JP3834558B2 - Acoustic fluid machinery - Google Patents

Acoustic fluid machinery Download PDF

Info

Publication number
JP3834558B2
JP3834558B2 JP2003084400A JP2003084400A JP3834558B2 JP 3834558 B2 JP3834558 B2 JP 3834558B2 JP 2003084400 A JP2003084400 A JP 2003084400A JP 2003084400 A JP2003084400 A JP 2003084400A JP 3834558 B2 JP3834558 B2 JP 3834558B2
Authority
JP
Japan
Prior art keywords
piston
acoustic
acoustic resonance
resonance tube
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003084400A
Other languages
Japanese (ja)
Other versions
JP2004294597A (en
Inventor
正昭 川橋
完 藤岡
昌之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Original Assignee
Anest Iwata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp filed Critical Anest Iwata Corp
Priority to JP2003084400A priority Critical patent/JP3834558B2/en
Publication of JP2004294597A publication Critical patent/JP2004294597A/en
Application granted granted Critical
Publication of JP3834558B2 publication Critical patent/JP3834558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、音響共振に基づく振幅圧力変動を利用した、気体用音響流体機械に関する。
【0002】
【従来の技術】
音響共振管の大径の基端部の内側に、駆動音源をもって、微小振幅で軸方向に高速で往復運動させられるピストンを設け、このピストンの往復運動に伴う音響共振管内の圧力変動によって、気体を、小径の先端部から、音響共振管内へ吸入して吐出させるようになっている音響流体機械は公知である。
【0003】
この音響流体機械は、ピストンを軸線方向に微小振幅で往復させた際のピストンの運動に伴う管内気柱の共振現象により生じる音響定在波の振幅圧力変動を利用しているもので、作動部としては、音響共振管の基端内部側に設けたピストンを高速で往復運動させる加振装置を備えているのみである。
【0004】
従って、構造がきわめて簡単で、故障のおそれも小さいという特長を有し、今後広く利用されるものと期待されている。
【0005】
【発明が解決しようとする課題】
上述した音響流体機械は、高速で微振動するピストンの表面において発生する音波を小径の先端部へ伝播させて、所望の吸排気作用を行わせるものであるが、効果的に作動させるためには、小径の先端部に到達した音波の干渉を、極力小としなければならない。
【0006】
そのためには、音響共振管の長さとピストンの径との比をできるだけ大とすることが必要である。換言すると、一定の吸排能力を効率良く得るためには、ピストンの径に比して、音響共振管の長さを、一定以上に長くしなければならない。
【0007】
しかし、得ようとする性能に比して、音響共振管が余りにも長いと、その用途は制約され、また製造および設置のための費用も大となる。
【0008】
本発明は、ピストンの径に比して音響共振管の長さを極力小とすることにより、用途の拡大と製造コストの低減を図った音響流体機械を得ることを目的としている。
【0009】
【課題を解決するための手段】
本発明によると、上記目的は、次のようにして達成される。
(1)音響共振管の大径の基端部内側に、駆動音源をもって、微小振幅で軸方向に高速で往復運動させられるピストンを設け、このピストンの往復運動に伴う音響共振管内の圧力変動によって、音響共振管の小径の先端部に設けた吸気バルブより気体を音響共振管内へ吸入して、同じく小径の先端部に設けた排気バルブより吐出させるようになっている音響流体機械において、前記音響共振管の小径の先端部における吸気バルブと排気バルブからなる吸排バルブ装置とピストンの表面との距離を、ピストンの全表面にわたって可及的に一定とすることにより、ピストンの振動に伴って発生するその表面の音波を、音響共振管の先端における吸排バルブ装置へ有効に集中させるようにする。
【0010】
(2)上記(1)項において、ピストンの表面を、音響共振管の先端部方向に対して凹入させる。
【0011】
(3)上記(1)または(2)項において、ピストンの表面の形状を、音響共振管の先端部の中心と、ピストンの表面の中心とを結ぶ直線を半径とし、かつ音響共振管の先端部の中心を中心とする凹入円弧面とする。
【0012】
【発明の実施の形態】
図1は、請求項1または2記載の発明に係る音響流体機械の一実施形態を略示する縦断正面図である。
【0013】
この音響流体機械は、音響共振管(1)の基端である下端大径部に加振装置(2)を取付け、同じく先端である上端小径部に吸排バルブ装置(3)を取付けて構成されている。
【0014】
音響共振管(1)は、下端部が大径で、上方へ行くに従って漸次小径となっている共鳴孔(4)を有する。共鳴孔(4)の寸法は、例えば上端から下端までの長さを約100とすると、上端部の径は約5、下端部の径は約35とされている。
【0015】
加振装置(2)は支持台を兼ね、上面に、図に表れない適宜の振動ユニットによって、上下に振動させられるピストン(5)を備えている。ピストン(5)は軽合金からなり、共鳴孔(4)の下端部に嵌合され、その外周縁には、シール部材(6)が嵌設されている。
【0016】
ピストン(5)の表面の中心(18)に対し、その周辺部(19)は、漸次上方へ向かって傾斜している。
【0017】
音響共振管(1)は、下端に外向フランジ(7)を有し、この外向フランジ(7)を加振装置(2)の上面に重合し、外向フランジ(7)と加振装置(2)は、適数のボルト(8)をもって締着されている。
【0018】
吸排バルブ装置(3)は、一側面に入口孔(9)を備え、かつ底壁(3a)の下面に外気吸入用の内向き逆止吸気バルブ(10)付き吸入孔(11)を備える吸込室(12)と、他側面に出口孔(13)を備え、かつ底壁(3a)の上面に加圧気体吐出用の外向き逆止排気バルブ(14)付き吐出孔(15)を備える吐出室(16)を並設して形成され、音響共振管(1)の小径の頂部に装着されている。
【0019】
内向き逆止吸気バルブ (10) および外向き逆止排気バルブ(14)は、それぞれ一端を、吸込室(12)の底面の下側、および吐出室(16)の底面の上側に止着した薄肉鋼板等からなるリード弁、あるいはゴム板弁からなっている。しかし、ボール式その他の型式のものであってもよい。
【0020】
外向き逆止排気バルブ(14)の開弁抵抗力は、内向き逆止吸気バルブ(10)のそれに比して、かなり大きく定められている。
吸込室(12)と吐出室(16)は、画壁(17)で区分されている
【0021】
加振装置(2)の駆動周波数は、図示しないファンクションシンセサイザーにより制御され、ピストン(5)の加速度を、0.1Hz程度の精度で調整しうるようになっている。
【0022】
ピストン(5)が、音響共振管(1)の下端の大径の基端部で軸線方向に微小振幅で往復運動すると、これに伴い、音響共振管(1)内の圧力振幅が極小となったときに、外気は、入口孔(9)より吸入されて、吸込室(12)へ流入し、吸入孔(11)および内向き逆止吸気バルブ(10)を経て、音響共振管(1)内へ吸入される。また、音響共振管(1)内の圧力振幅が極大となったときに、音響共振管(1)内から、吐出孔(15)および外向き逆止排気バルブ(14)を経て、加圧状態で、吐出室(16)より出口孔(13)を経て吐出される。
【0023】
前述したように、吐出孔(15)における外向き逆止排気バルブ(14)の開弁抵抗力を、吸入孔(11)における内向き逆止吸気バルブ(10)のそれよりもかなり大としてある。
【0024】
そのため、運転の初期において、ピストン(5)の作動により、吸入孔(11)および内向き逆止吸気バルブ(10)を経て共鳴孔(4)内へ吸込まれた空気は、それに追随して、直ちに吐出孔(15)から吐出することはなく、共鳴孔(4)内の圧力が一定以上に上昇した後に、始めて外向き逆止排気バルブ(14)を開いて、吐出孔(15)および出口孔(13)より吐出させることとなる。
【0025】
従って、内向き逆止吸気バルブ (10) と、外向き逆止排気バルブ(14)の開弁抵抗力が等しい場合に比して、ピストン(5)の往復運動により共鳴孔(4)内へ吸入吐出される気体の密度は大となり、ひいては吐出圧力および吐出量も大となる。
【0026】
図1に示す実施形態においては、ピストン(5)の表面(上面)の中心(18)に対して、その周辺部(19)を、漸次上方、すなわち音響共振管(1)の先端方向へ向かって傾斜させてあるから、ピストン(5)の振動により発生する音波は、内方、すなわち音響共振管(1)の小径の先端部方向を向く。
【0027】
従って、音響共振管(1)の基端部が相当に大径であっても、音波は小径の先端部に集中し、効果的な気体圧縮作用が行われる。
【0028】
そのため、ピストン(5)の径、ひいては音響共振管(1)の大径の基端部の径に対する音響共振管(1)の長さをかなり短かくしても、高い吸排作用を発揮させることができる。
【0029】
図2は、請求項3記載の発明の実施形態を示す図1と同様の図である。
【0030】
図2に示す音響流体機械は、基本的には図1に示したものと同様であるので、図1におけるのと同様の部材には、同一の符号を付してその説明を省略し、異なる個所についてのみ説明する。
【0031】
図2においては、ピストン(5)の表面(上面)の形状を、音響共振管(1)の先端部の中心(20)と、ピストン(5)の表面の中心(21)を結ぶ直線を半径とし、かつ音響共振管(1)の先端部の中心(20)を中心とする凹入円弧面(22)としてある。
【0032】
これにより、ピストン(5)の表面の波は、より正確に音響共振管(1)の先端部中心(20)に集中し、高い効率が得られる。
【0033】
なお、凹入円弧面(22)を、楕円曲面とすることもある。
【0034】
【発明の効果】
ピストンが著しく大径であっても、振動によるその表面の音波は、有効に音響共振管の先端の吸排バルブ装置へ集中するので、高い吸排効果が得られ、ひいてはピストンの径に対し、音響共振管の長さを小とすることができる。
【図面の簡単な説明】
【図1】 請求項1または2記載の本発明の一実施形態を示す縦断正面図である。
【図2】 請求項1または3記載の本発明の一実施形態を示す縦断正面図である。
【符号の説明】
(1)音響共振管
(2)加振装置
(3)吸排バルブ装置
(3a)底壁
(4)共鳴孔
(5)ピストン
(6)シール部材
(7)外向フランジ
(8)ボルト
(9)入口孔
(10)内向き逆止吸気バルブ
(11)吸入孔
(12)吸込室
(13)出口孔
(14)外向き逆止排気バルブ
(15)吐出孔
(16)吐出室
(17)画壁
(18)中心
(19)周辺部
(20)中心
(21)中心
(22)凹入円弧面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acoustic fluid machine for gas using amplitude pressure fluctuation based on acoustic resonance.
[0002]
[Prior art]
A piston that can be reciprocated at high speed in the axial direction with a small amplitude is provided inside the large diameter base end of the acoustic resonance tube, and gas is generated by pressure fluctuations in the acoustic resonance tube due to the reciprocation of this piston. An acoustofluidic machine that sucks and discharges a gas from an end portion having a small diameter into an acoustic resonance tube is known.
[0003]
This acoustohydrodynamic machine uses the amplitude pressure fluctuation of the acoustic standing wave generated by the resonance phenomenon of the air column in the pipe accompanying the movement of the piston when the piston is reciprocated in the axial direction with a minute amplitude. As such, it is only provided with a vibration device that reciprocates a piston provided on the inner side of the proximal end of the acoustic resonance tube at a high speed.
[0004]
Therefore, it has the features that the structure is extremely simple and the risk of failure is small, and is expected to be widely used in the future.
[0005]
[Problems to be solved by the invention]
The acoustofluidic machine described above is intended to propagate the sound wave generated on the surface of the piston that vibrates at a high speed to the tip of the small diameter to perform the desired intake / exhaust action. The interference of the sound wave that reaches the tip of the small diameter must be as small as possible.
[0006]
For this purpose, it is necessary to make the ratio of the length of the acoustic resonance tube and the diameter of the piston as large as possible. In other words, in order to efficiently obtain a certain suction / discharge capability, the length of the acoustic resonance tube must be made longer than a certain value as compared with the diameter of the piston.
[0007]
However, if the acoustic resonance tube is too long compared to the performance to be obtained, its application is restricted and the cost for manufacturing and installation is high.
[0008]
An object of the present invention is to obtain an acoustofluidic machine that is intended to expand applications and reduce manufacturing costs by minimizing the length of an acoustic resonance tube as compared with the diameter of a piston.
[0009]
[Means for Solving the Problems]
According to the present invention, the above object is achieved as follows.
(1) A piston that can be reciprocated at high speed in the axial direction with a small amplitude is provided inside the large diameter proximal end of the acoustic resonance tube, and the pressure fluctuation in the acoustic resonance tube due to the reciprocation of the piston is provided. the gas from the intake valve provided to the small-diameter distal end portion of the acoustic resonance tube by suction to the acoustic resonance tube, in the acoustic fluid machine is also adapted to discharge the exhaust valve provided in the small-diameter distal end portion, the acoustic the distance between the intake valve and the exhaust consists of valve intake valve device and the piston of the surface at the small diameter of the tip portion of the resonance tube, by a Kakyu constant over the entire surface of the piston, generated with the vibration of the piston The sound wave on the surface is effectively concentrated on the intake / exhaust valve device at the tip of the acoustic resonance tube .
[0010]
(2) In the above item (1), the surface of the piston is recessed with respect to the tip portion direction of the acoustic resonance tube.
[0011]
(3) In the above item (1) or (2), the shape of the surface of the piston is a radius that is a straight line connecting the center of the tip of the acoustic resonance tube and the center of the surface of the piston, and the tip of the acoustic resonance tube A concave arc surface with the center of the part as the center.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal front view schematically showing an embodiment of an acoustic fluid machine according to the first or second aspect of the present invention.
[0013]
This acoustofluidic machine is configured by attaching a vibration device (2) to the lower end large diameter portion which is the base end of the acoustic resonance pipe (1), and attaching an intake / exhaust valve device (3) to the upper end small diameter portion which is also the distal end. ing.
[0014]
The acoustic resonance tube (1) has a resonance hole (4) having a large diameter at the lower end and a gradually decreasing diameter as it goes upward. As for the dimensions of the resonance hole (4), for example, if the length from the upper end to the lower end is about 100, the upper end has a diameter of about 5 and the lower end has a diameter of about 35.
[0015]
The vibration exciter (2) also serves as a support, and has a piston (5) that is vibrated up and down by an appropriate vibration unit (not shown) on the upper surface. The piston (5) is made of a light alloy and is fitted to the lower end of the resonance hole (4), and a seal member (6) is fitted to the outer periphery thereof.
[0016]
The peripheral portion (19) is gradually inclined upward with respect to the center (18) of the surface of the piston (5).
[0017]
The acoustic resonance tube (1) has an outward flange (7) at the lower end, and the outward flange (7) is superposed on the upper surface of the vibration exciter (2) to produce the outward flange (7) and the exciter (2). Is fastened with an appropriate number of bolts (8).
[0018]
The intake / exhaust valve device (3) is provided with an inlet hole (9) on one side surface, and an intake hole (11) with an inward check valve (10) for inhaling outside air on the lower surface of the bottom wall (3a). Discharge having a chamber (12), an outlet hole (13) on the other side, and a discharge hole (15) with an outward check exhaust valve (14) for discharging pressurized gas on the upper surface of the bottom wall (3a) The chambers (16) are formed side by side and are mounted on the top of the small diameter of the acoustic resonance tube (1).
[0019]
One end of each of the inward check intake valve (10) and the outward check exhaust valve (14) was fixed to the lower side of the bottom surface of the suction chamber (12) and the upper side of the bottom surface of the discharge chamber (16). It consists of a reed valve made of a thin steel plate or a rubber plate valve. However, it may be of a ball type or other type.
[0020]
The valve opening resistance of the outward check exhaust valve (14) is set to be considerably larger than that of the inward check intake valve (10).
The suction chamber (12) and the discharge chamber (16) are separated by an image wall (17) .
[0021]
The drive frequency of the vibration exciter (2) is controlled by a function synthesizer (not shown) so that the acceleration of the piston (5) can be adjusted with an accuracy of about 0.1 Hz.
[0022]
When the piston (5) reciprocates with a small amplitude in the axial direction at the base end of the large diameter at the lower end of the acoustic resonance tube (1), the pressure amplitude in the acoustic resonance tube (1) becomes minimum accordingly. The outside air is sucked from the inlet hole (9), flows into the suction chamber (12), passes through the suction hole (11) and the inward check intake valve (10), and passes through the acoustic resonance pipe (1). Inhaled. In addition, when the pressure amplitude in the acoustic resonance tube (1) reaches a maximum, it is pressurized from the acoustic resonance tube (1) through the discharge hole (15) and the outward check exhaust valve (14). Thus, the liquid is discharged from the discharge chamber (16) through the outlet hole (13).
[0023]
As described above, the opening resistance of the outward check exhaust valve (14) in the discharge hole (15) is considerably larger than that of the inward check intake valve (10) in the suction hole (11). .
[0024]
Therefore, in the initial stage of operation, the air sucked into the resonance hole (4) through the suction hole (11) and the inward check intake valve (10) by the operation of the piston (5) follows it, The discharge hole (15) is not immediately discharged, and after the pressure in the resonance hole (4) rises above a certain level, the outward check exhaust valve (14) is opened for the first time, and the discharge hole (15) and the outlet are opened. It is discharged from the hole (13).
[0025]
Therefore, as compared with the case where the opening resistance of the inward check intake valve (10) and the outward check exhaust valve (14) are equal, the piston (5) reciprocates into the resonance hole (4). The density of the gas that is sucked and discharged increases, and as a result, the discharge pressure and the discharge amount also increase.
[0026]
In the embodiment shown in FIG. 1, with respect to the center (18) of the surface (upper surface) of the piston (5), its peripheral portion (19) is gradually moved upward, that is, toward the tip of the acoustic resonance tube (1). Therefore, the sound wave generated by the vibration of the piston (5) is directed inward, that is, toward the tip of the small diameter of the acoustic resonance tube (1).
[0027]
Therefore, even if the proximal end portion of the acoustic resonance tube (1) has a considerably large diameter, the sound waves are concentrated on the distal end portion having a small diameter, and an effective gas compression action is performed.
[0028]
Therefore, even if the length of the acoustic resonance tube (1) with respect to the diameter of the piston (5), and hence the diameter of the large diameter base end portion of the acoustic resonance tube (1), is considerably shortened, a high intake / exhaust action can be exhibited. .
[0029]
FIG. 2 is a view similar to FIG. 1 showing an embodiment of the third aspect of the present invention.
[0030]
The acoustic fluid machine shown in FIG. 2 is basically the same as that shown in FIG. 1, and therefore, the same members as those shown in FIG. Only the location will be described.
[0031]
In FIG. 2, the shape of the surface (upper surface) of the piston (5) is a radius of a straight line connecting the center (20) of the tip of the acoustic resonance tube (1) and the center (21) of the surface of the piston (5). And a concave arcuate surface (22) centering on the center (20) of the tip of the acoustic resonance tube (1).
[0032]
Thereby, the wave on the surface of the piston (5) is more accurately concentrated on the center (20) of the tip of the acoustic resonance tube (1), and high efficiency is obtained.
[0033]
The recessed arc surface (22) may be an elliptical curved surface.
[0034]
【The invention's effect】
Even if the piston has a remarkably large diameter, sound waves on its surface due to vibration are effectively concentrated on the suction / discharge valve device at the tip of the acoustic resonance tube, so that a high suction / exhaust effect can be obtained. The length of the tube can be made small.
[Brief description of the drawings]
1 is a longitudinal front view showing an embodiment of the present invention according to claim 1 or 2;
FIG. 2 is a longitudinal front view showing an embodiment of the present invention according to claim 1 or 3;
[Explanation of symbols]
(1) Acoustic resonance tube
(2) Excitation device
(3) Intake / exhaust valve device
(3a) Bottom wall
(4) Resonance hole
(5) Piston
(6) Seal member
(7) Outward flange
(8) Bolt
(9) Entrance hole
(10) Inward check valve
(11) Suction hole
(12) Suction chamber
(13) Outlet hole
(14) Outward check exhaust valve
(15) Discharge hole
(16) Discharge chamber
(17) Painting wall
(18) Center
(19) Peripheral part
(20) Center
(21) Center
(22) Concave arc surface

Claims (3)

音響共振管の大径の基端部内側に、駆動音源をもって、微小振幅で軸方向に高速で往復運動させられるピストンを設け、このピストンの往復運動に伴う音響共振管内の圧力変動によって、音響共振管の小径の先端部に設けた吸気バルブより気体を音響共振管内へ吸入して、同じく小径の先端部に設けた排気バルブより吐出させるようになっている音響流体機械において、前記音響共振管の小径の先端部における吸気バルブと排気バルブからなる吸排バルブ装置とピストンの表面との距離を、ピストンの全表面にわたって可及的に一定とすることにより、ピストンの振動に伴って発生するその表面の音波を、音響共振管の先端における吸排バルブ装置へ有効に集中させるようにしたことを特徴とする音響流体機械。The inner base end portion of the large diameter of the acoustic resonance tube, with a driving excitation, the piston is reciprocated in the axial direction at high speed small amplitude provided by the pressure variation in the acoustic resonance tube due to the reciprocating motion of the piston, acoustic resonance the gas from the intake valve provided to the small-diameter distal end portion of the tube was sucked into the acoustic resonance tube, also in the acoustic fluid machine adapted to eject the exhaust valve provided in the small-diameter tip of the acoustic resonator tube the distance between the intake valve and the intake valve device and the piston of the surface consisting of the exhaust valve in the small-diameter tip portion, by a Kakyu constant over the entire surface of the piston, the surface generated due to vibration of the piston An acoustic fluid machine characterized by effectively concentrating sound waves on a suction / discharge valve device at a tip of an acoustic resonance tube . ピストンの表面を、音響共振管の先端部方向に対して凹入させてあることを特徴とする請求項1記載の音響流体機械。  2. The acoustic fluid machine according to claim 1, wherein a surface of the piston is recessed with respect to a direction of a tip portion of the acoustic resonance tube. ピストンの表面の形状を、音響共振管の先端部の中心と、ピストンの表面の中心とを結ぶ直線を半径とし、かつ音響共振管の先端部の中心を中心とする凹入円弧面としたことを特徴とする請求項1または2記載の音響流体機械。  The shape of the surface of the piston is a concave arc surface centered on the center of the tip of the acoustic resonance tube, with the radius connecting the center of the tip of the acoustic resonance tube and the center of the surface of the piston. The acoustic fluid machine according to claim 1, wherein:
JP2003084400A 2003-03-26 2003-03-26 Acoustic fluid machinery Expired - Fee Related JP3834558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084400A JP3834558B2 (en) 2003-03-26 2003-03-26 Acoustic fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084400A JP3834558B2 (en) 2003-03-26 2003-03-26 Acoustic fluid machinery

Publications (2)

Publication Number Publication Date
JP2004294597A JP2004294597A (en) 2004-10-21
JP3834558B2 true JP3834558B2 (en) 2006-10-18

Family

ID=33399577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084400A Expired - Fee Related JP3834558B2 (en) 2003-03-26 2003-03-26 Acoustic fluid machinery

Country Status (1)

Country Link
JP (1) JP3834558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704781B2 (en) * 2005-03-25 2011-06-22 アネスト岩田株式会社 Acoustic compressor

Also Published As

Publication number Publication date
JP2004294597A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CN1270104C (en) Resonator for rotary compressor
US6692238B2 (en) Muffler of compressor
US6547032B2 (en) Suction muffler of reciprocating compressor
JP2002021527A (en) Muffler
WO2009087714A1 (en) Diaphragm air pump
JP2018031303A (en) Compressor
US5910648A (en) Sound generator
CN205714785U (en) A kind of helical-lobe compressor exhaust airstream pulsation dampening and screw compressor system
JP3834558B2 (en) Acoustic fluid machinery
JP2007046595A (en) Rotary compressor
CN1219973C (en) Vibration absorption structure for high-pressure exhausting pipe of compressor
US7299894B2 (en) Acoustic fluid machine
JP4084152B2 (en) Acoustic fluid machinery
US7443060B2 (en) Acoustic compressor with two resonators
JP4148411B2 (en) Acoustic fluid machinery
US7559406B2 (en) Acoustic fluid machine
US7252178B2 (en) Acoustic fluid machine
JP4074980B2 (en) Diaphragm pump
JP2019065708A (en) pump
JP2004293356A (en) Acoustic compressor
US7130246B2 (en) Acoustic fluid machine
US20060011411A1 (en) Acoustic compressor
JP2001182654A (en) Shielding plate of delivery muffler for hermetically sealed reciprocating compressor
CN216447078U (en) Silencing filter for piston machine
JP2002098045A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees