JP3833278B2 - Method for producing phenylpyruvic acid derivative - Google Patents

Method for producing phenylpyruvic acid derivative Download PDF

Info

Publication number
JP3833278B2
JP3833278B2 JP27183894A JP27183894A JP3833278B2 JP 3833278 B2 JP3833278 B2 JP 3833278B2 JP 27183894 A JP27183894 A JP 27183894A JP 27183894 A JP27183894 A JP 27183894A JP 3833278 B2 JP3833278 B2 JP 3833278B2
Authority
JP
Japan
Prior art keywords
acid
derivative
carbon atoms
linear
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27183894A
Other languages
Japanese (ja)
Other versions
JPH08109152A (en
Inventor
光 森田
浩幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP27183894A priority Critical patent/JP3833278B2/en
Publication of JPH08109152A publication Critical patent/JPH08109152A/en
Application granted granted Critical
Publication of JP3833278B2 publication Critical patent/JP3833278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は医農薬中間体として有用な一般式(1)

Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表されるフェニルピルビン酸誘導体の製造方法に関する。
【0002】
【従来技術】
フェニルピルビン酸誘導体の製造方法としては、ベンズアルデヒド誘導体とヒダントインとを脱水縮合させ、ベンジリデンヒダントイン誘導体とした後、塩基で加水分解する方法(Org.Synthesis,43,49(1963))と、ベンズアルデヒド誘導体とN−アセチルグリシンから生成するベンジリデンオキサゾリノン誘導体を、0.2規定のうすい酸で加水分解し、α−アセチルアミノケイ皮酸誘導体を得た後、再度、3規定の濃い酸で加水分解する方法(Synthesis,793,1992)の2つが良く知られている。
【0003】
しかしながら、前者の方法では、ベンジリデンヒダントイン誘導体を塩基で加水分解した後、濃塩酸により中和する危険な工程があり、また、中和工程で大量の無機塩が生じ、その処理に多大な労力を要する。さらに、目的物を水溶液より連続抽出で分離する必要があり、装置上の制約が大きい。
【0004】
これに対し、後者の方法では、比較的収率良く目的とするフェニルピルビン酸誘導体を得ることができるが、この反応はベンジリデンオキサゾリノン誘導体に対し、50倍量もの酸水溶液を使用する反応であり、装置効率が悪く、廃水処理上の制約も大きい。更にこの反応では、ベンジリデンオキサゾリノン誘導体から目的化合物を得るのに2工程を要する。
【0005】
【発明が解決しようとする課題】
本発明は、上述の従来技術の種々の問題を解決するためになされたものであり、その目的は、原料として製造が容易なベンジリデンオキサゾリノン誘導体を用い、高収率でフェニルピルビン酸誘導体を製造することのできる効率の良い方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成するために鋭意検討を重ねた結果、ベンジリデンオキサゾリノン誘導体の加水分解を0.5〜6規定に調整した酸を使用することにより、単工程で、目的とするフェニルピルビン酸誘導体を高収率で製造できることを見いだし、本発明に到達した。
【0007】
すなわち、一般式(1)
Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表されるフェニルピルビン酸誘導体の製造方法において、
一般式(2)
Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表されるベンジリデンオキサゾリノン誘導体を、0.5〜6規定の酸水溶液により、単工程で、加水分解することを特徴とするフェニルピルビン酸誘導体の製造方法に関する。
【0008】
以下本発明を詳しく説明する。
本発明で原料として用いるベンジリデンオキサゾリノン誘導体としては、
一般式(2)
Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表さされるもので、具体的には、4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−メトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−エトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−メチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−エチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−t−ブチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3ーアセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3−メトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3−エトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3−メチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3−エチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3−t−ブチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−メトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−エトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−メチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−エチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(2−t−ブチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3、4−メチレンジオキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(3、4−ジメトキシベンジリデン)ー2ーメチルオキサゾールー5(4H)−オン、4ー(4−アセトキシ−3−メチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−アセトキシ−3−エチルベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−アセトキシ−3−メトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン、4−(4−アセトキシ−3−エトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オンなどを挙げることができる。
【0009】
本発明で原料として用いるベンジリデンオキサゾリノン誘導体は、ベンズアルデヒド誘導体、N−アセチルグリシンおよび無水酢酸を酢酸ナトリウムの存在下で縮合させて容易に合成することができる(Henry N.C. Wong;Synthesis;793,1192)。
【0010】
本発明に用いる酸水溶液としては、塩酸、臭化水素酸等のハロゲン化水素酸類、硫酸、メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸類、およびリン酸から選ばれた少なくとも一種が好適に使用できる。
【0011】
酸水溶液の濃度としては、0.5〜6規定の範囲で使用可能であり、0.5規定以下の濃度ではα−アセチルアミノケイ皮酸誘導体で反応が停止し、フェニルピルビン酸はほとんど得られない。また、6規定以上の濃度では生成するフェニルピルビン酸の分解が起こり、収率の低下を招くのみならずフェニルピルビン酸の精製も困難になる。反応温度は0〜100℃の範囲で適用されるが、好ましくは30〜100℃である。反応時間は酸の種類、酸濃度、反応温度等により変動するが、通常は12時間以内、0.5〜8時間の範囲で適用される。酸水溶液の使用は、装置効率上、操作上、原料であるベンジリデンオキサゾリノン誘導体に対して、5〜20倍容量が好ましい。
【0012】
【実施例】
次に、参考例、実施例および比較例により本発明を更に具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
【0013】
原料ベンジリデンオキサゾリノン誘導体の合成について、4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オンを参考例として示す。
【0014】
参考例
4−ヒドロキシベンズアルデヒド12.2g、N−アセチルグリシン13.9g、酢酸ナトリウム15.6gおよび無水酢酸51.0gを混合し、120℃で5時間撹拌した。反応後室温まで冷却し、氷水50mlを加えて1時間撹拌し、析出した結晶を濾過し、水100mlで洗浄した。得られた結晶を真空乾燥し、4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オンの黄色結晶を22.0g得た。
【0015】
実施例1
4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン20gを3規定の塩酸200mlに懸濁し、80℃で6時間撹拌した。反応後室温まで冷却し、析出した結晶を濾過した。濾液は約1/5まで濃縮し、析出した結晶を濾過した。すべての結晶を集めて水100mlで洗浄し、真空乾燥して、3−(4−ヒドロキシフェニル)ピルビン酸の無色結晶13.6gを得た。
【0016】
実施例2
4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン20gを4規定の硫酸200mlに懸濁し、80℃で6時間撹拌した。反応後室温まで冷却し、析出した結晶を濾過した。濾液は約1/5まで濃縮し、析出した結晶を濾過した。すべての結晶を集めて水100mlで洗浄し、真空乾燥して、3−(4−ヒドロキシフェニル)ピルビン酸の無色結晶13.0gを得た。
【0017】
実施例3〜11
原料のベンジリデンオキサゾリノン誘導体を下記のものに代えた以外は実施例1と同様に操作して、対応するフェニルピルビン酸誘導体を表に示した収率で得た。
【0018】
Figure 0003833278
【0019】
比較例
3−(4−ヒドロキシフェニル)ピルビン酸
次の(a)、(b)の2工程により、原料の3−(4−ヒドロキシフェニル)ピルビン酸を合成する方法を比較例として示す。
(a)2−アセチルアミノ−3−(4−ヒドロキシフェニル)ケイ皮酸
4−(4−アセトキシベンジリデン)−2−メチルオキサゾール−5(4H)−オン20gを0.2規定の塩酸800mlに懸濁し、100℃で0.5時間撹拌した。反応後室温まで冷却し、析出した結晶を濾過し、2−アセチルアミノ−3−(4−ヒドロキシフェニル)ケイ皮酸の淡黄色結晶16.1gを得た。
【0020】
(b)3−(4−ヒドロキシフェニル)ピルビン酸
2−アセチルアミノ−3−(4−ヒドロキシフェニル)ケイ皮酸11.1gを3規定の塩酸300mlに懸濁し、80℃で6時間撹拌した。反応後室温まで冷却し、析出した結晶を濾過した。濾液は約1/5まで濃縮し、析出した結晶を濾過した。すべての結晶を集めて水50mlで洗浄し、真空で乾燥して、3−(4−ヒドロキシフェニル)ピルビン酸の無色結晶7.1gを得た。
【0021】
【発明の効果】
本発明の方法によれば、合成により容易に入手できるベンジリデンオキサゾリノン誘導体を、単工程で高収率で、フェニルピルビン酸誘導体に導くことができる。また、本発明の方法は原料に対し大量の溶媒を使用しないことから、廃水処理上の制約もほとんど無く、さらに、連続抽出の特殊な操作や装置を必要とせず、大量生産に適している。[0001]
[Industrial application fields]
The present invention is a general formula (1) useful as an intermediate for medicines and agricultural chemicals.
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Group, or R 1 and R 2 together represent a methylenedioxy group).
[0002]
[Prior art]
As a method for producing a phenylpyruvic acid derivative, a benzaldehyde derivative and a hydantoin are subjected to dehydration condensation to form a benzylidenehydantoin derivative, followed by hydrolysis with a base (Org. Synthesis, 43, 49 (1963)), a benzaldehyde derivative, A benzylidene oxazolinone derivative produced from N-acetylglycine is hydrolyzed with 0.2 N oxalic acid to obtain an α-acetylaminocinnamic acid derivative, and then again hydrolyzed with 3 N concentrated acid. Two methods (Synthesis, 793, 1992) are well known.
[0003]
However, in the former method, there is a dangerous process in which the benzylidenehydantoin derivative is hydrolyzed with a base and then neutralized with concentrated hydrochloric acid, and a large amount of inorganic salt is generated in the neutralization process. Cost. Furthermore, it is necessary to separate the target product from the aqueous solution by continuous extraction, and there are significant restrictions on the apparatus.
[0004]
In contrast, in the latter method, the target phenylpyruvic acid derivative can be obtained with a relatively high yield, but this reaction is a reaction that uses 50 times the amount of acid aqueous solution compared to the benzylideneoxazolinone derivative. Yes, the efficiency of the equipment is poor, and there are significant restrictions on wastewater treatment. Furthermore, in this reaction, two steps are required to obtain the target compound from the benzylideneoxazolinone derivative.
[0005]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned various problems of the prior art, and an object of the present invention is to use a benzylidene oxazolinone derivative that can be easily produced as a raw material, and to produce a phenylpyruvic acid derivative in a high yield. It is to provide an efficient method that can be manufactured.
[0006]
[Means for Solving the Problems]
As a result of intensive studies in order to achieve the above object, the present inventors have used the acid in which the hydrolysis of the benzylidene oxazolinone derivative is adjusted to 0.5 to 6 N, in a single step, The present inventors have found that a phenylpyruvic acid derivative can be produced in a high yield, and have reached the present invention.
[0007]
That is, the general formula (1)
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Or a method for producing a phenylpyruvic acid derivative represented by: R 1 and R 2 together represent a methylenedioxy group,
General formula (2)
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Or a benzylidene oxazolinone derivative represented by R 1 and R 2 together represents a methylenedioxy group) in a single step with a 0.5 to 6 N aqueous acid solution. The present invention relates to a method for producing a phenylpyruvic acid derivative.
[0008]
The present invention will be described in detail below.
As the benzylidene oxazolinone derivative used as a raw material in the present invention,
General formula (2)
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Group, or R 1 and R 2 together represent a methylenedioxy group), specifically, 4- (4-acetoxybenzylidene) -2-methyloxazole-5 (4H ) -One, 4- (4-methoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4-ethoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4 -Methylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4-ethylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4-t-butylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (3-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (3-methoxybenzylidene) -2-methyloxazole-5 ( 4H) -one, 4- (3-ethoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (3-methylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- ( 3-ethylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (3-tert-butylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (2-acetoxybenzylidene)- 2-methyloxazol-5 (4H) -one, 4- (2-methoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (2-d Toxibenzylidene) -2-methyloxazol-5 (4H) -one, 4- (2-methylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (2-ethylbenzylidene) -2-methyloxazole -5 (4H) -one, 4- (2-t-butylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (3,4-methylenedioxybenzylidene) -2-methyloxazole-5 (4H) -one, 4- (3,4-dimethoxybenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4-acetoxy-3-methylbenzylidene) -2-methyloxazole-5 (4H ) -One, 4- (4-acetoxy-3-ethylbenzylidene) -2-methyloxazol-5 (4H) -one, 4- (4-acetoxy-3- Butoxy benzylidene) -2-methyloxazole -5 (4H) - one, 4- (4-acetoxy-3-ethoxy-benzylidene) -2-methyloxazole -5 (4H) - on, and the like.
[0009]
The benzylidene oxazolinone derivative used as a raw material in the present invention can be easily synthesized by condensing a benzaldehyde derivative, N-acetylglycine and acetic anhydride in the presence of sodium acetate (Henry NC Wong; Synthesis; 793, 1192).
[0010]
The acid aqueous solution used in the present invention is preferably at least one selected from hydrohalic acids such as hydrochloric acid and hydrobromic acid, sulfonic acids such as sulfuric acid, methanesulfonic acid and p-toluenesulfonic acid, and phosphoric acid. Can be used.
[0011]
The concentration of the aqueous acid solution can be used in the range of 0.5 to 6 N. When the concentration is 0.5 N or less, the reaction is stopped with the α-acetylaminocinnamic acid derivative, and phenylpyruvic acid is almost obtained. Absent. On the other hand, when the concentration is 6N or more, the generated phenylpyruvic acid is decomposed, not only causing a decrease in yield, but also making it difficult to purify phenylpyruvic acid. Although reaction temperature is applied in 0-100 degreeC, Preferably it is 30-100 degreeC. The reaction time varies depending on the type of acid, acid concentration, reaction temperature, etc., but it is usually within 12 hours and applied in the range of 0.5-8 hours. The use of the acid aqueous solution is preferably 5 to 20 times the capacity of the benzylidene oxazolinone derivative as a raw material in terms of apparatus efficiency and operation.
[0012]
【Example】
Next, the present invention will be described more specifically with reference examples, examples and comparative examples, but the present invention is not limited to these examples.
[0013]
Regarding the synthesis of the starting benzylideneoxazolinone derivative, 4- (4-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one is shown as a reference example.
[0014]
Reference Example 4 12.2 g of hydroxybenzaldehyde, 13.9 g of N-acetylglycine, 15.6 g of sodium acetate and 51.0 g of acetic anhydride were mixed and stirred at 120 ° C. for 5 hours. After the reaction, the reaction mixture was cooled to room temperature, added with 50 ml of ice water and stirred for 1 hour, and the precipitated crystals were filtered and washed with 100 ml of water. The obtained crystals were vacuum-dried to obtain 22.0 g of 4- (4-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one yellow crystals.
[0015]
Example 1
20 g of 4- (4-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one was suspended in 200 ml of 3N hydrochloric acid and stirred at 80 ° C. for 6 hours. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were filtered. The filtrate was concentrated to about 1/5, and the precipitated crystals were filtered. All the crystals were collected, washed with 100 ml of water, and vacuum-dried to obtain 13.6 g of 3- (4-hydroxyphenyl) pyruvic acid colorless crystals.
[0016]
Example 2
20 g of 4- (4-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one was suspended in 200 ml of 4N sulfuric acid and stirred at 80 ° C. for 6 hours. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were filtered. The filtrate was concentrated to about 1/5, and the precipitated crystals were filtered. All the crystals were collected, washed with 100 ml of water, and vacuum-dried to obtain 13.0 g of colorless crystals of 3- (4-hydroxyphenyl) pyruvic acid.
[0017]
Examples 3-11
The corresponding phenylpyruvic acid derivative was obtained in the yield shown in the table by operating in the same manner as in Example 1 except that the starting benzylideneoxazolinone derivative was replaced with the following.
[0018]
Figure 0003833278
[0019]
Comparative Example 3- (4-Hydroxyphenyl) pyruvic acid A method for synthesizing 3- (4-hydroxyphenyl) pyruvic acid as a raw material by the following two steps (a) and (b) is shown as a comparative example.
(A) 2-acetylamino-3- (4-hydroxyphenyl) cinnamic acid 4- (4-acetoxybenzylidene) -2-methyloxazol-5 (4H) -one (20 g) was suspended in 800 ml of 0.2N hydrochloric acid. It became cloudy and stirred at 100 ° C. for 0.5 hour. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were filtered to obtain 16.1 g of 2-acetylamino-3- (4-hydroxyphenyl) cinnamic acid as pale yellow crystals.
[0020]
(B) 11.1 g of 3- (4-hydroxyphenyl) pyruvic acid 2-acetylamino-3- (4-hydroxyphenyl) cinnamic acid was suspended in 300 ml of 3N hydrochloric acid and stirred at 80 ° C. for 6 hours. After the reaction, the mixture was cooled to room temperature, and the precipitated crystals were filtered. The filtrate was concentrated to about 1/5, and the precipitated crystals were filtered. All the crystals were collected, washed with 50 ml of water, and dried in vacuo to give 7.1 g of colorless crystals of 3- (4-hydroxyphenyl) pyruvic acid.
[0021]
【The invention's effect】
According to the method of the present invention, a benzylideneoxazolinone derivative that can be easily obtained by synthesis can be led to a phenylpyruvic acid derivative in a high yield in a single step. In addition, since the method of the present invention does not use a large amount of solvent for the raw material, there are almost no restrictions on wastewater treatment, and no special operation or equipment for continuous extraction is required, which is suitable for mass production.

Claims (2)

一般式(1)
Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表されるフェニルピルビン酸誘導体の製造方法において、一般式(2)
Figure 0003833278
(式中、R1 およびR2 は同一または異なって、水素原子、水酸基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、炭素数1〜4の直鎖状もしくは分岐状のアルコキシ基、または、R1 およびR2 がいっしょになってメチレンジオキシ基を示す)で表されるベンジリデンオキサゾリノン誘導体を、3〜6規定の酸水溶液により、単工程で、加水分解することを特徴とするフェニルピルビン酸誘導体の製造方法。
General formula (1)
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Or a phenylpyruvic acid derivative represented by the general formula (2): wherein R 1 and R 2 together represent a methylenedioxy group)
Figure 0003833278
(Wherein R 1 and R 2 are the same or different and are a hydrogen atom, a hydroxyl group, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkoxy group having 1 to 4 carbon atoms. Or a benzylidene oxazolinone derivative represented by R 1 and R 2 together represents a methylenedioxy group) in a single step with a 3 to 6 N aqueous acid solution. A method for producing a phenylpyruvic acid derivative.
酸水溶液が塩酸、臭化水素酸等のハロゲン化水素酸類、硫酸、メタンスルホン酸、p−トルエンスルホン酸等のスルホン酸類、およびリン酸から選ばれた、少なくとも一種である請求項1記載の製造方法。  The production according to claim 1, wherein the acid aqueous solution is at least one selected from hydrohalic acids such as hydrochloric acid and hydrobromic acid, sulfonic acids such as sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid, and phosphoric acid. Method.
JP27183894A 1994-10-12 1994-10-12 Method for producing phenylpyruvic acid derivative Expired - Fee Related JP3833278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27183894A JP3833278B2 (en) 1994-10-12 1994-10-12 Method for producing phenylpyruvic acid derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27183894A JP3833278B2 (en) 1994-10-12 1994-10-12 Method for producing phenylpyruvic acid derivative

Publications (2)

Publication Number Publication Date
JPH08109152A JPH08109152A (en) 1996-04-30
JP3833278B2 true JP3833278B2 (en) 2006-10-11

Family

ID=17505575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27183894A Expired - Fee Related JP3833278B2 (en) 1994-10-12 1994-10-12 Method for producing phenylpyruvic acid derivative

Country Status (1)

Country Link
JP (1) JP3833278B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838465B2 (en) * 2001-09-28 2011-12-14 三菱レイヨン株式会社 Process for producing 4-hydroxyphenylpyruvic acid
JP4573597B2 (en) * 2004-08-09 2010-11-04 シプロ化成株式会社 UV absorber having oxazolone structure

Also Published As

Publication number Publication date
JPH08109152A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
JPH0249797A (en) Production of erythromycin a oxime and salt thereof
CA2389379C (en) Method for the preparation of 5-carboxyphthalide
US4658055A (en) Method for manufacture of 7-(2,5-dioxocyclopentyl)heptanoic acid derivative
JP3833278B2 (en) Method for producing phenylpyruvic acid derivative
JP3913329B2 (en) Optical resolution method of (±) -chromancarboxylic acid
JPS6122043A (en) Preparation of cycloalkylidenemethylphenylacetic acid derivative
JPH0136462B2 (en)
US4970336A (en) Method of purifying α-substituted acetic acids
JPH05286889A (en) Production of arylacetic acid and its alkali metal salt
JPH07188094A (en) Preparation of 3,5-di-t-butylsalicylaldehyde
JP3563424B2 (en) Method for producing 4H-pyran-4-one
JPS63188647A (en) Production of bis(3-tert-butyl-4-hydroxyphenyl)acetic acids
KR100503267B1 (en) Method for the preparation of 2-acetyloxy-4-trifluoromethyl benzoic acid
JP4085629B2 (en) Method for producing high quality adamantane alcohols
SU554674A1 (en) Method of preparing (+)-o-methyldaurycin
SU1068417A1 (en) Process for preparing derivatives of 1,2-dioxo-3-chloronaphthalene or 4,5-dioxoindole
SU929639A1 (en) Process for producing derivatives of tri-(furyl-2)-methane
JPH0798802B2 (en) Process for producing optically active indoline-2-carboxylic acid
SU1728216A1 (en) Method of 3,3-diethoxy-1-phenylprop-1-in synthesis
JPS58216184A (en) N-acetylphenylglycine derivative and preparation thereof
JPS6299341A (en) Manufacture of alkanoic acid
JPS6317869A (en) Production of 2-lower alkyl-4-amino-5-formylpyrimidine
JPH0789891A (en) Production of hydroxybenzaldehyde derivative
JPH06199809A (en) Preparation of 2,5-dibromopyrimidine
JPS6210976B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees