flat as possible.
[0038]
  Next, as shown in FIG. 1 b), the deposited metal layer 3 is anodized. In the anodic oxidation of vapor-deposited metal, it is important to create a porous alumina coating 4 structure into which organic substances such as dioxins can easily enter. However, when the standard electrolysis conditions specified in JIS and ISO are used, not only the voltage cannot be increased, but also the pore diameter A is, for example, a sulfuric acid film 10 to 15 nm, an oxalic acid film 20 to 50 nm, Since the phosphoric acid film has a thickness of about 30 to 60 nm, infiltration of organic substances and the like is insufficient.
[0039]
  For this reason, for example, the size of organic matter for decomposition and its penetration and the size of oxide sol (TiO 2)2In the sol, the size of the particles is about 3 to 20 nm), and the pore diameter A is about 80 nm to 250 nm as the structure of the porous alumina film 4 that can easily enter these materials. Comprehensively select the appropriate electrolyte, electrolysis conditions, and manufacturing process. In other words, a phosphoric acid solution or an oxalic acid solution having high chemical solubility is selected as the electrolytic solution, and the electrolysis voltage has a cell diameter (distance between the center of the hole wall indicated by C of b) of 300 to 600 nm. In order to apply a high voltage, the liquid temperature is set as low as possible, preferably about 10 ° C. or less.
[0040]
  The metal vapor-deposited substrate 1 having excellent adhesion between the porous anodic oxide coating 4 and the conductive layer 2 can be obtained from the conductive layer 2 without destroying the structure of the porous alumina coating 4 even at high voltage electrolysis of 90 to 200V. No peeling occurs, and a strong film in which cylindrical pores are arranged is formed. In other words, in general anodic oxidation in which this adhesion is not considered, for example, the voltage cannot be increased to about 40 V or more with an oxalic acid film, and electrolysis at about 60 V or more is difficult even with a phosphoric acid film. When this voltage is exceeded, a large current flows, film dissolution and film destruction occur at the same time, and film peeling from the conductive layer also occurs, preventing electrolytic treatment.
[0041]
  Next, the titania-based composite nanostructure material is filled into the pores by a sol-gel coating method. By the sol-gel coating method, the sol penetrates through the pore wall, and further penetrates to the conductor layer having a fine uneven structure at the bottom of the pore and is firmly bonded directly to the conductor layer. Furthermore, as described above, the sol enters the gap in the gap-like boundary region of the hole wall formed during vapor deposition and gels. Thereby, the sol solution is filled in the pore inner walls and pores of the porous anodic oxide film formed on the substrate.
[0042]
  Furthermore, the alumina pore wall can be selectively dissolved by chemical dissolution to produce a nanotube array structure, and the outer wall of the nanotube can be used. Therefore, these composite nanostructures have a high specific surface area and can effectively contact harmful substances, so that high photocatalytic properties can be obtained.
[0043]
  In the method of the present invention, sol-gel coating is performed by the following method to improve the performance of photocatalytic properties and other properties for practical use.
(1) An oxide sol having a low viscosity is added to the titania sol.
  The titania sol has a viscosity of about 2.4 cSt-20 ° C. As an oxide sol having a low viscosity, Al has a viscosity of 2.1 cSt-20 ° C. or less.2O3TiO2, SiO2, ZrO2, SnO2, TaO2And so on. If the viscosity is higher than this, the effect becomes poor. Especially SiO2Has a low viscosity, has little influence on the photocatalytic properties of titania, and has a great effect of improving the wettability between the pore walls of the porous alumina and the titania sol. The wettability improves as the viscosity of the mixed sol is reduced by adding the oxide sol, but excessive addition reduces the photocatalytic effect on the contrary, so the addition amount is adjusted within the range of 1 to 20% by weight. Viscosity is measured at 20 ° C. for a specified amount of liquid flowing through the capillary tube under specified conditions using a glass capillary viscometer (Ubbelohde) manufactured according to ASTM and JIS. It is a kinematic viscosity (cSt: centistokes) obtained by multiplying the outflow time (seconds) by a viscometer constant.
[0044]
  Thereby, peeling from the pore wall and cracking of the gel body caused by gel contraction during drying can be prevented. Further, aggregation of titania particles can be suppressed, and the infiltration of titania sol into the pores is facilitated. That is, it is possible to increase the strength and the durability by densifying the modified layer, and to increase the adhesion by the anchor effect between the modified layer and the bottom of the pore. Therefore, adhesiveness with the alumina pore wall by the subsequent heat treatment is enhanced, and a hollow structure (6 in FIG. 1-d) having an open surface hole can be formed. Moreover, the film-forming property of the gel can be improved, the space between the gel particles and the titania crystal can be filled, and the strength, denseness, adhesiveness and the like of the gel layer can be improved.
[0045]
(2) An oxide that can be vitrified by heating at a low temperature of 300 to 400 ° C. in a titania sol is TeO.2, Li2O, Na2O, Nb2O3, Al2O3TiO2, PbO, WO3, SrO, La2O3, Ta2O3BaO, ZnO, MgO, etc., and the amount of addition is adjusted within the range of 0.5 to 10% by weight. Excessive addition reduces the photocatalytic effect. For example, TeO2By adding the sol as described above, the adhesion between the gel particles is enhanced, whereby the adhesion between the titania, the substrate and the alumina pore walls is further enhanced. In addition, SiO2Similarly to the above, the film formability of the gel, the strength of the gel layer, the denseness and the adhesiveness can be improved. As a result, it is possible to improve characteristics important for practical use such as durability of the titania-based composite nanostructure.
[0046]
(3) An oxide sol having visible light absorption characteristics is added to the titania sol.
  Oxides having visible light absorption properties are currently RuO.2In addition to these, oxides such as Nd, Zr, Hf, La, Ce, and U are also effective. These addition amounts are generally effective even in trace amounts. In the present invention, the content is adjusted within the range of 0.1 to 5% by weight, but particularly excessive addition loses its effect. For example, the Ru complex can be expected to have a photosensitization effect due to absorption of sunlight as a ruthenium oxide, particularly absorption of wavelengths in the visible light region. For example, it can be applied to the solar cell field.
[0047]
(4) A substance that narrows the band gap of the Ti—O bond is added to the titania sol to obtain a photocatalyst having both absorption characteristics of ultraviolet light and visible light.
  Currently, only nitrogen is known as an additive element corresponding to this. In the present invention, nitric acid or an ammonia solution is selected as a material that contains nitrogen and has relatively good workability, and the amount of addition thereof is adjusted within a range of 0.1 to 10% by weight. The nitrogen-containing material thus formed has the effect of narrowing the Ti—O bond bandwidth of titanium oxide, reducing the energy required for the photocatalytic reaction, increasing the photocatalytic effect in the ultraviolet region, and making it more visible. Use in the optical region is also possible.
[0048]
  The porous composite oxide nanostructure formed in this way (see 6 in FIG. 1-d) further has, for example, 5 wt% phosphoric acid and 2 wt% chromic acid, as shown in FIG. When etching in a chemical dissolution process using an acid solution such as a mixed acid or an alkali solution such as sodium hydroxide having a concentration of 2 to 5% by weight, only the anodized aluminum film is dissolved, and a titania-based nanotube array structure 7 can be directly bonded onto the substrate 1 via the conductive layer 2 and extend in a direction perpendicular to the substrate surface to be regularly arranged on the substrate surface.
[0049]
  That is, by this, when a transparent material is used for both the substrate 1 and the conductive layer 2,
As shown in FIG. 2, a regular array of titania-based nanotube array structures 7 having photocatalytic properties, a large specific surface area, and excellent adhesion can be formed on the transparent substrate 1 and the transparent conductive layer 2.
[0050]
【Example】
  Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited thereto, and can be appropriately changed within the scope of the present invention.
Example 1
  Using a transparent glass substrate on which a 120 nm thick ITO layer was sputter-coated on the surface, and a substrate on which RF sputtering of about 2 μm of Al was further performed, a sample which was ultrasonically cleaned in acetone for 10 minutes as a pretreatment was used as an anode. It was subjected to oxidation. Anodization was by constant potential electrolysis at 130V in 10% by volume phosphoric acid solution. Next, in order to enlarge the pore diameter of the alumina porous membrane formed by anodic oxidation, the sample was immersed in a 5 vol% phosphoric acid solution at 30 ° C. to adjust the pore diameter to about 180 nm.
[0051]
  Then TiO22.5 wt% SiO in sol2Sol and 2.5 wt% TeO2Of the composition with sol addedComposite sol solutionDip coating by immersing the sample inInfiltrate the composite sol into the pores of the alumina porous membranedid. Subsequently, after drying for a long time (12 hours or more) to form a composite sol into a composite gel, the composite gel was made into a structure mainly composed of anatase-type titania crystals by heat treatment at 500 ° C. for 2 hours. Finally, only the anodized film is chemically dissolved and removed in a mixed acid solution (70 ° C.) of 5% by volume phosphoric acid and 2% by volume chromic acid, and nanotubes extending in the direction perpendicular to the substrate surface are formed on the transparent glass substrate. A sample 1 of a titania-based composite nanostructure (7 in FIG. 1) regularly arranged on the surface was manufactured.
[0052]
Example 2
  Using the same ITO and Al-sputtered transparent glass substrate as in Example 1, samples were prepared in exactly the same manner as in Example 1 up to pretreatment, anodization, pore enlargement, and sol-gel treatment. Next, this dip-coated composite sample was finally heat-treated at 500 ° C. for 2 hours without chemically dissolving the anodic oxide film, and a porous titania-based composite nanostructure mainly composed of anatase-type titania crystals ( Sample 2 of 6) in FIG. 1 was produced.
[0053]
Example 3
  Using the same ITO and Al-sputtered transparent glass substrate as in Example 1, a sample was prepared in the same process as in Example 1 up to pretreatment, anodization, pore enlargement, and sol-gel treatment. Next, the dip-coated composite sample was heated at 600 ° C. for 2 hours without chemically dissolving the anodized film, and finally porous titania mainly composed of titania crystals mixed with rutile and anatase types. Sample 3 of the composite nanostructure was manufactured.
[0054]
Example 4
  Using a transparent glass substrate on which an ITO layer having a thickness of about 120 nm is sputtered on the surface, and further using a substrate on which RF sputtering of about 2 μm of Al is further performed, a sample subjected to ultrasonic cleaning in acetone for 10 minutes as a pretreatment is prepared. Anodized. Anodization was conducted at a constant potential of 40 V in a 3 wt% oxalic acid solution. To enlarge the pore size of the porous alumina membrane formed by anodization, the sample was immersed in a 5% by volume phosphoric acid solution at 30 ° C. to adjust the pore size to about 80 nm.
[0055]
  Thereafter, the sample was immersed in a sol having the same composition and concentration as in Example 1 and dip-coated. Finally, a sample 4 of a porous titania-based composite nanostructure mainly composed of anatase-type titania crystals was manufactured by heat treatment at 500 ° C. for 2 hours.
[0056]
Example 5
  Using the same Al-sputtered glass substrate as in Example 4, a phosphoric acid anodic oxide film having a pore diameter of about 180 nm treated by the same process, composition, and conditions as in Example 1 until pretreatment, anodization, and pore diameter expansion treatment was used. Created. Then TiO25 wt% SiO in sol2Sol and 5 wt% TeO2The sample is dipped in a sol having a composition to which the sol has been added, and finally subjected to heat treatment at 600 ° C. for 2 hours to produce a sample 5 of a porous titania-based composite nanostructure mainly composed of anatase-type titania crystals. did.
[0057]
Example 6
  Using the same Al-sputtered glass substrate as in Example 5, a phosphoric acid anodic oxide film having a pore diameter of about 180 nm was prepared by the same process, composition and conditions as in Example 1 from the subsequent pretreatment to the pore diameter expansion treatment. . Then TiO22 wt% RuO in sol2The sample was immersed in a sol having a composition to which the sol was added, and finally heat-treated at 500 ° C. for 2 hours to produce a porous titania-based composite nanostructure sample 6 mainly composed of anatase-type titania crystals.
[0058]
  In order to evaluate the photocatalytic properties of the titania-based composite nanostructure of the present invention, as a representative of harmful chemical substances, acetaldehyde gas is used to irradiate CO with UV light.2And photolysis experiment for detoxification with water. Table 1 shows the total of the titania-based nanostructures composed of the six types of titania-based composite nanostructures (nanotube array type and porous type) of Examples 1 to 6, the reference sample, and the standard sample. This is a summary of the comparison of the initial photodegradation rate of acetaldehyde gas with the elapse of irradiation time under ultraviolet irradiation using eight types of samples.
[0059]
[Table 1]
Figure 0003834631
[0060]
  For comparison of photocatalytic properties, commercially available Degussa P25 pure titania powder was used as a standard sample. The reference sample has a sol composition of TiO at the time of sol-gel coating.2A porous titania-based nanostructure having the same manufacturing process and conditions as in Example 2 except that it is a single sol.
[0061]
  As can be seen from Table 1, the initial rate of the photodecomposition reaction of acetaldehyde is 0.37 for the standard sample, whereas all the six types of samples of the present invention have values of 5 times or more. Samples 1 to 4 were 9 times or more, and the maximum value was 17.6 times that of Sample 1 in which nanotubes were arranged.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a production process of a “porous composite nanostructure” of the present invention.
FIG. 2 is a conceptual diagram showing the structure of the “nanotube array structure” of the present invention.

Claims (4)

基体の表面に2〜200nmの深さの微細凹凸構造を有する透明導電層を形成し、該導電層上にアルミニウムを蒸着し、陽極酸化により基体上に多孔質アルミナ皮膜からなる規則化配列した、径が80nm以上250nm以下である細孔を形成して、該細孔にチタニアゾル液を浸入させてゲル化させ、これを加熱してアナターゼ型チタニア系結晶体を形成する方法において、
粘度が2.4cSt−20℃のチタニアゾル中に粘度が2.1cSt−20℃以下の酸化物ゾルを1〜20重量%添加することによって粘度を低くした複合ゾル液中に該細孔を形成した基体を浸漬して複合ゾル液を該細孔内に浸入させ、続いて、乾燥して複合ゾルを複合ゲル化した後、
500〜600℃で加熱して該細孔壁と密着した開放表面孔を持つアナターゼ型チタニア系結晶の中空構造を形成することを特徴とするアナターゼ型チタニア系結晶体からなる光触媒の製造方法。
A transparent conductive layer having a fine concavo-convex structure with a depth of 2 to 200 nm is formed on the surface of the substrate, aluminum is vapor-deposited on the conductive layer, and a regular array of porous alumina films is formed on the substrate by anodic oxidation. In a method of forming a pore having a diameter of 80 nm or more and 250 nm or less, allowing a titania sol solution to enter into the pore to be gelled, and heating this to form an anatase titania-based crystal,
The pores were formed in a composite sol liquid having a reduced viscosity by adding 1 to 20% by weight of an oxide sol having a viscosity of 2.1 cSt-20 ° C. or less in a titania sol having a viscosity of 2.4 cSt-20 ° C. After immersing the substrate and allowing the composite sol solution to enter the pores, and subsequently drying to form the composite sol into a composite gel,
A method for producing a photocatalyst comprising an anatase-type titania-based crystal, which is heated at 500 to 600 ° C. to form a hollow structure of anatase-type titania-based crystal having an open surface hole in close contact with the pore wall.
前記酸化物ゾルが、Al、TiO、SiO、ZrO、SnO、またはTaOあることを特徴とする請求項1記載のアナターゼ型チタニア系結晶体からなる光触媒の製造方法。Said oxide sol, Al 2 O 3, TiO 2 , SiO 2, ZrO 2, SnO 2, or the method of manufacturing a photocatalyst comprising the claims 1 anatase titania-based crystal of, wherein the TaO 2 is. 前記酸化物ゾルがシリカゾルと酸化テルルゾルの混合物であることを特徴とする請求項1記載のアナターゼ型チタニア系結晶体からなる光触媒の製造方法。The method for producing a photocatalyst comprising an anatase-type titania crystal according to claim 1, wherein the oxide sol is a mixture of silica sol and tellurium oxide sol. 請求項1ないしのいずれかに記載の方法によりアナターゼ型チタニア結晶体を形成した後、多孔質アルミナ皮膜を溶解除去することを特徴とするアナターゼ型チタニア系結晶体からなる光触媒の製造方法。After forming the anatase-type titania crystal by the method according to any one of claims 1 to 3, the method of manufacturing photocatalyst comprising anatase titania-based crystal, which comprises dissolving and removing the porous alumina film.
JP2002295668A 2002-10-09 2002-10-09 Method for producing photocatalyst comprising titania-based crystal formed on substrate Expired - Lifetime JP3834631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295668A JP3834631B2 (en) 2002-10-09 2002-10-09 Method for producing photocatalyst comprising titania-based crystal formed on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295668A JP3834631B2 (en) 2002-10-09 2002-10-09 Method for producing photocatalyst comprising titania-based crystal formed on substrate

Publications (2)

Publication Number Publication Date
JP2004130171A JP2004130171A (en) 2004-04-30
JP3834631B2 true JP3834631B2 (en) 2006-10-18

Family

ID=32285847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295668A Expired - Lifetime JP3834631B2 (en) 2002-10-09 2002-10-09 Method for producing photocatalyst comprising titania-based crystal formed on substrate

Country Status (1)

Country Link
JP (1) JP3834631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579716A (en) * 2018-04-12 2018-09-28 河海大学 A kind of hollow photocatalysis with porous permeable surface dirty particle and preparation method thereof only

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672973B2 (en) * 2002-09-30 2011-04-20 昭和電工株式会社 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof
JP2005008510A (en) 2003-05-29 2005-01-13 Institute Of Physical & Chemical Research Method of manufacturing nanotube material, and nanotube material
US7732015B2 (en) 2004-05-31 2010-06-08 Japan Science And Technology Agency Process for producing nanoparticle or nanostructure with use of nanoporous material
JP4728666B2 (en) * 2005-03-07 2011-07-20 Jx日鉱日石エネルギー株式会社 Method for producing amorphous titania
CN1317193C (en) * 2005-07-07 2007-05-23 上海交通大学 Method for microwave preparation of titania nanometer tube
KR100703032B1 (en) 2005-08-29 2007-04-06 강릉대학교산학협력단 Nano porous photocatalytic membrane, method of manufacturing the same, water treatment purification system and air purification system using the nano porous photocatalytic membrane
US20120111801A1 (en) * 2005-08-31 2012-05-10 Seoul National University R & Db Foundation Near-Field Photocatalyst Including Zinc Oxide Nanowire
JP2007098197A (en) * 2005-09-30 2007-04-19 Bridgestone Corp Manufacturing method of photocatalyst material
JP4826860B2 (en) 2009-03-18 2011-11-30 Toto株式会社 Measuring device used for specific detection of test substance using photocurrent, sensor unit used therefor, and specific detection method of test substance using photocurrent
US8273425B2 (en) * 2009-05-14 2012-09-25 Empire Technology Development Llc Nanotube assisted self-cleaning material
US20170267520A1 (en) 2010-10-21 2017-09-21 Hewlett-Packard Development Company, L.P. Method of forming a micro-structure
WO2012054045A1 (en) 2010-10-21 2012-04-26 Hewlett-Packard Development Company, L.P. Method of forming a nano-structure
US9611559B2 (en) 2010-10-21 2017-04-04 Hewlett-Packard Development Company, L.P. Nano-structure and method of making the same
WO2012054044A1 (en) 2010-10-21 2012-04-26 Hewlett-Packard Development Company, L. P. Method of forming a micro-structure
EP2630276A4 (en) 2010-10-21 2017-04-19 Hewlett-Packard Development Company, L.P. Method of forming a nano-structure
JP5890842B2 (en) * 2010-11-04 2016-03-22 中国科学院理化技術研究所 Semiconductor photocatalyst for photocatalysis and reforming of biomass derivatives to produce hydrogen and its production and application
CN102259032B (en) * 2011-05-31 2013-07-24 厦门大学嘉庚学院 Method for preparing activated sludge / titanium dioxide composite material
US20140238875A1 (en) 2011-09-26 2014-08-28 Toto Ltd. Method for specifically detecting test substance
JP2014030808A (en) * 2012-08-06 2014-02-20 Hitachi Aic Inc Catalyst component
CN105129846A (en) * 2015-08-20 2015-12-09 东北大学 Preparation method, product and application of titanium dioxide nanotube/nanoribbon composite thin film
KR102114846B1 (en) * 2017-11-14 2020-05-26 한국생산기술연구원 Photocatalytic filter and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450979B2 (en) * 1996-08-22 2003-09-29 株式会社竹中工務店 Metallic material having photocatalytic activity and method for producing the same
EP1205244B1 (en) * 1999-08-05 2012-05-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Use of a photocatalytic material
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579716A (en) * 2018-04-12 2018-09-28 河海大学 A kind of hollow photocatalysis with porous permeable surface dirty particle and preparation method thereof only
CN108579716B (en) * 2018-04-12 2021-04-09 河海大学 Hollow photocatalytic dirt-removing particle with porous water-permeable surface and preparation method thereof

Also Published As

Publication number Publication date
JP2004130171A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3834631B2 (en) Method for producing photocatalyst comprising titania-based crystal formed on substrate
Fu et al. A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications
Peleyeju et al. Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater
Chu et al. Highly porous (TiO2− SiO2− TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol− gel process
Dunkle et al. BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis
Zazpe et al. Atomic layer deposition for coating of high aspect ratio TiO2 nanotube layers
Liu et al. Progress on free-standing and flow-through TiO2 nanotube membranes
Karuppuchamy et al. Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition
Macak et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications
JP3598373B2 (en) Nanostructures joined and regularly arranged on a substrate and a method for producing the same
Song et al. Enhanced photoelectrochemical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates
Kandy et al. Photocatalytic reduction of CO2 using CdS nanorods on porous anodic alumina support
Ottone et al. Wetting behavior of hierarchical oxide nanostructures: TiO2 nanotubes from anodic oxidation decorated with ZnO nanostructures
Inoue et al. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum
Chu et al. Highly porous TiO 2/Al 2 O 3 composite nanostructures on glass by anodization and the sol–gel process: fabrication and photocatalytic characteristics
Indira et al. Synthesis of titanium/niobium oxide nanocomposite on top open bamboo like titanium dioxide nanotube for the catalytic degradation of organic pollutants
Yang et al. Novel Fe2O3/{101} TiO2 nanosheet array films with stable hydrophobicity and enhanced photoelectrochemical performance
Liu et al. In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity
KR20100032841A (en) Manufacturing method of nanotube-shaped tio2
US9468920B2 (en) Ultra-porous photocatalytic material, method for the manufacture and the uses thereof
JP2001286749A (en) Chemical transducer
Peng et al. Strategic surface modification of TiO2 nanorods by WO3 and TiCl4 for the enhancement in oxygen evolution reaction
JP4104899B2 (en) Porous titanium oxide thin film and method for producing the same
Xing et al. Morphological control and hydrophilic properties of TiO2 nanorod/nanotube films by hydrothermal method
JP2006054421A (en) Semiconductor film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Ref document number: 3834631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term