JP3833481B2 - Current limiting device - Google Patents

Current limiting device Download PDF

Info

Publication number
JP3833481B2
JP3833481B2 JP2001039872A JP2001039872A JP3833481B2 JP 3833481 B2 JP3833481 B2 JP 3833481B2 JP 2001039872 A JP2001039872 A JP 2001039872A JP 2001039872 A JP2001039872 A JP 2001039872A JP 3833481 B2 JP3833481 B2 JP 3833481B2
Authority
JP
Japan
Prior art keywords
current
current limiting
limiting device
coil
superconducting conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001039872A
Other languages
Japanese (ja)
Other versions
JP2002247754A (en
Inventor
孝 矢澤
透 栗山
みどり 大槻
俊自 野村
武 大熊
礼文 佐藤
芳久 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2001039872A priority Critical patent/JP3833481B2/en
Publication of JP2002247754A publication Critical patent/JP2002247754A/en
Application granted granted Critical
Publication of JP3833481B2 publication Critical patent/JP3833481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統に接続される限流装置に係り、特に事故時に電力系統に流れる短絡電流を所定値以下に抑制するための限流装置に関する。
【0002】
【従来の技術】
電力系統に接続され、事故時に電力系統に流れる短絡電流を所定値以下に抑制するための限流装置は、現在実用化されている機器ではないが、将来に向けて期待の高い機器である。また、限流装置は、定常時はゼロに近いインピーダンスであるが、事故時には抵抗的あるいはインダクタンス的なインピーダンスが生じて短絡電流を所定値以下に抑制する作用を有する。
【0003】
限流装置の適用が期待される設置箇所の一つは、例えば系統連系であり、すなわち系統連系では2つの系統を限流装置で接続し、常時2つの系統の電力を融通しあい、事故時には事故電流を抑制してその後に2系統を切り離すという適用例がある。また、限流装置の他の適用例としては、近年盛んに開発されている超電導送電ケーブルに限流装置を直列に接続して、その超電導送電ケーブルを事故電流から保護する適用例も考えられる。
【0004】
これまでの限流装置には、さまざまな限流方式が提案されてきており、限流時に生ずるインピーダンスに基づいて抵抗型、インダクタンス型に分類される。また、超電導体を利用する型、利用しない型にも分類することが可能である。本発明に係る限流装置は、整流型限流装置と呼ばれるもので、前述の分類に従うならば、インダクタンス型で、超電導を原理的には使用しない型である。
【0005】
図11は従来の限流装置を示す回路図である。
【0006】
従来の限流装置は、図11に示すように4アームの整流器2からなるブリッジ型の整流回路1と、この整流回路1のブリッジ中における2直列整流器のそれぞれの電気的中間点を接続するコイル3とから構成されている。定常時、このコイル3には系統の交流電流の波高値相当の直流電流が流れるため、コイル3のインダクタンスが作用しないものの、系統の短絡あるいは地絡事故時には電流を急激に変動させようとする電圧に対してコイル3のインダクタンスが作用して事故電流を抑制する。原理的に、コイル3は超電導導体である必要はないが、定常時の電力損失を低減させるためにコイル3に超電導導体を用いることは有効である。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来の整流型限流装置には次のような課題があった。すなわち、従来の整流型限流装置は、事故後に整流器ブリッジ内に誘起されている循環電流が残っていることである。これは事故後に制御シーケンスに従って遮断器4を投入した後に、再び事故電流が流れた場合、上記循環電流がバイアス電流として作用するので、十分な限流効果が得られないことになる。その循環電流の減衰の時定数τは、次式で表される。
【0008】
【数1】
τ=L/R ……(1)
ここで、Lはコイル3のインダクタンスであり、Rは整流器ブリッジ内の抵抗である。一般に、抵抗Rは整流器のフォーワードドロップに起因する抵抗と考えればよい。この抵抗値を大きくすれば、式(1)に基づいて減衰時定数τを短くすることができる反面、整流器には定常時に系統電流が流れるため定常時の電力損失を増加させることになる。
【0009】
したがって、従来の整流型限流装置では、事故後に整流器ブリッジ内に誘起されている循環電流が残っているため、事故後に遮断器4を再投入した後の事故に対して、十分な限流効果が得られないという課題があった。
【0010】
本発明は上記事情を考慮してなされたもので、事故後の整流器ブリッジ内に誘起されている循環電流を短時間で減衰させ、遮断器再投入後にも限流機能を損なうことのない限流装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明では、電力系統に接続されるブリッジ型の整流回路と、このブリッジ型の整流回路における2直列整流器のそれぞれの電気的中間点を互いに接続し、かつ前記電力系統の短絡および地絡事故時に急激に変動する電流を抑制する限流手段とを備えた限流装置において、前記限流手段は、コイルと、このコイルに直列に接続されかつ電流に対して非線形性の電圧特性を有し、事故時過電流が流れると抵抗が増加する非線形素子とを備えたことを特徴とする。
【0012】
請求項1記載の発明によれば、限流手段が電流に対して非線形性の電圧特性を有する非線形素子を備えたことにより、事故電流が流れたときに非線形素子に抵抗を発生させることにより、上記(1)式の抵抗項Rを増加させて、循環電流の減衰時間を短くすることができる。
【0013】
請求項2記載の発明では、請求項1記載の限流装置において、請求項1記載の限流装置において、前記非線形素子は、電流に対して非線形性の電圧特性を有する超電導導体であり、前記電力系統の系統事故時に抑制する電流設定値を、前記超電導導体の臨界電流値よりも高い値に設定したことを特徴とする。
【0014】
請求項2記載の発明によれば、非線形性の電圧特性を有する導体として、超電導導体を用い、系統事故時に抑制される電流設定値を前記超電導導体の臨界電流値よりも高い値に設定することにより、事故電流が流れたときに超電導導体に常伝導抵抗を発生させることにより、上記(1)式の抵抗項Rを増加させて、循環電流の減衰時間を短くすることができる。
【0015】
請求項3記載の発明では、請求項1または2記載の限流装置において、請求項1または2記載の限流装置において、前記コイルまたは非線形素子が超電導導体で形成されたことを特徴とする。
【0016】
請求項3記載の発明によれば、請求項2と同様に事故電流が流れたときに超電導導体に常伝導抵抗を発生させることにより、循環電流の減衰時間を短くすることができる。
【0017】
請求項4記載の発明では、請求項1記載の限流装置において、請求項1記載の限流装置において、前記限流手段は、前記コイルと非線形素子からなるユニットを複数並列および複数直列のいずれかに接続されたことを特徴とする。
【0018】
請求項4記載の発明によれば、限流手段を複数並列に接続したことにより、一つの限流手段の通電電流の負担を1/N(正の整数)とし、限流手段を複数直列に接続したことにより、一つの限流手段の耐電圧の負担を1/M(正の整数)とすることができる。
【0019】
請求項5記載の発明では、請求項1記載の限流装置において、請求項1記載の限流装置において、前記限流手段は、円筒形状の巻枠にテープ形状の線材を複数枚重ね合わせるとともに巻線して巻線ユニットを構成し、この巻線ユニットを同心円状に複数層配置し、前記巻線ユニット間で、前記線材の重ね合わせる順序が異なるように接続され、前記巻線ユニットのコイルの両端が電極を介して前記整流器に接続されたことを特徴とする。
【0020】
請求項5記載の発明によれば、巻線ユニット間で、線材の重ね合わせる順序を異なるように接続したことにより、線材間での電流分配の均一化を図ることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0022】
[第1実施形態]
図1は本発明に係る限流装置の第1実施形態を示す回路図である。なお、従来の構成と同一または対応する部分には、図11と同一の符号を用いて説明する。以下の実施形態も同様である。
【0023】
図1に示すように、整流型限流装置は、電力系統に接続される4アームの整流器2からなるブリッジ型の整流回路1と、この整流回路1のブリッジ中における2直列整流器のそれぞれの電気的中間点を互いに接続する限流手段としての限流器5とから構成されている。
【0024】
この限流器5は、コイル3と、電流に対して非線形性の電圧特性を有する非線形素子としての非線形抵抗6とを備えている。ここで、図1において非線形抵抗6は、図1に示す回路においてコイル3に直列に接続されているものの、実際上、非線形抵抗6は、コイル3自体が抵抗特性を有する超電導導体を巻線して構成され、臨界電流値を超えたときに発生する非線形抵抗のことである。なお、本実施形態およびその他の実施形態では、非線形抵抗6をこのように構成されたものについて説明する。そして、非線形抵抗6には超電導導体が用いられ、系統事故時に抑制する電流設定値が上記超電導導体の臨界電流値よりも高い値に設定されている。
【0025】
また、限流器5は、定常時に電力系統の交流電流の波高値相当の直流電流が流れるためコイル3のインダクタンスが作用しないが、電力系統の短絡あるいは地絡事故時には電流を急激に変動させようとする電圧に対してコイル3のインダクタンスが作用して事故電流を抑制する。
【0026】
図2は図1の非線形抵抗6の系統電流依存性を示す図である。本実施形態では、例えば、定常時の系統電流として3〜6kA程度を考えている。この範囲では、非線形抵抗6の抵抗値は0である。ところが、非線形抵抗6は、それ以上の過電流が流れると、急激に抵抗が増加する非線形性を示している。
【0027】
また、非線形性の電圧特性を有する非線形抵抗6には、上記のように超電導導体が用いられ、系統事故時に抑制する電流設定値を上記超電導導体の臨界電流値の1.0〜3.0倍としている。
【0028】
さらに、非線形抵抗6は、超電導導体として、具体的にNbTi、NbSnなどの金属系超電導導体あるいはBiSrCaCu,BiSrCaCu10,YBaCuなどの高温超電導導体(酸化物超電導導体)が用いられ、常電導抵抗を用いている。
【0029】
このように本実施形態によれば、限流器5が電流に対して非線形性の電圧特性、すなわち抵抗特性を有する導体を巻線したコイル3を具備したことにより、事故電流が流れたときにコイル3に抵抗を発生させることにより、上記(1)式の抵抗項Rを増加させて、循環電流の減衰時間τを短くすることができる。
【0030】
また、本実施形態によれば、非線形抵抗6は系統事故時に抑制する電流設定値を上記超電導導体の臨界電流値よりも高い値に設定したことにより、事故電流が流れたときに限流器5のコイル3に超電導導体の常伝導抵抗を発生させることにより、上記(1)式の抵抗項Rを増加させて、循環電流の減衰時間τを短くすることができる。
【0031】
さらに、本実施形態によれば、非線形抵抗6は、超電導導体として、具体的にNbTi、NbSnなどの金属系超電導導体あるいはBiSrCaCu,BiSrCaCu10,YBaCuなどの高温超電導導体(酸化物超電導導体)を用いたことにより、循環電流の減衰時間を短くすることができる。
【0032】
[第2実施形態]
図3は本発明に係る限流装置の第2実施形態が適用される冷却装置を示す構成図である。
【0033】
図3に示すように、外槽容器10と冷却手段としての低温冷媒11を収容した内槽容器12との間には、真空断熱槽13が設けられ、この真空断熱槽13により内槽容器12が外槽容器10に対して熱的に遮蔽されている。内槽容器12内の低温冷媒11中には、非線形性の電圧特性を有する超電導導体からなるコイル3が浸漬され、このコイル3には電流リード部14が電気的に接続され、この電流リード部14を通してコイル3に電流が流れる。
【0034】
したがって、コイル3は、低温冷媒11中に浸漬して冷却されているので、常電導抵抗発生後に冷却することができる。
【0035】
また、外槽容器10および内槽容器12は蓋体15により密閉され、この蓋体15上に冷凍機16が設置されている。この冷凍機16は真空断熱槽17を介して低温冷媒11中に設置された伝熱板18を冷却する。そして、内槽容器12内の上部には固体断熱槽19が配設されている。
【0036】
さらに、内槽容器12内の低温冷媒11中には、蓋体15を貫通して冷媒供給配管20が導入されるとともに、冷媒排出配管21および圧力調整配管22がそれぞれ蓋体15を貫通して伝熱板18の上部に導かれている。
【0037】
なお、低温冷媒11としては、LNG(液化天然ガス),メタン,酸素,アルゴン,窒素,ネオン,水素,ヘリウムのいずれか一種あるいはこれらから選択された2種以上の混合液体が用いられる。
【0038】
図4は第2実施形態の抵抗の電流依存性を示す図である。
【0039】
超電導導体の電圧・電流特性を示す指標にn値と呼ばれる値がある。これは、下式のように電圧が、電流のn乗に比例する式として表される。
【0040】
【数2】
V=V(I/I)n ……(2)
【0041】
これに従い、抵抗の電流依存性を示したのが図4である。臨界電流値Iは6kAとした。臨界電流以下では、抵抗はほとんど0であるが、臨界電流値を超えた後は急激な抵抗増加が得られている。
【0042】
このように本実施形態によれば、コイル3は常電導抵抗発生後に冷却するために低温冷媒11中に浸漬されているので、循環電流の減衰時間を短く、かつ遮断器の再投入時に超電導導体で構成されるコイル3も十分に冷却することができる。
【0043】
[第3実施形態]
図5は本発明に係る限流装置の第3実施形態を示す回路図である。
【0044】
本実施形態では、限流器5が複数(3個)並列に接続されている。したがって、本実施形態では、コイル3の所定インダクタンスのN(正の整数)倍のインダクタンスを有するN個の限流器5を並列接続することにより、一つの限流器5における通電電流の負担を1/Nにすることができる。
【0045】
[第4実施形態]
図6は本発明に係る限流装置の第4実施形態を示す回路図である。
【0046】
本実施形態では、限流器5が複数(3個)直列に接続されている。したがって、本実施形態では、コイル3の所定インダクタンスの1/M(正の整数)倍以下のインダクタンスを有するM個の限流器5を直列接続することにより、一つの限流器5における耐電圧の負担を1/Mにすることができる。
【0047】
[第5実施形態]
図7(A),(B)は本発明に係る限流装置の第5実施形態のコイルを示す斜視図,平面図である。
【0048】
図7(A),(B)に示すように、電流に対して非線形性の電圧特性を有するコイル3は、円筒形状の巻枠25にテープ形状の線材26を複数枚重ねた導体を巻線してできる1 層分の巻線部を1つの巻線ユニット27として構成すると共に、コイル巻線の異なる巻線ユニット27を複数(本実施形態では3個)用意し、同心円上に複数層(3層)配置して構成する。
【0049】
本実施形態では、上記のように導体が線材26を重ね合わせる枚数は3である。3枚の線材26を外側からa,b,cとして、それぞれ巻線を固定する電極28を28a,28b,28cとする。それぞれの巻線ユニット27には、巻始めと巻終わりの2箇所に電極28があり、それぞれの電極について線材分の電極28a,28b,28cが用意される。
そして、本実施形態では、巻線ユニット27の外側からの電極接続は、28a−28b−28c,28b−28c−28a,28c−28a−28bの順に重ね合わせて構成している。最内層に位置する巻線ユニットの片側の電極28、この場合最内層の電極28a,28b,28cがコイル5の片端に相当し整流器2に接続される。最外層に位置する巻線ユニットの片側の電極28、この場合最外層の電極28a,28b,28cがコイル5のもう一方の片端に相当し非線形抵抗6を介して整流器2に接続される。
したがって、本実施形態によれば、巻線ユニット27間において、テープ形状の線材26の重ね合わせる順序が異なるように接続したことにより、線材26間での電流分配の均一化を図ることができる。
【0050】
第6実施形態
図8は本発明に係る限流装置の第6実施形態のコイルを示す斜視図である。
【0051】
図8に示すように、電流に対して非線形性の電圧特性を有するコイル3において、3枚のテープ状の線材26a,26b,26cは、それぞれ四ふっ化エチレン樹脂やポリイミドなどの絶縁材料が被覆されている。これとは別に巻枠25に3枚のテープ状の線材26a,26b,26cを巻線する際にエポキシ樹脂などの含浸材料を線材26a,26b,26c間に塗布することにより、テープ形状の線材26a,26b,26c間をそれぞれ電気的に絶縁するようにしてもよい。
【0052】
このように本実施形態によれば、3枚のテープ状の線材26a,26b,26cは、それぞれ四ふっ化エチレン樹脂やポリイミドなどの絶縁材料を被覆するか、または線材26a,26b,26cを巻線する際にエポキシ樹脂などの含浸材料を線材26a,26b,26c間に塗布することにより、テープ形状の線材26a,26b,26c間をそれぞれ電気的に絶縁し、線材26a,26b,26c同士の結合を防止することができる。
【0053】
第7実施形態
図9に基づいて本発明に係る限流装置の第7実施形態を説明する。
【0054】
図9は66kV系について行った系統解析から得られた結果であり、整流型限流器のコイル3のインダクタンスと事故後130ms後の電流として定義された限流電流との関係を示している。
【0055】
図9によれば、インダクタンスを0.6H(600mH)以下とすることで、臨界電流とした6kAを超えて常電導抵抗を発生させることができる。なお、0.01H(10mH)は限流効果を得ることの可能な最小値である。
【0056】
このように本実施形態によれば、66kVの系統で使用される際、三相各相に接続されるコイル3のインダクタンスを10mH以上600mH以下とすることにより、抑制電流を約30kA以下にすることができる。
【0057】
第8実施形態
図10は本発明に係る限流装置の第8実施形態を示す回路図である。
【0058】
図10に示すように、本実施形態では、図1に示す回路と直列に開閉スイッチ32を接続し、かつこれらの回路と並列に第2のコイル34を接続する。
【0059】
すなわち、本実施形態では、4アームの整流器2からなるブリッジ型の整流回路1と、この整流回路1の2直列のそれぞれの電気的中間点を互いに接続する限流器5からなる回路に、直列に開閉スイッチ33を接続し、かつこれらの回路と並列に第2のコイル34を接続する。
【0060】
したがって、遮断器4が制御シーケンスによって開くよりも早く、開閉スイッチ33を開いて、事故電流を第2のコイル34側に流すようにしている。これにより、コイル3の抵抗発熱による負担を低減させることができる。
【0061】
また、本実施形態では、コイル3と第2のコイル34のインダクタンスを、ほぼ等しくすることにより、限流動作をコイル3から第2のコイル34に引き渡したときの限流効果をスムーズに移行させることができる。さらに、定常時には、インピーダンスを有するコイル34へ電流は流れない。
【0062】
このよう本実施形態によれば、ブリッジ型の整流回路1と直列に開閉スイッチ33を接続し、かつこれらの回路と並列にコイル34を接続したことにより、超電導コイルが事故時に系統に繋がる時間を短縮し、限流効果を第2のコイル34に引き渡すことにより、超電導コイル部での発熱を低減させることができる。
【0063】
なお、本発明は上記実施形態に限定されることなく種々の変更が可能である。例えば、上記各実施形態では、非線形抵抗6が抵抗特性を有する超電導導体を巻線してコイル3を構成し、このコイル3が臨界電流値を超えたときに発生する非線形抵抗としたが、これに限らず限流器5が電流に対して非線形性の電圧特性を有する非線形素子を備えてもよく、また限流器5がコイル3に超電導導体からなる非線形抵抗を直列に接続したものでもよい。
【0064】
【発明の効果】
以上説明したように本発明によれば、限流手段が電流に対して非線形性の電圧特性を有する非線形素子を備えたことにより、事故後の整流器ブリッジ内に誘起されている循環電流を短時間で減衰させて、遮断器再投入後にも限流機能を損なうことのない限流装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係る限流装置の第1実施形態を示す回路図。
【図2】 図1の非線形抵抗の系統電流依存性を示す図。
【図3】 本発明に係る限流装置の第2実施形態が適用される冷却装置を示す構成図。
【図4】 第2実施形態の抵抗の電流依存性を示す図。
【図5】 本発明に係る限流装置の第3実施形態を示す回路図。
【図6】 本発明に係る限流装置の第4実施形態を示す回路図。
【図7】 (A),(B)は本発明に係る限流装置の第5実施形態のコイルを示す斜視図,平面図。
図8】 本発明に係る限流装置の第6実施形態のコイルを示す斜視図。
図9】 本発明の第7実施形態においてコイルのインダクタンスと事故後の電流として定義された限流電流との関係を示す図。
図10】 本発明に係る限流装置の第8実施形態を示す回路図。
図11】 従来の限流装置を示す回路図。
【符号の説明】
1 ブリッジ型の整流回路
2 整流器
3 コイル
4 遮断器
5 限流器(限流手段)
6 非線形抵抗
10 外槽容器
11 低温冷媒
12 内槽容器
13 真空断熱槽
14 電流リード部
15 蓋体
16 冷凍機
17 真空断熱槽
18 伝熱板
19 固体断熱槽
20 冷媒供給配管
21 冷媒排出配管
22 圧力調整配管
25 巻枠
26 線材
27 巻線ユニット
28,28a,28b,28c 電極
31 抵抗
32 導電性材料
33 開閉スイッチ
34 第2のコイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current limiting device connected to an electric power system, and more particularly to a current limiting device for suppressing a short-circuit current flowing in an electric power system at a time of an accident to a predetermined value or less.
[0002]
[Prior art]
A current limiting device that is connected to an electric power system and suppresses a short-circuit current that flows through the electric power system at the time of an accident to a predetermined value or less is not a device that is currently in practical use, but is a device that has high expectations for the future. Further, the current limiting device has an impedance close to zero in a steady state, but has a function of suppressing a short-circuit current to a predetermined value or less by generating a resistive or inductance impedance at the time of an accident.
[0003]
One of the places where current limiting devices are expected to be installed is, for example, grid interconnection, that is, in grid interconnection, two systems are connected by a current limiting device, and the power of the two systems is always interchanged. Sometimes there is an application where the fault current is suppressed and then the two systems are disconnected. In addition, as another application example of the current limiting device, an application example in which a current limiting device is connected in series to a superconducting power transmission cable that has been actively developed in recent years, and the superconducting power transmission cable is protected from an accident current can be considered.
[0004]
Various current limiting methods have been proposed for current limiting devices so far, and are classified into resistance type and inductance type based on the impedance generated at the time of current limiting. Moreover, it is possible to classify into a type using a superconductor and a type not using it. The current limiting device according to the present invention is called a rectification type current limiting device. If the current limiting device follows the above classification, it is an inductance type and does not use superconductivity in principle.
[0005]
FIG. 11 is a circuit diagram showing a conventional current limiting device.
[0006]
As shown in FIG. 11 , the conventional current limiting device includes a bridge-type rectifier circuit 1 composed of a four-arm rectifier 2 and coils connecting the electrical intermediate points of the two series rectifiers in the bridge of the rectifier circuit 1. 3. Normally, a DC current corresponding to the peak value of the AC current of the system flows through the coil 3, so that the inductance of the coil 3 does not act, but the voltage that causes the current to fluctuate rapidly in the event of a short circuit or ground fault. On the other hand, the inductance of the coil 3 acts to suppress the accident current. In principle, the coil 3 does not have to be a superconducting conductor, but it is effective to use a superconducting conductor for the coil 3 in order to reduce power loss during steady state.
[0007]
[Problems to be solved by the invention]
However, the conventional rectifying current limiting device described above has the following problems. That is, the conventional rectifier type current limiting device is that the circulating current induced in the rectifier bridge after the accident remains. This is because, when the fault current flows again after the circuit breaker 4 is turned on according to the control sequence after the accident, the circulating current acts as a bias current, so that a sufficient current limiting effect cannot be obtained. The time constant τ of the circulating current decay is expressed by the following equation.
[0008]
[Expression 1]
τ = L / R (1)
Here, L is the inductance of the coil 3, and R is the resistance in the rectifier bridge. In general, the resistor R may be considered as a resistor due to the forward drop of the rectifier. If the resistance value is increased, the decay time constant τ can be shortened based on the equation (1), but the system current flows through the rectifier during the steady state, which increases the power loss during the steady state.
[0009]
Therefore, in the conventional rectifier type current limiting device, since the circulating current induced in the rectifier bridge remains after the accident, a sufficient current limiting effect against the accident after the circuit breaker 4 is turned on again after the accident. There was a problem that could not be obtained.
[0010]
The present invention has been made in consideration of the above circumstances, and it is possible to attenuate the circulating current induced in the rectifier bridge after the accident in a short time and not to impair the current limiting function even after the circuit breaker is turned on again. An object is to provide an apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the bridge type rectifier circuit connected to the power system and the electrical intermediate points of the two series rectifiers in the bridge type rectifier circuit are connected to each other. and the current limiting device having a current limiting means that suppressing the current abruptly changes during a short circuit and ground fault of the power system, the current limiting means includes a coil, connected in series with the coil and the current And a non-linear element that has a non-linear voltage characteristic and whose resistance increases when an overcurrent flows during an accident .
[0012]
According to the first aspect of the present invention, the current limiting means includes a non-linear element having a non-linear voltage characteristic with respect to the current, thereby generating a resistance in the non-linear element when an accident current flows, By increasing the resistance term R in the above equation (1), the decay time of the circulating current can be shortened.
[0013]
In the second aspect of the present invention, the current limiting device according to claim 1, wherein, in the current limiting device according to claim 1, wherein the nonlinear element is a superconducting conductor having a nonlinearity of the voltage characteristic with respect to current, the The current set value to be suppressed at the time of a power system failure is set to a value higher than the critical current value of the superconducting conductor.
[0014]
According to the second aspect of the present invention, a superconducting conductor is used as a conductor having non-linear voltage characteristics, and the current set value to be suppressed at the time of a system fault is set to a value higher than the critical current value of the superconducting conductor. Thus, by generating a normal resistance in the superconducting conductor when an accident current flows, the resistance term R in the above equation (1) can be increased and the circulation current decay time can be shortened.
[0015]
According to a third aspect of the present invention, in the current limiting device according to the first or second aspect, in the current limiting device according to the first or second aspect, the coil or the non-linear element is formed of a superconducting conductor .
[0016]
According to the invention described in claim 3, as in the case of claim 2, the decay time of the circulating current can be shortened by generating a normal resistance in the superconducting conductor when an accident current flows.
[0017]
According to a fourth aspect of the present invention, in the current limiting device according to the first aspect of the present invention, in the current limiting device according to the first aspect, the current limiting means includes a plurality of units each including the coil and the non-linear element in parallel or in series. It is connected to crab.
[0018]
According to the invention of claim 4, by connecting a plurality of current-limiting means in parallel, the load of the energizing current of one current-limiting means is set to 1 / N (a positive integer), and a plurality of current-limiting means are connected in series. By connecting, the burden of withstand voltage of one current limiting means can be set to 1 / M (positive integer).
[0019]
According to a fifth aspect of the present invention, in the current limiting device according to the first aspect, in the current limiting device according to the first aspect, the current limiting means overlaps a plurality of tape-shaped wires on a cylindrical winding frame. A winding unit is configured by winding, a plurality of layers of the winding unit are concentrically arranged, and the winding units are connected in such a manner that the order of overlapping of the wire rods is different between the winding units. Both ends of the rectifier are connected to the rectifier through electrodes .
[0020]
According to the fifth aspect of the present invention, the current distribution among the wire rods can be made uniform by connecting the winding units so that the overlapping order of the wire rods is different.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
[First Embodiment]
FIG. 1 is a circuit diagram showing a first embodiment of a current limiting device according to the present invention. Note that portions that are the same as or correspond to those in the conventional configuration are described using the same reference numerals as in FIG. The same applies to the following embodiments.
[0023]
As shown in FIG. 1, the rectification type current limiting device includes a bridge type rectifier circuit 1 including a four-arm rectifier 2 connected to an electric power system, and two electric rectifiers in the bridge of the rectifier circuit 1. And a current limiter 5 as current limiting means for connecting the intermediate points to each other.
[0024]
The current limiter 5 includes a coil 3 and a non-linear resistance 6 as a non-linear element having a non-linear voltage characteristic with respect to a current. Here, in FIG. 1, the non-linear resistance 6 is connected in series to the coil 3 in the circuit shown in FIG. 1. However, in practice, the non-linear resistance 6 is formed by winding a superconducting conductor having resistance characteristics. This is a non-linear resistance that occurs when the critical current value is exceeded. In the present embodiment and other embodiments, the non-linear resistance 6 configured as described above will be described. A superconducting conductor is used for the non-linear resistance 6, and the current setting value to be suppressed at the time of a system fault is set to a value higher than the critical current value of the superconducting conductor.
[0025]
Further, the current limiter 5 does not act on the inductance of the coil 3 because a direct current corresponding to the peak value of the alternating current of the power system flows in a steady state, but the current will be rapidly changed in the event of a short circuit or a ground fault in the power system. The inductance of the coil 3 acts on the voltage to suppress the accident current.
[0026]
FIG. 2 is a diagram showing the dependence of the nonlinear resistance 6 of FIG. 1 on the system current. In the present embodiment, for example, about 3 to 6 kA is considered as a system current in a steady state. In this range, the resistance value of the nonlinear resistor 6 is zero. However, the non-linear resistance 6 shows non-linearity in which the resistance increases abruptly when an overcurrent more than that flows.
[0027]
Further, the non-linear resistance 6 having non-linear voltage characteristics uses a superconducting conductor as described above, and the current set value to be suppressed at the time of a system fault is 1.0 to 3.0 times the critical current value of the superconducting conductor. It is said.
[0028]
Furthermore, the non-linear resistance 6 is a superconducting conductor, specifically a metallic superconducting conductor such as NbTi, Nb 3 Sn, or Bi 2 Sr 2 CaCu 2 O 8 , Bi 2 Sr 2 Ca 2 Cu 3 O 10 , YBa 2 Cu 3. A high-temperature superconducting conductor (oxide superconducting conductor) such as O 6 is used, and a normal conducting resistance is used.
[0029]
As described above, according to the present embodiment, the fault current limiter 5 includes the coil 3 wound with a conductor having a non-linear voltage characteristic, that is, a resistance characteristic, so that when an accident current flows. By generating resistance in the coil 3, the resistance term R in the above equation (1) can be increased and the decay time τ of the circulating current can be shortened.
[0030]
Further, according to the present embodiment, the non-linear resistance 6 is set to a current setting value to be suppressed in the event of a system fault to a value higher than the critical current value of the superconducting conductor. By generating the normal conduction resistance of the superconducting conductor in the coil 3, the resistance term R in the above equation (1) can be increased and the decay time τ of the circulating current can be shortened.
[0031]
Furthermore, according to the present embodiment, the non-linear resistance 6 is, as a superconducting conductor, specifically a metallic superconducting conductor such as NbTi, Nb 3 Sn, or Bi 2 Sr 2 CaCu 2 O 8 , Bi 2 Sr 2 Ca 2 Cu 3. By using a high-temperature superconducting conductor (oxide superconducting conductor) such as O 10 , YBa 2 Cu 3 O 6 , the circulation current decay time can be shortened.
[0032]
[Second Embodiment]
FIG. 3 is a block diagram showing a cooling device to which the second embodiment of the current limiting device according to the present invention is applied.
[0033]
As shown in FIG. 3, a vacuum heat insulating tank 13 is provided between the outer tank container 10 and an inner tank container 12 containing a low-temperature refrigerant 11 as a cooling means. Is thermally shielded from the outer tank container 10. A coil 3 made of a superconducting conductor having non-linear voltage characteristics is immersed in the low-temperature refrigerant 11 in the inner tank container 12, and a current lead portion 14 is electrically connected to the coil 3, and this current lead portion A current flows through the coil 3 through 14.
[0034]
Therefore, since the coil 3 is immersed and cooled in the low temperature refrigerant | coolant 11, it can cool after normal conductive resistance generation | occurrence | production.
[0035]
Further, the outer tank container 10 and the inner tank container 12 are sealed with a lid 15, and a refrigerator 16 is installed on the lid 15. The refrigerator 16 cools the heat transfer plate 18 installed in the low-temperature refrigerant 11 through the vacuum heat insulating tank 17. A solid heat insulation tank 19 is disposed in the upper part of the inner tank container 12.
[0036]
Further, in the low-temperature refrigerant 11 in the inner tank container 12, a refrigerant supply pipe 20 is introduced through the lid body 15, and a refrigerant discharge pipe 21 and a pressure adjustment pipe 22 penetrate the lid body 15. It is led to the upper part of the heat transfer plate 18.
[0037]
In addition, as the low temperature refrigerant | coolant 11, LNG (liquefied natural gas), methane, oxygen, argon, nitrogen, neon, hydrogen, helium, or 2 or more types of mixed liquids selected from these are used.
[0038]
FIG. 4 is a diagram showing the current dependency of the resistance of the second embodiment.
[0039]
There is a value called n value as an index indicating the voltage / current characteristics of a superconducting conductor. This is expressed as an equation in which the voltage is proportional to the nth power of the current as in the following equation.
[0040]
[Expression 2]
V = V 0 (I / I c ) n (2)
[0041]
In accordance with this, FIG. 4 shows the current dependency of the resistance. Critical current value I c was 6 kA. Below the critical current, the resistance is almost zero, but after the critical current value is exceeded, a rapid increase in resistance is obtained.
[0042]
As described above, according to the present embodiment, the coil 3 is immersed in the low-temperature refrigerant 11 for cooling after the normal conducting resistance is generated, so that the circulation current decay time is shortened and the superconducting conductor is provided when the circuit breaker is turned on again. The coil 3 constituted by can be sufficiently cooled.
[0043]
[Third Embodiment]
FIG. 5 is a circuit diagram showing a third embodiment of the current limiting device according to the present invention.
[0044]
In the present embodiment, a plurality of (three) current limiters 5 are connected in parallel. Therefore, in the present embodiment, by connecting N current limiters 5 having an inductance N (positive integer) times the predetermined inductance of the coil 3 in parallel, the burden of the energization current in one current limiter 5 is reduced. 1 / N.
[0045]
[Fourth Embodiment]
FIG. 6 is a circuit diagram showing a fourth embodiment of the current limiting device according to the present invention.
[0046]
In the present embodiment, a plurality (three) of current limiters 5 are connected in series. Therefore, in this embodiment, the withstand voltage in one current limiter 5 is obtained by connecting M current limiters 5 having an inductance less than 1 / M (positive integer) times the predetermined inductance of the coil 3 in series. Can be reduced to 1 / M.
[0047]
[Fifth Embodiment]
FIGS. 7A and 7B are a perspective view and a plan view showing a coil of a fifth embodiment of the current limiting device according to the present invention.
[0048]
As shown in FIGS. 7A and 7B, the coil 3 having non-linear voltage characteristics with respect to the current is formed by winding a conductor in which a plurality of tape-shaped wires 26 are stacked on a cylindrical winding frame 25. The winding portion for one layer is formed as one winding unit 27, and a plurality (three in this embodiment) of winding units 27 having different coil windings are prepared, and a plurality of layers ( (3 layers) are arranged and configured.
[0049]
In the present embodiment, as described above, the number of conductors on which the wire 26 is superposed is three. The three wires 26 are a, b, c from the outside, and the electrodes 28 for fixing the windings are 28a, 28b, 28c, respectively. Each winding unit 27 has electrodes 28 at two places, the beginning and end of winding, and electrodes 28a, 28b, and 28c for wire are prepared for each electrode.
In the present embodiment, the electrode connection from the outside of the winding unit 27 is configured by overlapping 28a-28b-28c, 28b-28c-28a, and 28c-28a-28b in this order. The electrode 28 on one side of the winding unit located in the innermost layer, in this case, the electrodes 28a, 28b, 28c in the innermost layer corresponds to one end of the coil 5 and is connected to the rectifier 2. The electrode 28 on one side of the winding unit located in the outermost layer, in this case the electrodes 28a, 28b, 28c on the outermost layer, corresponds to the other end of the coil 5 and is connected to the rectifier 2 via the non-linear resistance 6.
Therefore, according to the present embodiment, the current distribution among the wire rods 26 can be made uniform by connecting the winding units 27 so that the overlapping order of the tape-shaped wire rods 26 is different.
[0050]
[ Sixth Embodiment ]
FIG. 8 is a perspective view showing a coil of the sixth embodiment of the current limiting device according to the present invention.
[0051]
As shown in FIG. 8 , in the coil 3 having a non-linear voltage characteristic with respect to the current, the three tape-shaped wires 26a, 26b, and 26c are each covered with an insulating material such as ethylene tetrafluoride resin or polyimide. Has been. Separately, when winding three tape-like wires 26a, 26b, 26c around the winding frame 25, an impregnation material such as epoxy resin is applied between the wires 26a, 26b, 26c, thereby forming a tape-shaped wire. 26a, 26b, and 26c may be electrically insulated from each other.
[0052]
As described above, according to the present embodiment, the three tape-like wires 26a, 26b, and 26c are each coated with an insulating material such as ethylene tetrafluoride resin or polyimide, or wound with the wires 26a, 26b, and 26c. By applying an impregnation material such as an epoxy resin between the wires 26a, 26b, and 26c at the time of wiring, the tape-shaped wires 26a, 26b, and 26c are electrically insulated from each other, and the wires 26a, 26b, and 26c are electrically insulated from each other. Bonding can be prevented.
[0053]
[ Seventh Embodiment ]
A seventh embodiment of the current limiting device according to the present invention will be described based on FIG .
[0054]
FIG. 9 shows the results obtained from the system analysis performed on the 66 kV system, and shows the relationship between the inductance of the coil 3 of the rectifier type fault current limiter and the current limiting current defined as the current 130 ms after the accident.
[0055]
According to FIG. 9 , by setting the inductance to 0.6H (600 mH) or less, it is possible to generate a normal conducting resistance exceeding 6 kA as a critical current. In addition, 0.01H (10mH) is the minimum value that can obtain the current limiting effect.
[0056]
As described above, according to this embodiment, when used in a 66 kV system, the suppression current is reduced to about 30 kA or less by setting the inductance of the coil 3 connected to each phase of the three phases to 10 mH or more and 600 mH or less. Can do.
[0057]
[ Eighth Embodiment ]
FIG. 10 is a circuit diagram showing an eighth embodiment of the current limiting device according to the present invention.
[0058]
As shown in FIG. 10 , in this embodiment, an open / close switch 32 is connected in series with the circuit shown in FIG. 1, and a second coil 34 is connected in parallel with these circuits.
[0059]
That is, in the present embodiment, a bridge type rectifier circuit 1 including a four-arm rectifier 2 and a circuit including a current limiter 5 that connects the two series electrical intermediate points of the rectifier circuit 1 are connected in series. The open / close switch 33 is connected to the second coil 34, and the second coil 34 is connected in parallel with these circuits.
[0060]
Therefore, the opening / closing switch 33 is opened earlier than the circuit breaker 4 is opened by the control sequence so that the accident current flows to the second coil 34 side. Thereby, the burden by the resistance heat_generation | fever of the coil 3 can be reduced.
[0061]
In the present embodiment, the current limiting effect when the current limiting operation is handed over from the coil 3 to the second coil 34 is smoothly transferred by making the inductances of the coil 3 and the second coil 34 substantially equal. be able to. Further, during steady state, no current flows to the coil 34 having impedance.
[0062]
As described above, according to the present embodiment, the open / close switch 33 is connected in series with the bridge-type rectifier circuit 1 and the coil 34 is connected in parallel with these circuits, so that the time required for the superconducting coil to connect to the system in the event of an accident is reduced. By shortening and handing over the current limiting effect to the second coil 34, heat generation in the superconducting coil portion can be reduced.
[0063]
The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in each of the above-described embodiments, the non-linear resistance 6 is formed by winding a superconducting conductor having resistance characteristics to constitute the coil 3, and the non-linear resistance generated when the coil 3 exceeds the critical current value. However, the current limiter 5 may include a non-linear element having a non-linear voltage characteristic with respect to the current, or the current limiter 5 may be a coil 3 in which a non-linear resistance composed of a superconducting conductor is connected in series. .
[0064]
【The invention's effect】
As described above, according to the present invention, the current limiting means includes the non-linear element having non-linear voltage characteristics with respect to the current, so that the circulating current induced in the rectifier bridge after the accident can be reduced for a short time. Thus, it is possible to provide a current limiting device that does not impair the current limiting function even after the circuit breaker is re-entered.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of a current limiting device according to the present invention.
2 is a graph showing the dependence of the nonlinear resistance of FIG. 1 on the system current.
FIG. 3 is a configuration diagram showing a cooling device to which a second embodiment of a current limiting device according to the present invention is applied.
FIG. 4 is a diagram showing current dependency of resistance of a second embodiment.
FIG. 5 is a circuit diagram showing a third embodiment of the current limiting device according to the present invention.
FIG. 6 is a circuit diagram showing a fourth embodiment of the current limiting device according to the present invention.
7A and 7B are a perspective view and a plan view showing a coil of a fifth embodiment of the current limiting device according to the present invention.
FIG. 8 is a perspective view showing a coil of a sixth embodiment of the current limiting device according to the present invention.
FIG. 9 is a diagram showing a relationship between a coil inductance and a current limiting current defined as a current after an accident in a seventh embodiment of the present invention.
FIG. 10 is a circuit diagram showing an eighth embodiment of the current limiting device according to the present invention.
FIG. 11 is a circuit diagram showing a conventional current limiting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bridge type rectifier circuit 2 Rectifier 3 Coil 4 Circuit breaker 5 Current limiting device (current limiting means)
6 Nonlinear Resistance 10 Outer Tank Container 11 Low Temperature Refrigerant 12 Inner Tank Container 13 Vacuum Insulation Tank 14 Current Lead Part 15 Lid 16 Refrigerator 17 Vacuum Insulation Tank 18 Heat Transfer Plate 19 Solid Insulation Tank 20 Refrigerant Supply Pipe 21 Refrigerant Discharge Pipe 22 Pressure Adjustment piping 25 Winding frame 26 Wire rod 27 Winding units 28, 28a, 28b, 28c Electrode 31 Resistance 32 Conductive material 33 Open / close switch 34 Second coil

Claims (5)

電力系統に接続されるブリッジ型の整流回路と、このブリッジ型の整流回路における2直列整流器のそれぞれの電気的中間点を互いに接続し、かつ前記電力系統の短絡および地絡事故時に急激に変動する電流を抑制する限流手段とを備えた限流装置において、前記限流手段は、コイルと、このコイルに直列に接続されかつ電流に対して非線形性の電圧特性を有し、事故時過電流が流れると抵抗が増加する非線形素子とを備えたことを特徴とする限流装置。The bridge type rectifier circuit connected to the power system and the electrical midpoints of the two series rectifiers in the bridge type rectifier circuit are connected to each other, and rapidly change in the event of a short circuit and a ground fault in the power system. in current limiting device having a current limiting means that suppressing the current, the current limiting means comprises a coil, the nonlinearity of the voltage characteristic to the connected and current in series with the coil, over the time of the accident A current limiting device comprising a non-linear element whose resistance increases when a current flows . 請求項1記載の限流装置において、前記非線形素子は、電流に対して非線形性の電圧特性を有する超電導導体であり、前記電力系統の系統事故時に抑制する電流設定値を、前記超電導導体の臨界電流値よりも高い値に設定したことを特徴とする限流装置。2. The current limiting device according to claim 1, wherein the nonlinear element is a superconducting conductor having nonlinear voltage characteristics with respect to a current, and a current set value to be suppressed at the time of a system fault of the power system is determined as a criticality of the superconducting conductor. A current limiting device characterized by being set to a value higher than the current value. 請求項1または2記載の限流装置において、前記コイルまたは非線形素子が超電導導体で形成されたことを特徴とする限流装置。3. The current limiting device according to claim 1, wherein the coil or the non-linear element is formed of a superconducting conductor . 請求項1記載の限流装置において、前記限流手段は、前記コイルと非線形素子からなるユニットを複数並列および複数直列のいずれかに接続されたことを特徴とする限流装置。2. The current limiting device according to claim 1, wherein the current limiting means includes a plurality of units each including the coil and the nonlinear element connected in parallel or in series. 請求項1記載の限流装置において、前記限流手段は、円筒形状の巻枠にテープ形状の線材を複数枚重ね合わせるとともに巻線して巻線ユニットを構成し、この巻線ユニットを同心円状に複数層配置し、前記巻線ユニット間で、前記線材の重ね合わせる順序が異なるように接続され、前記巻線ユニットのコイルの両端が電極を介して前記整流器に接続されたことを特徴とする限流装置。2. The current limiting device according to claim 1, wherein the current limiting means includes a plurality of tape-shaped wire rods stacked on a cylindrical winding frame and wound to form a winding unit, and the winding unit is concentrically formed. A plurality of layers are arranged, and the winding units are connected so that the order of overlapping of the wire rods is different , and both ends of the coils of the winding unit are connected to the rectifier via electrodes. Current limiting device.
JP2001039872A 2001-02-16 2001-02-16 Current limiting device Expired - Fee Related JP3833481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001039872A JP3833481B2 (en) 2001-02-16 2001-02-16 Current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001039872A JP3833481B2 (en) 2001-02-16 2001-02-16 Current limiting device

Publications (2)

Publication Number Publication Date
JP2002247754A JP2002247754A (en) 2002-08-30
JP3833481B2 true JP3833481B2 (en) 2006-10-11

Family

ID=18902585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039872A Expired - Fee Related JP3833481B2 (en) 2001-02-16 2001-02-16 Current limiting device

Country Status (1)

Country Link
JP (1) JP3833481B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308306A (en) * 1997-05-08 1998-11-17 Sumitomo Electric Ind Ltd Superconductive coil
JP2000090788A (en) * 1998-09-09 2000-03-31 Toshiba Corp Current limiting device and current limiting breaking device
JP2000277321A (en) * 1999-03-24 2000-10-06 Kazuo Funaki Superconducting coil

Also Published As

Publication number Publication date
JP2002247754A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
KR100662754B1 (en) Resistive type superconducting fault current limiter
US8886267B2 (en) Fault current limiting HTS cable and method of configuring same
US5892644A (en) Passive fault current limiting device
US20080194411A1 (en) HTS Wire
Yazawa et al. Design and test results of 6.6 kV high-Tc superconducting fault current limiter
JP2005109511A (en) Superconducting resistance type current limiter
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
RU2639316C1 (en) Superconducting fault current limiter
US8705215B2 (en) High voltage fault current limiter having immersed phase coils
Kang et al. Development of a 13.2 kV/630 A (8.3 MVA) high temperature superconducting fault current limiter
US6795282B2 (en) Superconducting device with inductive current limiter using a high-tc superconducting material
Tixador et al. Hybrid superconducting AC fault current limiter principle and previous studies
JPH01303765A (en) Current limiter
EP0567293A1 (en) Superconducting current limiting device
Choi et al. Operational characteristics of hybrid-type SFCL by the number of secondary windings with YBCO films
Liang et al. Experimental test of two types of non-inductive solenoidal coils for superconducting fault current limiters use
Yazawa et al. Development of 66 kV/750 A High-T/sub c/superconducting fault current limiter magnet
JP3833481B2 (en) Current limiting device
Yazawa et al. Design and experimental results of three-phase superconducting fault current limiter using highly-resistive YBCO tapes
Kozak et al. Tests of the 15-kV class coreless superconducting fault current limiter
Tixador et al. Resistive SFCL Design
Yazawa et al. 66 kV-class high-T/sub c/superconducting fault current limiter magnet model coil experiment
Rogers et al. Superconducting fault current limiter and inductor design
JP3231837B2 (en) Superconducting current limiting device
Mitsuii Review of the research and development for insulation of superconducting fault-current limiters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Ref document number: 3833481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees