JP3834363B2 - Method for analyzing trace impurities in gas - Google Patents

Method for analyzing trace impurities in gas Download PDF

Info

Publication number
JP3834363B2
JP3834363B2 JP25719496A JP25719496A JP3834363B2 JP 3834363 B2 JP3834363 B2 JP 3834363B2 JP 25719496 A JP25719496 A JP 25719496A JP 25719496 A JP25719496 A JP 25719496A JP 3834363 B2 JP3834363 B2 JP 3834363B2
Authority
JP
Japan
Prior art keywords
pressure
gas
ionization
oxygen
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25719496A
Other languages
Japanese (ja)
Other versions
JPH10104203A (en
Inventor
明 西名
仁美 梅原
良夫 石原
哲也 君島
員章 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP25719496A priority Critical patent/JP3834363B2/en
Publication of JPH10104203A publication Critical patent/JPH10104203A/en
Application granted granted Critical
Publication of JP3834363B2 publication Critical patent/JP3834363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガス中の不純物濃度の測定装置に関し、特に高感度ガス分析装置に適用して有効な技術に関する。
【0002】
【従来の技術】
近年、半導体製造工程に用いられる高純度ガスの分析においては、大気圧イオン化質量分析装置(Atmospheric Pressure Ionization Mass Spectrometer;APIMS)という高感度ガス分析装置が用いられている。
【0003】
そして、従来用いられている大気圧イオン化質量分析装置は、応用物理、第56巻、第11号、第1446〜1472頁(1987)で紹介されている。本装置の構成を図11に示す。本装置は、大気圧に開放されたイオン化部1、約50Paに保たれた差動排気部2、約10-4Paに保たれた質量分析部3で構成され、イオン化部1にはガス流入口4、ガス流出口5、イオン化を行うための放電針6があり、測定対象ガス7はガス流入口4より供給され、ガス流出口5より排出される。また、イオン化部1と差動排気部2の間は、細穴8、差動排気部2と質量分析部3の間は細穴9を介して仕切られ、差動排気部2および質量分析部3にそれぞれ接続された真空ポンプによりそれぞれの圧力が維持できるようになっている。質量分析部3には質量分離部12(四重極質量分析器)、検出部13(電子増倍管)があり、大気圧に保たれたイオン化部1でイオン化されたイオンが差動排気部2を通って、高真空の質量分析部3で測定対象ガス7を分析できるようになっている。質量分析部3の検出部13には、増幅器14、計算機15及びレコーダー16が接続されている。
本装置は、イオン化部が大気圧であるため試料の直接導入が可能であり、半導体製造工程の高純度ガスラインの分析に用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の大気圧イオン化質量分析装置を用いて各種高純度ガス中の不純物を分析する場合、特に高純度窒素または高純度アルゴン中の不純物酸素を分析する際には、窒素中の水分の反応速度定数が2.9×10-9molecule-1cm3-1であるのに対して、酸素は2.5×10-10molecule-1cm3-1で、水分の約10分の1しかないため、感度が水分等に比較して低かった。また、イオン化部出口を大気開放してイオン化部をほぼ大気圧にして測定していたので、イオン化部への試料ガスの導入圧力、流量、イオン化部出口の背圧がそれぞれ正確に制御されていなかったため、イオン化部の圧力が変動し、差動排気部に吸い込まれる流量も充分に制御できていなかった。そのため、測定値のばらつきや、検量線の傾きが変動する不具合があった。
【0005】
本発明は上記事情に鑑みてなされたもので、大気圧イオン化質量分析計を用いてガス中の微量不純物を分析する方法において、従来では感度が低く、測定値のバラツキがあった高純度ガス中の酸素などの微量不純物濃度を高感度で測定することのできる分析方法の提供を課題としている。
【0006】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、質量分析計を用いてガス中の微量不純物を分析する方法において、質量分析計のイオン化部の圧力を1.3×10Pa〜5.0×10Paの範囲とし、前記イオン化部を大気圧よりも高圧に保ちながら、高純度窒素または高純度アルゴン中の100ppb以下の不純物濃度を分析することを特徴とするガス中の微量不純物分析方法である。
【0007】
【発明の実施の形態】
本発明者らは、従来の大気圧イオン化質量分析計を用いてガス中の微量不純物を分析する方法において、イオン化部を大気圧よりも高圧にした場合、不純物成分によって感度の向上に差があることを発見した。つまり、高圧条件下でイオン化することによって、従来の大気圧イオン化において感度の低い不純物ほど感度の向上率が大きくなることを見出した。たとえば、水分と比較して感度の低かった不純物酸素が、高圧イオン化では特に高感度に分析できることを見出した。
さらに、感度および精度は高圧であるほど向上するが、不純物によって飽和してくると、差動排気ポンプ等の排気能力とのバランスにより、実用上最適な圧力範囲があり、いたずらに高圧にすればよいのではないことも判明した。特に、窒素中の酸素不純物のS/N比に関しては最適な条件があることが確認された。
【0008】
これらの結果から、迅速にイオン化部を最適圧力に調整することにより、ガス中の不純物を高感度・高精度に分析することができるようになった。特に大気圧イオン化では感度が低かった高純度ガス中の不純物酸素を高感度且つ高精度で測定することができるようになった。
【0009】
本発明によれば、高純度窒素ガスや高純度アルゴンガスなどの高純度ガス中に含まれる酸素などの不純物が、イオン化部を最適な圧力条件に保つことで高感度、高精度に分析でき、同時に他成分の高感度分析も可能となる。
不純物の感度の向上する理由は、明確に分かっていないが、ある圧力領域で、窒素ガス等のマトリックスガスとのイオン分子反応の効率が上昇したためと思われる。
【0010】
図1は、本発明によるガス中の微量不純物分析方法の一形態を説明するための質量分析計の第1の例を示す概略構成図である。このイオン化質量分析計は、図11に示した大気圧イオン化質量分析計とほぼ同様の構成になっており、同一の構成要素には同じ符号を付してある。この分析計では、イオン化部1に接続されたガス導入路4とガス排出路5に、それぞれマスフローコントローラ21,22を設け、圧力計23により示される圧力を見ながらイオン化部1内の圧力を大気圧よりも高圧の所望の圧力に設定できるように構成されている。
なお、質量分析計の圧力設定方法は前記の例に限定されず変更が可能である。例えば図2に示すように、ガス導入路4にバイパスラインを設け、そのラインに背圧弁24(バックプレッシャーレギュレータ)を配し、この背圧弁24と、ガス排出路5に配したマスフローコントローラ22によって、イオン化部1内の圧力を大気圧以上の所望の圧力に設定しても良い。
また、試料ガス7の圧力、流量が一定の時には、図3に示すように背圧弁24に代えてマスフローコントローラ21をバイパスラインに設けた構成としても、イオン化部1内の圧力を大気圧以上の所望の圧力に設定することができる。
さらに、図4に示すように、図1のガス排出路5に設けられているマスフローコントローラ22を二ードル弁25に代えることもできる。
【0011】
この質量分析計を用い、イオン化部1を大気圧よりも高圧に保ちながら、高純度ガス中の不純物濃度を分析する本発明方法を実施する場合、イオン化部1の圧力は、1.3×105Pa〜5.0×105Paの範囲とすることが望ましい。イオン化部1の内圧が1.3×105Paより低いと、不純物検出感度や精度が従来の大気圧イオン化質量分析と大差無くなる。また、イオン化部1内圧が5.0×105Paより高いと、ノイズが上昇し、大気圧の場合と感度(S/N比)があまり変わらなくなるので好ましくない。
【0012】
本発明のガス中の微量不純物分析方法において、分析対象とする高純度ガスは特に限定されず、またそのガスに含まれる分析対象となる不純物の種類も限定されない。ただし、本発明は、従来方法では分析が困難であった高純度窒素または高純度アルゴン中の不純物酸素を、ppt(10-12)レベルで測定することが可能となり、これら高純度ガス中の不純物酸素濃度の定量に極めて有効である。高純度ガス中の不純物濃度は限定されないが、前記高純度窒素または高純度アルゴン中の不純物酸素は100ppb以下である。
【0013】
このように質量分析計のイオン化部を大気圧よりも高圧に保ちながら、高純度ガス中の不純物濃度を分析することによって、イオン化部内圧を大気圧として分析する場合に比べ、ガス中の不純物濃度を格段に高感度、高精度で分析することができる。
また、イオン化部の圧力を1.3×105Pa〜5.0×105Paの範囲として分析することによって、特に高純度ガス中の不純物酸素を分析する際のS/N比を改善することができる。
さらに、高純度ガスが窒素またはアルゴン、分析する不純物が酸素の条件で分析を行うことによって、従来方法では分析し難かったこれら高純度ガス中の不純物酸素がpptレベルで分析可能となる。
さらにまた、前記不純物濃度が100ppb以下の濃度領域で前記分析を行うことにより、高純度ガス中の微量不純物を高感度、高精度分析でき、酸素、水分、炭酸ガスなどの各種不純物を同時に検出可能となる。
【0014】
【実施例】
日立東京エレクトロニクス(株)製,UG−240APNS型の質量分析装置のイオン化部のガス供給路と排出路にそれぞれマスフローコントローラーを取り付け、イオン化部内圧を大気圧〜5.0×105Paに調節可能としたイオン化質量分析計を製作し、これを用いて高純度窒素ガス中の不純物濃度を測定した。イオン化部に圧力をかけるためにイオン化部入口側のマスフローコントローラを1L/分と一定流量とし、イオン化部出口側のマスフローコントローラの流量を900から700cc/分の範囲内に設定し、イオン化部内の圧力を大気圧(105Pa)から3.3×105Paまでかけた。
このときのイオン化部内の圧力と質量分析計への吸い込み量の関係は図5に示す通りであった。図5のグラフから明らかなように、イオン化部内の圧力と吸い込み量は比例関係にあることがわかる。
【0015】
標準ガスと希釈ガスを希釈装置で混合させ、ppbレベルの校正用ガスを発生させる。窒素中の酸素、炭酸ガス、水分の10ppbの校正用ガスをそれぞれ発生させ、図1のフローによって大気圧から3.3×105Paまでの圧力におけるイオン強度を測定した。一例として、窒素中酸素のイオン強度と圧力の関係を図6に、3成分の感度向上率の比較を図7に示す。これらの結果、イオン化部の圧力が高圧になるに従って、酸素の感度上昇率が向上する。水分は真っ先に感度が鈍り、それに続いて炭酸ガスが鈍ってくる。酸素の感度は大気圧と比較して15倍となった。炭酸ガス、水分はそれぞれ13倍、10倍であった。窒素中の酸素、炭酸ガスおよび水分の反応速度定数は、それぞれ、2.5×10-10molecule-1cm3-1、7.5×10-10molecule-1cm3-1および2.9×10-9molecule-1cm3-1であるから、3成分のうち一番感度の低い酸素の感度上昇率が最も高く、次いで炭酸ガス、水分の順になっている。このことから、高圧イオン化は感度の低い不純物成分の測定に特に効果的であることが分かる。イオン化部の圧力と窒素中不純物のイオン強度との関係を表1に示した。
【表1】

Figure 0003834363
また、酸素の場合、図6及び図7の結果から、更にイオン化部の圧力を高圧にしていくことにより感度上昇が見込まれる。
【0016】
また、定量性の確認のために、大気圧、2.3×105Pa、3.3×105Paでそれぞれ酸素の検量線を作成した。それを図8に示す。この図8に示す通り、いずれも良好な直線性が得られ、イオン化部を大気圧よりも高圧にして、酸素濃度の定量分析が可能なことがわかった。
3.3×105Paの酸素の検量線を使い、イオン化部を3.3×105Paの高圧に保って、窒素精製器出口ガスの分析を行った結果、この窒素ガス中の酸素濃度は、約10pptであった。
【0017】
図9は、図6の測定における窒素ガス中の分析値のイオン化部圧力と変動係数の関係を示すものである。ここで変動係数(%)=標準偏差/平均値×100である。図9から、イオン化部の圧力を高めるに従って変動係数が小さくなり、高精度分析が可能であることがわかる。精度に対する圧力の効果は、1.3×105Paから効果が現われ、2.3×105Pa以上ではほぼ一定の低い変動係数を示した。
【0018】
図10は、上述の図6の条件で窒素ガス中の酸素(濃度10ppb)を、上述したイオン化質量分析計で測定した際のイオン化部圧力とS/N比の関係を示すものである。このS/N比は、イオン化部の圧力を大気圧として測定した際の酸素のピークと、ピークが現われないことが確認されている90−100(m/z)に現われるノイズとの比(S/N比)を1とした時に、イオン化部圧力を高めた場合に測定したS/N比の相対比を表している。
イオン化部の圧力が、ある値(約2.5×105Pa)までは、イオン化部の圧力上昇に伴って、ノイズも大きくなるが、それ以上に酸素検出ピークも大きくなる。その結果、S/N比も大きくなる。イオン化部内圧が2.5×105Pa以上になると、酸素検出ピークはそれほど大きくならず、ノイズが大きくなるので、S/N比が減じている。いずれにしても、イオン化部の圧力を大気圧よりも高圧にすることにより、イオン化部圧力を大気圧とした従来法よりも遥かにS/N比を大きくすることができ、測定感度が大幅に向上したことになる。この実験の結果、イオン化部の圧力を2.5×105Paとした場合、大気圧条件と比べ約5.5倍のS/N比が得られた。
【0019】
酸素以外の不純物に関しても同様な検量線を作成することが可能で、それにより高圧下の測定が高感度、高精度で同時に分析可能であった。
【0020】
【発明の効果】
以上説明したように、本発明によれば以下の効果が得られる。本発明のガス中の微量不純物分析方法は、質量分析計のイオン化部を大気圧よりも高圧に保ちながら、高純度ガス中の不純物濃度を分析することによって、イオン化部内圧を大気圧として分析する場合に比べ、ガス中の不純物濃度を格段に高感度、高精度で分析することができる。また、イオン化部の圧力を1.3×10Pa〜5.0×10Paの範囲として分析することによって、特に高純度ガス中の不純物酸素を分析する際のS/N比を改善することができる。前記高純度ガスが窒素またはアルゴン、分析する不純物が酸素の条件で分析を行うことによって、従来方法では分析し難かったこれら高純度ガス中の不純物酸素がpptレベルで分析可能となる。前記不純物濃度が100ppb以下の濃度領域で前記分析を行うことにより、高純度ガス中の微量不純物を高感度、高精度分析でき、酸素、水分、炭酸ガスなどの各種不純物を同時に検出可能となる。
【図面の簡単な説明】
【図1】 本発明の分析方法において好適に使用される質量分析計の第1の例を示す概略構成図。
【図2】 質量分析計の第2の例を示す概略構成図。
【図3】 質量分析計の第3の例を示す概略構成図。
【図4】 質量分析計の第4の例を示す概略構成図。
【図5】 本発明の実施例の結果のうち、イオン化部圧力と吸い込み量の関係を示すグラフ。
【図6】 本発明の実施例の結果のうち、イオン化部圧力とイオン強度の関係を示すグラフ。
【図7】 本発明の実施例の結果のうち、イオン化部圧力とイオン強度向上率の比較を示すグラフ。
【図8】 本発明の実施例の結果のうち、イオン化部圧力による窒素中酸素の検量線の変化を示すグラフ。
【図9】 本発明の実施例の結果のうち、イオン化部圧力と繰り返し精度の関係を示すグラフ。
【図10】 本発明の実施例の結果のうち、イオン化部圧力とS/N比の関係を示すグラフ。
【図11】 従来の大気圧イオン化質量分析計の概略構成図。
【符号の説明】
1……イオン化部、7……試料ガス(高純度ガス)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring the concentration of impurities in a gas, and more particularly to a technique effective when applied to a highly sensitive gas analyzer.
[0002]
[Prior art]
In recent years, high-sensitivity gas analyzers called atmospheric pressure ionization mass spectrometers (APIMS) have been used in the analysis of high-purity gases used in semiconductor manufacturing processes.
[0003]
A conventionally used atmospheric pressure ionization mass spectrometer is introduced in Applied Physics, Vol. 56, No. 11, pp. 1446-1472 (1987). The configuration of this apparatus is shown in FIG. This apparatus is composed of an ionization section 1 opened to atmospheric pressure, a differential exhaust section 2 maintained at about 50 Pa, and a mass analysis section 3 maintained at about 10 −4 Pa. There are an inlet 4, a gas outlet 5, and a discharge needle 6 for performing ionization. A measurement target gas 7 is supplied from the gas inlet 4 and discharged from the gas outlet 5. Further, the ionization unit 1 and the differential exhaust unit 2 are partitioned through a narrow hole 8, and the differential exhaust unit 2 and the mass analysis unit 3 are partitioned through a narrow hole 9. The respective pressures can be maintained by the vacuum pumps connected to 3 respectively. The mass analysis unit 3 includes a mass separation unit 12 (quadrupole mass spectrometer) and a detection unit 13 (electron multiplier), and ions ionized by the ionization unit 1 maintained at atmospheric pressure are differential exhaust units. 2, the gas 7 to be measured can be analyzed by the high-vacuum mass analysis unit 3. An amplifier 14, a calculator 15, and a recorder 16 are connected to the detection unit 13 of the mass analysis unit 3.
In this apparatus, since the ionization part is at atmospheric pressure, a sample can be directly introduced, and it is used for analysis of a high-purity gas line in a semiconductor manufacturing process.
[0004]
[Problems to be solved by the invention]
However, when analyzing impurities in various high-purity gases using a conventional atmospheric pressure ionization mass spectrometer, particularly when analyzing impurity oxygen in high-purity nitrogen or high-purity argon, the reaction of moisture in nitrogen The rate constant is 2.9 × 10 −9 molecule −1 cm 3 s −1 , whereas oxygen is 2.5 × 10 −10 molecule −1 cm 3 s −1 and about 10 minutes of water. Since there was only 1, the sensitivity was low compared to moisture. Moreover, since the ionization unit outlet was opened to the atmosphere and the ionization unit was measured at almost atmospheric pressure, the sample gas introduction pressure, flow rate, and back pressure at the ionization unit outlet were not accurately controlled. For this reason, the pressure in the ionization section fluctuated, and the flow rate sucked into the differential exhaust section could not be sufficiently controlled. For this reason, there are inconveniences in which the variation in measured values and the slope of the calibration curve fluctuate.
[0005]
The present invention has been made in view of the above circumstances, and in a method of analyzing a trace amount of impurities in a gas using an atmospheric pressure ionization mass spectrometer, in a high-purity gas that has conventionally had low sensitivity and variation in measured values. An object of the present invention is to provide an analytical method capable of measuring the concentration of trace impurities such as oxygen with high sensitivity.
[0006]
[Means for Solving the Problems]
To solve this problem,
According to claim 1 invention is a method for analyzing trace impurities in a gas with a mass spectrometer, the mass spectrometer pressure 1.3 × 10 5 Pa~5.0 × 10 5 Pa in the ionization part A method for analyzing trace impurities in a gas, characterized in that an impurity concentration of 100 ppb or less in high-purity nitrogen or high-purity argon is analyzed while maintaining the ionization part at a pressure higher than atmospheric pressure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the method of analyzing a trace amount of impurities in a gas using a conventional atmospheric pressure ionization mass spectrometer, the present inventors have a difference in improvement in sensitivity depending on impurity components when the ionization part is set to a pressure higher than atmospheric pressure. I discovered that. That is, it has been found that, by ionizing under high pressure conditions, the sensitivity improvement rate increases as the sensitivity decreases in conventional atmospheric pressure ionization. For example, it has been found that impurity oxygen, which has a lower sensitivity than moisture, can be analyzed with particularly high sensitivity by high-pressure ionization.
Furthermore, the sensitivity and accuracy increase as the pressure increases, but when saturated with impurities, there is a practically optimal pressure range due to the balance with the exhaust capacity of the differential exhaust pump, etc. It turns out that it's not good. In particular, it has been confirmed that there are optimum conditions for the S / N ratio of oxygen impurities in nitrogen.
[0008]
From these results, it became possible to analyze the impurities in the gas with high sensitivity and high accuracy by quickly adjusting the ionization section to the optimum pressure. In particular, it has become possible to measure impurity oxygen in a high purity gas, which has low sensitivity in atmospheric pressure ionization, with high sensitivity and high accuracy.
[0009]
According to the present invention, impurities such as oxygen contained in a high purity gas such as a high purity nitrogen gas or a high purity argon gas can be analyzed with high sensitivity and high accuracy by maintaining the ionization part at an optimum pressure condition. At the same time, highly sensitive analysis of other components is possible.
The reason why the sensitivity of the impurity is improved is not clearly understood, but it seems that the efficiency of ion molecule reaction with a matrix gas such as nitrogen gas has increased in a certain pressure region.
[0010]
FIG. 1 is a schematic configuration diagram showing a first example of a mass spectrometer for explaining one embodiment of a method for analyzing trace impurities in a gas according to the present invention. This ionization mass spectrometer has substantially the same configuration as the atmospheric pressure ionization mass spectrometer shown in FIG. 11, and the same components are denoted by the same reference numerals. In this analyzer, mass flow controllers 21 and 22 are respectively provided in the gas introduction path 4 and the gas discharge path 5 connected to the ionization unit 1, and the pressure in the ionization unit 1 is increased while observing the pressure indicated by the pressure gauge 23. It is configured so that a desired pressure higher than the atmospheric pressure can be set.
The pressure setting method of the mass spectrometer is not limited to the above example, and can be changed. For example, as shown in FIG. 2, a bypass line is provided in the gas introduction path 4, and a back pressure valve 24 (back pressure regulator) is disposed in the line, and the back pressure valve 24 and the mass flow controller 22 disposed in the gas discharge path 5 The pressure in the ionization unit 1 may be set to a desired pressure equal to or higher than atmospheric pressure.
Further, when the pressure and flow rate of the sample gas 7 are constant, the pressure in the ionization unit 1 is set to a pressure higher than the atmospheric pressure even when the mass flow controller 21 is provided in the bypass line instead of the back pressure valve 24 as shown in FIG. The desired pressure can be set.
Further, as shown in FIG. 4, the mass flow controller 22 provided in the gas discharge path 5 of FIG. 1 can be replaced with a needle valve 25.
[0011]
In the case of carrying out the method of the present invention for analyzing the impurity concentration in the high purity gas while keeping the ionization part 1 at a pressure higher than the atmospheric pressure using this mass spectrometer, the pressure of the ionization part 1 is 1.3 × 10. 5 Pa~5.0 is preferably in the range of × 10 5 Pa. If the internal pressure of the ionization unit 1 is lower than 1.3 × 10 5 Pa, the impurity detection sensitivity and accuracy are not significantly different from those of conventional atmospheric pressure ionization mass spectrometry. On the other hand, if the internal pressure of the ionization part 1 is higher than 5.0 × 10 5 Pa, noise increases, and the sensitivity (S / N ratio) does not change much from that in the case of atmospheric pressure, which is not preferable.
[0012]
In the method for analyzing trace impurities in a gas of the present invention, the high-purity gas to be analyzed is not particularly limited, and the type of impurities to be analyzed contained in the gas is not limited. However, the present invention makes it possible to measure impurity oxygen in high-purity nitrogen or high-purity argon, which has been difficult to analyze by conventional methods, at the ppt (10 -12 ) level. Impurities in these high-purity gases It is extremely effective for the determination of oxygen concentration. The impurity concentration in the high purity gas is not limited, but the impurity oxygen in the high purity nitrogen or high purity argon is 100 ppb or less.
[0013]
In this way, by analyzing the impurity concentration in the high-purity gas while maintaining the ionization part of the mass spectrometer at a pressure higher than the atmospheric pressure, the impurity concentration in the gas is compared with the case where the internal pressure of the ionization part is analyzed as atmospheric pressure. Can be analyzed with extremely high sensitivity and high accuracy.
Further, by analyzing the pressure of the ionization part in the range of 1.3 × 10 5 Pa to 5.0 × 10 5 Pa, the S / N ratio is improved particularly when analyzing impurity oxygen in the high purity gas. be able to.
Further, by analyzing under the condition that the high purity gas is nitrogen or argon and the impurity to be analyzed is oxygen, the impurity oxygen in the high purity gas, which is difficult to analyze by the conventional method, can be analyzed at the ppt level.
Furthermore, by performing the analysis in a concentration region where the impurity concentration is 100 ppb or less, it is possible to analyze a small amount of impurities in high purity gas with high sensitivity and high accuracy, and simultaneously detect various impurities such as oxygen, moisture and carbon dioxide gas. It becomes.
[0014]
【Example】
A mass flow controller is attached to each of the gas supply path and discharge path of the ionization section of the UG-240APNS mass spectrometer manufactured by Hitachi Tokyo Electronics Co., Ltd., and the internal pressure of the ionization section can be adjusted from atmospheric pressure to 5.0 × 10 5 Pa. The ionization mass spectrometer was made, and the impurity concentration in high-purity nitrogen gas was measured using it. In order to apply pressure to the ionization unit, the mass flow controller on the ionization unit inlet side is set to a constant flow rate of 1 L / min, the flow rate of the mass flow controller on the ionization unit outlet side is set in the range of 900 to 700 cc / min, and the pressure in the ionization unit Was applied from atmospheric pressure (10 5 Pa) to 3.3 × 10 5 Pa.
The relationship between the pressure in the ionization section at this time and the amount of suction into the mass spectrometer was as shown in FIG. As is apparent from the graph of FIG. 5, it can be seen that the pressure in the ionization portion and the suction amount are in a proportional relationship.
[0015]
A standard gas and a dilution gas are mixed by a diluting device to generate a calibration gas at a ppb level. Oxygen in nitrogen, carbon dioxide gas, and 10 ppb calibration gas were generated, and ionic strength was measured at a pressure from atmospheric pressure to 3.3 × 10 5 Pa according to the flow of FIG. As an example, FIG. 6 shows the relationship between the ionic strength of oxygen in nitrogen and the pressure, and FIG. 7 shows a comparison of the sensitivity improvement rates of the three components. As a result, the rate of increase in oxygen sensitivity increases as the pressure in the ionization section increases. Moisture is first desensitized, followed by carbon dioxide. The sensitivity of oxygen was 15 times that of atmospheric pressure. Carbon dioxide and moisture were 13 times and 10 times, respectively. The reaction rate constants of oxygen, carbon dioxide and moisture in nitrogen are 2.5 × 10 −10 molecule −1 cm 3 s −1 , 7.5 × 10 −10 molecule −1 cm 3 s −1 and 2 respectively. Since it is 9 × 10 −9 molecule −1 cm 3 s −1 , the sensitivity increase rate of oxygen having the lowest sensitivity among the three components is the highest, followed by carbon dioxide gas and moisture. From this, it can be seen that high-pressure ionization is particularly effective in measuring impurity components with low sensitivity. Table 1 shows the relationship between the ionization portion pressure and the ionic strength of impurities in nitrogen.
[Table 1]
Figure 0003834363
In the case of oxygen, from the results shown in FIGS. 6 and 7, the sensitivity is expected to increase by further increasing the pressure of the ionization section.
[0016]
In order to confirm the quantitativeness, oxygen calibration curves were prepared at atmospheric pressure, 2.3 × 10 5 Pa, and 3.3 × 10 5 Pa, respectively. This is shown in FIG. As shown in FIG. 8, it was found that good linearity was obtained in all cases, and that the ionization portion was set to a pressure higher than atmospheric pressure, and quantitative analysis of the oxygen concentration was possible.
Use 3.3 × 10 5 Pa oxygen standard curve, while maintaining the ionization part to the high pressure of 3.3 × 10 5 Pa, a result of analysis of the nitrogen purifier outlet gas, the oxygen concentration in the nitrogen gas Was about 10 ppt.
[0017]
FIG. 9 shows the relationship between the ionization part pressure and the coefficient of variation of the analysis value in nitrogen gas in the measurement of FIG. Here, the coefficient of variation (%) = standard deviation / average value × 100. From FIG. 9, it can be seen that the coefficient of variation decreases as the pressure in the ionization section is increased, and high-accuracy analysis is possible. The effect of pressure on the accuracy started from 1.3 × 10 5 Pa, and showed an almost constant low coefficient of variation at 2.3 × 10 5 Pa or higher.
[0018]
FIG. 10 shows the relationship between the ionization portion pressure and the S / N ratio when oxygen (concentration: 10 ppb) in nitrogen gas is measured with the above-described ionization mass spectrometer under the conditions shown in FIG. This S / N ratio is the ratio between the peak of oxygen when the pressure of the ionization part is measured at atmospheric pressure and the noise appearing at 90-100 (m / z) where no peak appears (S / N ratio) is 1, the relative ratio of the S / N ratio measured when the ionization section pressure is increased is shown.
Up to a certain value (about 2.5 × 10 5 Pa) of the pressure of the ionization section, noise increases with an increase in pressure of the ionization section, but the oxygen detection peak also increases. As a result, the S / N ratio also increases. When the internal pressure of the ionization portion is 2.5 × 10 5 Pa or more, the oxygen detection peak does not become so large and noise increases, so the S / N ratio decreases. In any case, by making the pressure of the ionization part higher than the atmospheric pressure, the S / N ratio can be greatly increased compared to the conventional method in which the ionization part pressure is atmospheric pressure, and the measurement sensitivity is greatly increased. It will be improved. As a result of this experiment, when the pressure of the ionization part was 2.5 × 10 5 Pa, an S / N ratio of about 5.5 times that of the atmospheric pressure condition was obtained.
[0019]
It was possible to create a similar calibration curve for impurities other than oxygen, so that measurements under high pressure could be analyzed simultaneously with high sensitivity and high accuracy.
[0020]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained. The method for analyzing trace impurities in a gas according to the present invention analyzes the internal pressure of the ionization section as atmospheric pressure by analyzing the impurity concentration in the high purity gas while maintaining the ionization section of the mass spectrometer at a pressure higher than atmospheric pressure. Compared to the case, the impurity concentration in the gas can be analyzed with extremely high sensitivity and high accuracy. In addition, by analyzing the pressure of the ionization part in the range of 1.3 × 10 5 Pa to 5.0 × 10 5 Pa, the S / N ratio is improved particularly when analyzing impurity oxygen in high purity gas. it is Ru can. Before Symbol high-purity gas is nitrogen or argon, by impurity to be analyzed to analyze oxygen conditions, these high impurity oxygen purity in the gas that Do allow analysis at ppt levels has been difficult to analyze by the conventional method. By the previous SL impurity concentration performing the analysis at a concentration region 100 ppb, high sensitivity trace impurities in high-purity gases, can accurate analysis becomes oxygen, moisture, and simultaneously detectable various impurities such as carbon dioxide .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first example of a mass spectrometer suitably used in the analysis method of the present invention.
FIG. 2 is a schematic configuration diagram showing a second example of a mass spectrometer.
FIG. 3 is a schematic configuration diagram showing a third example of a mass spectrometer.
FIG. 4 is a schematic configuration diagram showing a fourth example of a mass spectrometer.
FIG. 5 is a graph showing the relationship between the ionization unit pressure and the suction amount among the results of the examples of the present invention.
FIG. 6 is a graph showing the relationship between the ionization section pressure and the ion intensity among the results of the examples of the present invention.
FIG. 7 is a graph showing a comparison between an ionization part pressure and an ionic strength improvement rate among the results of Examples of the present invention.
FIG. 8 is a graph showing the change in the calibration curve of oxygen in nitrogen with the ionization part pressure among the results of the examples of the present invention.
FIG. 9 is a graph showing the relationship between ionization section pressure and repeatability among the results of the examples of the present invention.
FIG. 10 is a graph showing the relationship between the ionization section pressure and the S / N ratio among the results of the examples of the present invention.
FIG. 11 is a schematic configuration diagram of a conventional atmospheric pressure ionization mass spectrometer.
[Explanation of symbols]
1 ... Ionization part, 7 ... Sample gas (high purity gas).

Claims (1)

質量分析計を用いてガス中の微量不純物を分析する方法において、
質量分析計のイオン化部の圧力を1.3×10Pa〜5.0×10Paの範囲とし、前記イオン化部を大気圧よりも高圧に保ちながら、高純度窒素または高純度アルゴン中の100ppb以下の不純物濃度を分析することを特徴とするガス中の微量不純物分析方法。
In a method of analyzing trace impurities in a gas using a mass spectrometer,
The pressure of the ionization part of the mass spectrometer is in the range of 1.3 × 10 5 Pa to 5.0 × 10 5 Pa, and the ionization part is kept at a pressure higher than atmospheric pressure, while in high purity nitrogen or high purity argon. A method for analyzing trace impurities in a gas, comprising analyzing an impurity concentration of 100 ppb or less .
JP25719496A 1996-09-27 1996-09-27 Method for analyzing trace impurities in gas Expired - Fee Related JP3834363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25719496A JP3834363B2 (en) 1996-09-27 1996-09-27 Method for analyzing trace impurities in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25719496A JP3834363B2 (en) 1996-09-27 1996-09-27 Method for analyzing trace impurities in gas

Publications (2)

Publication Number Publication Date
JPH10104203A JPH10104203A (en) 1998-04-24
JP3834363B2 true JP3834363B2 (en) 2006-10-18

Family

ID=17302992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25719496A Expired - Fee Related JP3834363B2 (en) 1996-09-27 1996-09-27 Method for analyzing trace impurities in gas

Country Status (1)

Country Link
JP (1) JP3834363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280427A (en) * 2014-08-18 2015-01-14 华南农业大学 Pressure enrichment type low-concentration gas volatile electronic-nose detection system

Also Published As

Publication number Publication date
JPH10104203A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
US5723861A (en) Recirculating filtration system for use with a transportable ion mobility spectrometer
US8424367B2 (en) Systems and methods for measurement of gas permeation through polymer films
Hintelmann et al. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry
US4847493A (en) Calibration of a mass spectrometer
CN112816436B (en) Spectrum-mass spectrum combined device and detection method
CN111239062B (en) Gas quantitative detection equipment and method
JPH06310091A (en) Atmospheric pressure ionization mass spectrometer
CN111307921B (en) Absolute measurement quadrupole mass spectrum hydrogen isotope gas abundance analysis method and device
JPH07207426A (en) Method and equipment for checking gas leakage to gas line of plasma reactor
US6000275A (en) Method for analyzing impurities in gas and its analyzer
JP3834363B2 (en) Method for analyzing trace impurities in gas
CN110085504B (en) Ion source system based on small-hole in-situ sampling interface and miniaturized mass spectrometer
Selby et al. Direct quantification of alkaloid mixtures by electrospray ionization mass spectrometry
JP4185728B2 (en) Method and apparatus for analyzing trace impurities in gas
DE10149219B4 (en) Method for partial pressure calibration of quadrupole mass spectrometers and calibration device thereto
JPH10239280A (en) Mass spectrometry method and sample gas mixing device
JPH0955185A (en) Mass filter type gas analyzer with calibration gas system and its operating method
JPH04160357A (en) Quantitatively measuring apparatus for partial pressure of gas
US6956206B2 (en) Negative ion atmospheric pressure ionization and selected ion mass spectrometry using a 63NI electron source
JP2002005806A (en) Pressure-measuring method and method for measuring amount of emitted gas
JP5048592B2 (en) Fuel cell gas analyzer
JP2002107342A (en) Quantitative determination method of carbon monoxide
US20240053306A1 (en) Quantitative determination method for reactive sulfur
JPH0922679A (en) Mass spectrometer
Christ et al. Quantitative mass spectrometer analysis of very low impurity concentrations in gases

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees