JP3833191B2 - Dehumidifier - Google Patents

Dehumidifier Download PDF

Info

Publication number
JP3833191B2
JP3833191B2 JP2003163693A JP2003163693A JP3833191B2 JP 3833191 B2 JP3833191 B2 JP 3833191B2 JP 2003163693 A JP2003163693 A JP 2003163693A JP 2003163693 A JP2003163693 A JP 2003163693A JP 3833191 B2 JP3833191 B2 JP 3833191B2
Authority
JP
Japan
Prior art keywords
moisture
regeneration
air
hygroscopic
dehumidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003163693A
Other languages
Japanese (ja)
Other versions
JP2004000979A (en
JP2004000979A5 (en
Inventor
守 守川
治仁 宮崎
博亮 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003163693A priority Critical patent/JP3833191B2/en
Publication of JP2004000979A publication Critical patent/JP2004000979A/en
Publication of JP2004000979A5 publication Critical patent/JP2004000979A5/ja
Application granted granted Critical
Publication of JP3833191B2 publication Critical patent/JP3833191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1008Rotary wheel comprising a by-pass channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments

Description

【0001】
【発明の属する技術分野】
本発明は室内の空気中の水分を取り除く除湿機に関し、吸湿体を用いる乾式除湿機に関する。
【0002】
【従来の技術】
図23は従来の除湿機を示す概略図である。室内の空気は吸湿用空気として送風機4によって吸湿経路7を通って除湿器1内に取り入れられ、二経路を有する凝縮器3の一方通路3aを通って凝縮器3を冷却する。その後ゼオライトなどからなる吸湿体が充填されて回転する回転体(不図示)を有した吸湿器2の吸湿部2aを通り、吸湿体により吸湿されて除湿機1外に放出される。また、送風機6によって再生経路8を通って除湿器1内に取り入れられた再生用空気は、ヒータ5によって昇温されて吸湿器2の再生部2bを通り水分を含んだ吸湿体を昇温し、吸湿体から離脱した水分を取って吸湿体を再生する。
【0003】
再生された吸湿体は吸湿器2の矢印A方向の回転によって吸湿部2aに移動し再び吸湿経路7を通る吸湿用空気から水分を吸湿する。吸湿体から水分を取って吸湿器2を通過した高温多湿の再生用空気は凝縮器3の他方通路3bを通って前述の吸湿用空気によって冷却される。再生用空気に含まれた水分は凝縮されて貯水槽10に貯蔵され、再生用空気は除湿機1外に放出されるようになっている。また、図24に示すように凝縮器3を通過後の再生用空気をヒータ5に入れるような閉回路を構成し室外から再生用空気の補充のみを行う場合もある。
【0004】
吸湿器2は図25に側面図を示すように、外枠28内に設けられた回転体21がモータ25にベルト26によって接続され、軸受27に支持されて回転するようになっている。回転体21は支持枠24で覆われて中空になっており、内部には吸湿体22が充填されている。そして再生経路8内の再生用空気が矢印Bの方向に再生部2b(図23参照)を通過するように形成されている。
【0005】
また、ヒータ5は再生経路8内の吸湿器2に接近して配置されており、図26の(a)、(b)に上面図及び正面図を示すと曲線状の電熱体5aが再生部2bに臨んで整列されている。
【0006】
【特許文献1】
特開昭53−104573号公報
【特許文献2】
特開平5−115736号公報
【特許文献3】
実開昭56−98326号公報
【特許文献4】
実開昭52−126659号公報
【特許文献5】
実開平4−26018号公報
【0007】
【発明が解決しようとする課題】
このような構成の除湿機において、図23、図24において凝縮器3を通過後の再生経路は露点に達しているために結露が生じやすく水漏れが発生しないようにする水滴の回収手段や防カビ対策を必要とし、費用が増大する要因となっていた。また吸湿体22(図25参照)に空気中の水分が吸着される際の吸着熱や凝縮器3で再生経路の水分が凝縮される際の凝縮熱とともにヒータ5の熱が室内に放出され室温が上昇するために、使用者に不快感を与える場合があった。
【0008】
図23、図24に示す吸湿器2の再生部2bにおいて、ヒータ5に加熱される再生用空気は再生部2b全体を一様に通過するようになっている。吸湿体22(図25参照)は、通過する再生用空気によって昇温されて水分を離脱し、該再生用空気はその水分を吸収して吸湿器2より凝縮器3へ送られる。
【0009】
その水分を放出した吸湿体22は回転体21(図25参照)の回転に伴って受熱区域(再生部2b)から放熱区域(吸湿部2a)へ移動する。この時吸湿体22は既にヒータ5で加熱された再生用空気で昇温されているので吸湿体22は放熱区域(吸湿部2a)でも再生部2b近傍部分の温度が高くなり、この熱が吸湿用空気によって室内に放出されて室内の温度を上昇させるとともにこの放出熱の有効活用の余地があった。
【0010】
また吸湿器2内の再生部2bの外周部103(図26参照)では内周部104(図26参照)よりも再生用空気の量が多いので、再生部2bに面して配されたヒータ5の電熱体5aを一様に形成すると、外周部103の方が内周部104より温度が低くなる。このため再生用空気が外周部103と内周部104とで温度差を生じることになって再生効率が悪くなり、再生効率を上げるために必要以上に高温とするので無駄なヒータ5の電力を消費していた。
【0011】
図26において、ヒータ5の電熱体5aに加熱された再生用空気が再生部2bに入りその加熱された再生用空気が吸湿体22(図25参照)を通過することでその吸湿体22が昇温されて含まれる水分を離脱させる。電熱体5aの背後の再生用空気の温度と電熱体5a間の空隙5bの背後の再生用空気の温度とでは電熱体5aに接触する再生用空気の接触の仕方が異なるので空気温度が異なり、温度差が生じる。
【0012】
電熱体5aは吸湿器2の円周方向にほぼ沿って配されているため、回転体21(図25参照)が回転しても回転体21内の任意の点は同じようなヒータ5との位置関係(例えば電熱体5aの背後の点は回転体21が回転しても同じように電熱体5aの背後に位置する)になり、電熱体5aと再生用空気との接触の仕方があまり変化しない。このため再生部2b内で吸湿体22に入る再生用空気の温度には温度差が生じることになる。従って、この再生用空気の温度差によって再生部2bにおける再生効率が悪くなり、再生効率を上げるために必要以上に高温とするので無駄なヒータ5の電力を消費していた。
【0013】
凝縮器3は金属製で形成されているため重量が重く、形状が偏るとか結露水により錆が発生したり穴があいたりして水漏れが発生するなどこれらの対応には相当の費用がかかる。また、図25に示すように吸湿器2は加熱された再生用空気及び接近して配されたヒータ5の輻射熱によって膨張、収縮する。吸湿体2内部で回転する回転体21の支持枠24が熱による膨張収縮で熱変形して外枠28と接触して回転体21が回転しなくなるなどの故障の原因となっていた。
【0014】
本発明は、昇温の効率を向上させて消費電力を低減するとともに、室温上昇を抑制して快適な環境が得られる除湿機を提供することを目的とする。
【0015】
また本発明は省スペース化及び軽量化を図るとともにコストの削減を図り、防錆、防蝕及び細菌の繁殖の防止を簡単に実現し信頼性の高い除湿機を提供することを目的とする。
【0038】
【課題を解決するための手段】
上記目的を達成するために本発明の除湿機は、湿度が異なる第1、第2領域と、水分を吸収する吸湿体が充填され第1、第2領域を通過するように回転する回転体とから成る吸湿器と、
第1領域を通るとともに前記吸湿体により水分が吸湿される吸湿用空気が通る吸湿経路と、
第2領域を通るとともに前記吸湿体から水分を取る再生用空気が通る再生経路と、
前記吸湿器に入れられる再生用空気が前記吸湿器の第2領域を均一に昇温するように該再生用空気を加熱するヒータと、
前記吸湿器を通過した再生用空気の水分を凝縮して排出する凝縮器と、
から成り、前記ヒータは前記吸湿器の第2領域をなす扇形面に対面して配置されるとともに該扇形面の周方向に延びて曲折される曲線状の電熱体から成り、前記電熱体の全長の1/2以上の長さの部分が該扇形面を2等分する中心線に対して傾斜していることを特徴としている。
【0039】
この構成によると、吸湿器の第2領域が均一に昇温されるように、ヒータが第2領域を通る再生用空気を加熱するようになっている。また、第2領域をなす扇形面の中心線と直交しないように配された電熱体が再生用空気を加熱し、ヒータと対面する吸湿器の第2領域を通る際に回転体の任意の一点は電熱体と各電熱体間の空隙との背後を交互に横切って回転する。
【0041】
また、前記電熱体は前記扇形面に対面して曲折した略扇形の平面形状に形成される列が前記扇形面に対して垂直な方向に複数列平行に配されるとともに、隣接した2列において前記電熱体は前記扇形面を2等分する中心線に対する傾斜角度が異なることを特徴としている。この構成によると、再生用空気の進行方向に複数列並んで配置された電熱体は列毎に傾斜方向が異なり、吸湿体は網目状に配された電熱体の背後を回転し、均一に昇温されるようになっている。
【0047】
【発明の実施の形態】
本発明の実施形態と本発明に対する参考形態を図を参照して説明する。なお以下の図1乃至図22において従来例と同じ部材については同一の符号を付している。図1は第1参考形態の除湿機の概略図を示している。従来例(図23参照)と異なる点は、吸湿器2を通過した高温多湿の再生用空気と凝縮器3を通過後の再生用空気との間で熱交換を行う熱交換器9を設けている。
【0048】
このような構成とすると凝縮器3を通過後の再生用空気が室内に放出されるような、再生経路8が開回路の除湿機1において凝縮器3を通過して露点に達している再生用空気の温度を吸湿器2を通過した高温多湿の再生用空気と熱交換して上昇させて熱交換器9以降の再生経路8cの結露を防止することができるようになる。
【0049】
図2は第2参考形態の除湿機の概略図を示している。同図によると凝縮器3を通過後の再生用空気をヒータ5に入れるような再生経路8が閉回路の場合について第1参考形態(図1参照)と同様に構成している。このような構成とすると第1参考形態と同様に熱交換器9以降の再生経路8cの結露を防止することができるようになるとともに、ヒータ5に入る再生用空気(再生経路8)の温度を予め上昇させておくことができるのでヒータ5の消費電力を低減させることができるようになる。
【0050】
また、熱交換器9に入る再生用空気(再生経路8b)を室内から取り込んで凝縮器3を通過後の再生用空気(再生経路8c)を除湿機1外に放出するような開回路としたときは上記と同様にヒータ5の消費電力を低減させることができる。
【0051】
次に第3参考形態の除湿機を図3を参照して説明する。同図によると、吸湿器2の再生部2bと隣接し吸湿器2内部の回転体21(図25参照)の回転方向前方の回収部2bbでは、再生部2bで昇温された吸湿体22(図25参照)がまだ高温状態を維持して回転移動されてくる。この回収部2bbを通るように吸湿経路7から分岐するような分岐経路7aを設け、回収部2bbの熱を分岐経路7aを通る吸湿用空気で回収し、熱交換器9によってヒータ5に入る前の再生用空気との間で熱交換している。
【0052】
このような構成とすると第2参考形態と同様にヒータ5に入る再生用空気を予め昇温させておくことができるのでヒータの消費電力を低減させることができるようになる。更に、吸湿体22が回転体21の回転に伴って吸湿部2aに入る前に分岐経路7aを通る吸湿用空気によって降温され吸湿部2aにおける吸湿効率を向上させることができる。
【0053】
この時に高温となった分岐経路7aを通る吸湿用空気は熱交換器9によって熱回収されているので低温となって除湿機1外に放出され、室温を上昇させないようになっている。ここで分岐経路7aを通る吸湿用空気によって吸湿体22の水分の一部が除湿機1外に放出されることになるが、分岐経路7a内の流量を少なく構成することによって室内の湿度を上昇させることなく吸湿体を降温可能である。
【0054】
次に第4参考形態の除湿機を図4を参照して説明する。同図によると、第3参考形態(図3参照)と同様の構成であるが、吸湿器2内の回転体21(図25参照)の回転方向を正転(矢印A)と逆転(矢印A')とが選択可能になっている。このようにすることで、回転体21を矢印A方向に正転させると第3参考形態と同様の効果が得られる。
【0055】
回転体21を矢印A'方向に逆転させると分岐経路7aが通る回収部2bbは低温であるため、分岐経路7aと吸湿用経路7とは従来例(図24参照)と同様の1つの吸湿経路7と見なすことができる。このとき再生部2bに対して回転体21の回転方向(矢印A')前方の高温部を通る比較的高温の乾燥した吸湿用空気が従来例と同様に除湿機1外に放出される。この高温乾燥空気を用いて衣類の乾燥などを行うことができるので、回転体21の回転方向を選択することにより使用者が除湿優先あるいは衣類乾燥等の用途を使い分けることができるようになる。
【0056】
次に第5参考形態の除湿機を図5を参照して説明する。同図によると、第3参考形態(図3参照)の分岐経路7a内に送風機12を設けている。このような構成とすると、分岐経路7aを通る吸湿用空気が吸湿体から吸収し、除湿機1外に放出される水分量が多くなって除湿性能を低下させないように、分岐経路7aを通る吸湿用空気の流量を最適に設定することができるようになる。
【0057】
次に第6参考形態の除湿機を図6を参照して説明する。同図によると、凝縮器3を通過後の再生経路8上に結露防止用ヒータ17を設けており、凝縮器3によって冷却されて露点に達した再生用空気が通る再生経路8cの結露を防止することができるようにしている。
【0058】
次に第7参考形態の除湿機を図7を参照して説明する。同図によると、吸湿経路7から吸湿器2を通らないように分岐した分岐経路7bを設けている。このようにすると凝縮器3を通過する吸湿用空気の流量を多くして凝縮の効率を向上させることができる。吸湿器2において所定量以上の吸湿用空気を通過させると吸湿体22(図25参照)の吸湿能力は低下するため所定量以上の吸湿用空気は分岐経路7bによって吸湿器2を通さずに除湿機1外に放出させている。
【0059】
吸湿器2に所定量の吸湿用空気を通過させるために、図8の要部詳細図に示すように吸湿経路7内に吸湿器2に入る吸湿用空気を遮蔽するように制限板32を配置し、制限板32には貫通孔32aを形成している。このようにすると制限板32を通過する空気量が一定になるとともに吸湿器2に入る空気の流れが均一になって吸湿効率が向上する。また、再生経路8内においても同様にヒータ5と吸湿器2との間に貫通孔43aを有した制限板43を設置してもよく、再生部2bに入る再生用空気の空気の流れを均一にし吸湿体22を均一に昇温できるようになる。
【0060】
次に第8参考形態を図9、図10を参照して説明する。図9の(a)、(b)、(c)は本参考形態の凝縮器3の上面図、正面図、側面図を示しており、図10は図9におけるD部分を示す概略斜視図である。これらの図によると、凝縮器3上方に設けられた空気流入口37から凝縮器3内に流入する高温多湿の再生用空気は矢印Eのように並列に形成された複数の凝縮用通路34(第1通路)に分岐して下方に進行する。
【0061】
隣接する凝縮用通路34の間には貫通孔36が設けられ、低温の吸湿用空気は矢印Fのように面3dに垂直に通過して再生用空気との間で熱交換を行い再生用空気内の水分が凝縮される。乾燥した再生用空気は凝縮器3下部に設けられた空気流出口38から送出され、凝縮された水は凝縮用通路34を伝って流下し排出口39から排出されるようになっている。
【0062】
空気流出口38は、下端面40bに接しない位置に設けられて下端面40bを流下する凝縮水が空気流出口38から漏出しないようにしている。また各凝縮用通路34を通過して合流される再生用空気を空気流出口38に導くように案内面40aが設けられている。案内面40aは再生用空気が排出口39から漏出することを防止し、凝縮水は傾斜した案内面40aを流下しながら案内面40aに設けられた孔(不図示)から下端面40bに滴下するようになっている。なお、凝縮用通路34を横切って連結するように形成された通路35(第2通路)は各凝縮用通路34の圧力を均一にするために設けられている。
【0063】
このような凝縮器3は樹脂によって形成されており、図11に概略を示すように、矢印Gのように内部へ空気を送り込みながらポリプロピレンなどの樹脂42を金型41で成形加工するブロー成形加工等を行った後、貫通孔36をトムソン加工などにより打ち抜いて簡単に形成することができる。従って従来の金属製の凝縮器に比して軽量化されて除湿機本体の持ち運びが容易になり、材料コスト及び加工コストを削減することができるようになる。更に錆が発生しないので錆による孔から水が漏れるなどの故障原因を排除し信頼性を向上させることができる。
【0064】
また、金属製の凝縮器に比して熱伝導率が低くなるので凝縮効率が低下するが、肉厚tを0.5〜0.7mmまで薄くするとともに、凝縮用通路34の断面形状を幅方向の短い長孔状にして(図9のH部参照)凝縮用通路34の通路数を増やすことによって凝縮効率を向上させている。本参考形態における凝縮用通路34の内径は幅方向D=8.6mm、厚み方向W=20.6mmとし、凝縮用通路34の幅方向のピッチはP=15mmとしている。
【0065】
更に複数枚の凝縮器3を面3dに平行に並べて貫通孔36が一直線上に並ばないようにずらして配置してもよい。このようにすると、矢印F方向からの低温空気が1枚目の凝縮器3の貫通孔36を通過した後、一部の空気が2枚目の凝縮器3の面3d(凝縮用通路34部分)に衝突して渦を発生し、微少時間停留した後2枚目の凝縮器3の貫通孔36を通過するようになり高温空気との実質的な接触面積が増加し凝縮効率が向上する。
【0066】
次に第9参考形態を図12を参照して説明する。同図によると、凝縮水を貯蔵する1次貯水槽10を設けて第8参考形態の凝縮器3の排出口39と連結している。1次貯水槽10には水位センサ14が設置され、所定の水位Jになるとポンプ11によって図示しない2次貯水槽に水が送出され、水位が下がると(水位W)ポンプ11が停止されるようになっている。
【0067】
このような構成によると、凝縮器3の排出口39部分には常時凝縮水が溜まって塞がれており、この水面によって再生用空気が排出口39から漏出することを更に防止することができるようになる。また、空気流出口38の下端38aよりも水位Jが下方となるように配置すると、水位センサ14やポンプ11が故障したときに水位が上昇して空気流出口38を塞いで再生用空気の流出量が低下する。
【0068】
図13の側面図に示すように、凝縮器3を通過した再生用空気をヒータ5に入れるような閉回路の場合には、ヒータ5に入る再生用空気の流量が低下するとヒータ5を出る再生用空気の温度が所定温度より高温となるため温度センサ13などによってヒータ5を出る再生用空気の温度が高温であることを検知して除湿機1の運転を停止することが可能となる。これにより水位センサ14やポンプ11の故障を検知して水漏れを防止することができるようになる。
【0069】
なお、第8、第9参考形態は凝縮器3について説明したが、高温の空気と低温の空気との熱交換を行うようになっているので、第1乃至第5参考形態に使用されるような熱交換器9においても同様の構成とすることが可能であり、同じ効果を得ることができるようになる。
【0070】
次に第10参考形態を図14を参照して説明する。図14は本参考形態のヒータ5の構成を説明する概略図である。同図によると、分岐した再生経路8j、8kはヒータ5を通過する第1、第2昇温通路5c、5dを通って吸湿器2の再生部2b1、2b2を通過する。吸湿器2の再生部2b1の吸湿体22(図25参照)は、吸湿器2内で回転する回転体21(図25参照)の回転方向後方の再生部2b2を通って予め昇温されているので余熱を有しており水分を放出する。このため再生経路8jを通る再生用空気は再生経路8kを通る再生用空気より低温であっても放出された水分を吸収して吸湿体22を再生することができる。
【0071】
従って第1昇温通路5cを通って昇温される再生用空気の温度を第2昇温通路5dを通って昇温される再生用空気の温度よりも低温とすることで、吸湿器2の再生部2b2を必要以上に高温とせず、回転体21のA方向の回転に伴って吸湿部2aに移動する吸湿体22の温度を低下させておくことができるので、吸湿経路7を通る吸湿用空気によって除湿機 1外へ放出される熱量を抑制するとともに無駄な電力を使用せずに消費電力を低減することができる。
【0072】
また、第1昇温通路5cを通る再生用空気を昇温しないように構成してもよく、この場合も同様に、再生経路8kを通る再生用空気によって昇温された吸湿体22から放出される水分を再生経路8jを通る再生用空気によって吸収するとともに、再生部2b1の吸湿体22が回転体21の回転に伴って吸湿部2aに入る前に吸湿体22の温度を下げて吸湿能力を向上させることができる。
【0073】
次に第11参考形態を図15を参照して説明する。図15は本参考形態のヒータ5の構成を説明する概略図である。同図によると、分岐した再生経路8j、8kはヒータ5の内周部5e、外周部5fを通って吸湿器2の再生部2b3、2b4を通過するようになっている。外周側の再生部2b4は内周側の再生部2b3より再生用空気の量が多いので、ヒータ5を構成する電熱体5a(図26参照)の密度を外周部5fに対して内周部5eを小さくして再生経路8jを通る再生用空気の温度を再生経路8kを通る再生用空気の温度より低くすると、内周側の再生部2b3が必要以上に高温とならず、再生部2bを回転通過する吸湿体22(図25参照)の温度が均一になり、無駄な電力を使用せずに消費電力を低減することができる。
【0074】
次に第実施形態を図16を参照して説明する。図16は本実施形態のヒータ5を示す正面図である。ヒータ5は吸湿器2の再生部2bを覆うように整列された電熱体5aからなり、電熱体5aは再生部2bを2等分する中心線Jに対して1/2以上が直交しないように形成されている。このようにするとヒータ5の背後で吸湿器2内を回転体21(図25参照)が回転すると、回転体21内の任意の点はどの点も同じように、電熱体5aとの接触の仕方が異なる電熱体5a背後の再生用空気と空隙5b背後の再生用空気に交互に昇温されるので再生部2bの吸湿体22は均一に昇温されるようになり、無駄な電力を使用せずに消費電力を低減することができる。
【0075】
ここで中心線Jに対して直交していない電熱体5aの長さが電熱体5aの全長に対して1/2以下になると、回転体21の回転によって電熱体5aまたは空隙5bの背後のみを回転移動する点が多くなり、再生部2bの均一な昇温が行われなくなる。
【0076】
更に図17の第実施形態に示すように、再生用空気の流入方向に複数列並べるように電熱体5aを配置し、該中心線Jに対する電熱体5aの傾斜角度を各列で異ならせると更に再生部2bの均一な昇温が可能となるので望ましい。
【0077】
次に第12参考形態を図18を参照して説明する。本参考形態においてはヒータ5(図26参照)を必要とせず、吸湿器2内で吸湿体を再生するようにしている。図18の(a)によると、ゼオライトなどの吸湿体53を溶融した中にガラス繊維などの耐熱材料52を浸して引き上げて冷却すると、繊維状になった繊維状吸湿体54を形成することができる。
【0078】
この繊維状吸湿体54を電熱線51に巻き付けて吸湿器2内を回転する回転体21(図25参照)内に充填し電熱線51に電流を流すことによって吸湿体53を昇温して水分を放出させることができる。このようにするとヒータ5を必要としないので除湿機1本体を小型化することができるようになる。また(b)に示すように繊維状吸湿体54を網状に編んで電熱線51の周りを覆うようにしてもよい。
【0079】
図19の(a)、(b)に回転体21の概略斜視図及び側面図を示すように、回転体21を複数のブロック21a乃至21fに分割し、各ブロックに充填した繊維状吸湿体54(図18参照)に覆われる電熱線51は先端を回転体21に一端が固定された端子51aに接続され、各ブロックが回転して再生部2b(図1参照)を通過するときに端子51aが軸受27部に設けられた電極31と接触するように構成することによって吸湿体53(図18参照)が再生部2bを通過するときのみ吸湿体53を昇温させるようにすることができる。
【0080】
更に図20の第13参考形態に示すように電熱線51を繊維状吸湿体54で覆った一体部材55をフレキシブルな部材56と帯状に一体化すると吸湿体53の密度を所望の密度に形成して吸湿器2内に設置することができるようになる。
【0081】
次に第14参考形態を図21を参照して説明する。図21は、本参考形態における回転体21(図25参照)の支持枠24を示す正面図である。同図によると、再生用空気または吸湿用空気を通過可能なように格子孔24cが同心円状リブ24aと放射状リブ24bとによって形成されている。ここで隣接する3つの同心円状リブ24aを連結する放射状リブ24bは一直線上に形成されずにずらして形成されている。
【0082】
このような支持枠24において、回転体21内部の吸湿体22(図25参照)が昇温されたときに熱膨張したK部分の状態を図22の概略図に示すと、同心円状リブ24a、放射状リブ24bの膨張量は各格子孔24cに吸収されている。支持枠24は最外周の放射状リブ24bと最外周の同心円状リブ24aとが熱膨張した長さだけ外径が大きくなり、一直線上に放射状リブを設けた場合に比して熱膨張を低減することができる。これにより吸湿体22が昇温、降温を繰り返すことによって支持枠24が膨張、収縮を繰り返して変形しても上記の変形量に留まり、外枠28(図25参照)との接触を防止して信頼性を向上させることができるようになる。
【0095】
【発明の効果】
本発明によると、吸湿体を均一に昇温可能となり所望の再生効率を得るために無駄な電力を使用せずに構成することができる。
【0096】
また、ヒータの背後を回転する回転体の任意の点はどの点も同じように電熱体と空隙との背後を交互に移動してヒータを通った再生用空気によって昇温されるので均一に昇温されるようになり、無駄な電力を使用しない。
【0097】
また、吸湿体は更に均一に昇温されるようになり、無駄な電力を使用しない。
【図面の簡単な説明】
【図1】本発明の第1参考形態の除湿機を示す概略図である。
【図2】本発明の第2参考形態の除湿機を示す概略図である。
【図3】本発明の第3参考形態の除湿機を示す概略図である。
【図4】本発明の第4参考形態の除湿機を示す概略図である。
【図5】本発明の第5参考形態の除湿機を示す概略図である。
【図6】本発明の第6参考形態の除湿機を示す概略図である。
【図7】本発明の第7参考形態の除湿機を示す概略図である。
【図8】本発明の第7参考形態の除湿機の詳細を示す側面図である。
【図9】本発明の第8参考形態の除湿機に用いる凝縮器を示す図である。
【図10】本発明の第8参考形態の除湿機に用いる凝縮器の部分詳細図である。
【図11】本発明の第8参考形態の除湿機に用いる凝縮器の製法を示す図である。
【図12】本発明の第9参考形態の除湿機に用いる凝縮器を示す図である。
【図13】本発明の第9参考形態の除湿機を示す概略側面図である。
【図14】本発明の第10参考形態の除湿機に用いるヒータの構成を示す概略図である。
【図15】本発明の第11参考形態の除湿機に用いるヒータの構成を示す概略図である。
【図16】本発明の第実施形態の除湿機に用いるヒータを示す正面図である。
【図17】本発明の第実施形態の除湿機に用いるヒータを示す正面図である。
【図18】本発明の第12参考形態の除湿機に用いる電熱線を示す図である。
【図19】本発明の第12参考形態の除湿機に用いる電熱線の接続方法を示す図である。
【図20】本発明の第13参考形態の除湿機に用いる電熱線を示す図である。
【図21】本発明の第14参考形態の除湿機に用いる回転体の支持枠を示す正面図である。
【図22】本発明の第14参考形態の除湿機に用いる回転体の支持枠の熱膨張した状態を示す概略図である。
【図23】従来の除湿機の例を示す概略図である。
【図24】従来の除湿機の他の例を示す概略図である。
【図25】従来の除湿機に用いる吸湿器を示す側面図である。
【図26】従来の除湿機に用いるヒータを示す正面図である。
【符号の説明】
1 除湿機
2 吸湿器
2a 再生部
2b 吸湿部
3 凝縮器
5 ヒータ
6 送風機
7 吸湿経路
8 再生経路
9 熱交換器
10 貯水槽
11 ポンプ
14 水位センサ
21 回転体
22、53 吸湿体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifier that removes moisture in indoor air, and relates to a dry dehumidifier using a hygroscopic body.
[0002]
[Prior art]
FIG. 23 is a schematic view showing a conventional dehumidifier. Indoor air is taken into the dehumidifier 1 through the moisture absorption path 7 by the blower 4 as moisture-absorbing air, and the condenser 3 is cooled through one passage 3a of the condenser 3 having two paths. Thereafter, it passes through a hygroscopic part 2a of a hygroscopic device 2 having a rotating body (not shown) filled with a hygroscopic material such as zeolite and is absorbed by the hygroscopic material and released outside the dehumidifier 1. In addition, the regeneration air taken into the dehumidifier 1 through the regeneration path 8 by the blower 6 is heated by the heater 5 and passes through the regeneration unit 2 b of the moisture absorber 2 to raise the temperature of the moisture absorber containing moisture. Then, the moisture removed from the hygroscopic body is taken to regenerate the hygroscopic body.
[0003]
The regenerated hygroscopic material moves to the hygroscopic portion 2a by the rotation of the hygroscopic device 2 in the direction of arrow A, and absorbs moisture from the hygroscopic air passing through the hygroscopic path 7 again. The high-temperature and high-humidity regeneration air that has taken moisture from the hygroscopic body and passed through the hygroscopic device 2 is cooled by the aforementioned hygroscopic air through the other passage 3 b of the condenser 3. The moisture contained in the regeneration air is condensed and stored in the water storage tank 10, and the regeneration air is discharged outside the dehumidifier 1. Further, as shown in FIG. 24, there is a case where a closed circuit is formed so that the regeneration air after passing through the condenser 3 is put into the heater 5 and only the regeneration air is replenished from the outside.
[0004]
As shown in a side view of FIG. 25, the hygroscopic device 2 is configured such that a rotating body 21 provided in an outer frame 28 is connected to a motor 25 by a belt 26 and supported by a bearing 27 to rotate. The rotating body 21 is covered with a support frame 24 and is hollow, and a hygroscopic body 22 is filled therein. The regeneration air in the regeneration path 8 is formed to pass through the regeneration unit 2b (see FIG. 23) in the direction of arrow B.
[0005]
Further, the heater 5 is disposed close to the hygroscopic device 2 in the regeneration path 8, and when a top view and a front view are shown in FIGS. It is aligned facing 2b.
[0006]
[Patent Document 1]
JP-A-53-104573
[Patent Document 2]
Japanese Patent Laid-Open No. 5-115736
[Patent Document 3]
Japanese Utility Model Publication No. 56-98326
[Patent Document 4]
Japanese Utility Model Publication No. 52-126659
[Patent Document 5]
Japanese Utility Model Publication No. 4-26018
[0007]
[Problems to be solved by the invention]
  In the dehumidifier having such a configuration, the regeneration path after passing through the condenser 3 in FIGS.8Since the dew point has been reached, dew condensation is likely to occur and water droplet recovery means and mold prevention measures are required to prevent water leakage, which has been a factor in increasing costs. Also, the heat of the heater 5 is released into the room together with the heat of adsorption when moisture in the air is adsorbed by the moisture absorber 22 (see FIG. 25) and the heat of condensation when moisture in the regeneration path is condensed by the condenser 3. As a result, the user may feel uncomfortable.
[0008]
In the regeneration unit 2b of the hygroscopic device 2 shown in FIGS. 23 and 24, the regeneration air heated by the heater 5 passes through the entire regeneration unit 2b uniformly. The hygroscopic body 22 (see FIG. 25) is heated by the regeneration air passing therethrough to release moisture, and the regeneration air absorbs the moisture and is sent from the moisture absorber 2 to the condenser 3.
[0009]
The moisture absorbing body 22 that has released the moisture moves from the heat receiving area (reproducing section 2b) to the heat radiating area (moisture absorbing section 2a) as the rotating body 21 (see FIG. 25) rotates. At this time, since the hygroscopic body 22 has already been heated by the regenerating air heated by the heater 5, the hygroscopic body 22 also has a high temperature in the vicinity of the regenerating section 2b even in the heat radiation area (the hygroscopic section 2a). There was room for effective use of the heat released while the indoor air was raised by the working air to raise the indoor temperature.
[0010]
Moreover, since the amount of regeneration air is larger in the outer peripheral portion 103 (see FIG. 26) of the regenerating portion 2b in the moisture absorber 2 than in the inner peripheral portion 104 (see FIG. 26), the heater arranged facing the regenerating portion 2b. When the five electric heating elements 5a are uniformly formed, the temperature of the outer peripheral portion 103 is lower than that of the inner peripheral portion 104. For this reason, the regeneration air causes a temperature difference between the outer peripheral portion 103 and the inner peripheral portion 104, so that the regeneration efficiency is deteriorated, and the temperature of the heater 5 is unnecessarily high to increase the regeneration efficiency. I was consuming.
[0011]
In FIG. 26, the regeneration air heated by the electric heater 5a of the heater 5 enters the regeneration unit 2b, and the heated regeneration air passes through the moisture absorber 22 (see FIG. 25), so that the moisture absorber 22 rises. Removes moisture contained by heating. The temperature of the regeneration air behind the electric heating element 5a and the temperature of the regeneration air behind the gap 5b between the electric heating elements 5a are different because the manner of contact of the regeneration air contacting the electric heating element 5a is different, A temperature difference occurs.
[0012]
Since the electric heating element 5a is arranged substantially along the circumferential direction of the hygroscopic device 2, even if the rotating body 21 (see FIG. 25) rotates, any point in the rotating body 21 is the same as that of the heater 5. The positional relationship (for example, the point behind the electric heating element 5a is located behind the electric heating element 5a in the same manner even when the rotating body 21 rotates), and the manner of contact between the electric heating element 5a and the regenerating air changes significantly. do not do. For this reason, a temperature difference arises in the temperature of the reproduction | regeneration air which enters into the moisture absorption body 22 in the reproduction | regeneration part 2b. Therefore, the regeneration efficiency in the regeneration unit 2b is deteriorated due to the temperature difference of the regeneration air, and the temperature of the regeneration unit 2b is higher than necessary in order to increase the regeneration efficiency.
[0013]
Since the condenser 3 is made of metal, the weight is heavy, and when the shape is biased, rust is generated due to condensed water, holes are formed, and water leaks occur. . Further, as shown in FIG. 25, the hygroscopic device 2 expands and contracts by the heated regeneration air and the radiant heat of the heater 5 disposed close thereto. The support frame 24 of the rotating body 21 that rotates inside the moisture absorbent 2 is thermally deformed due to expansion and contraction due to heat, causing a failure such as contact with the outer frame 28 and the rotating body 21 not rotating.
[0014]
An object of the present invention is to provide a dehumidifier capable of improving the temperature rising efficiency to reduce power consumption and suppressing a rise in room temperature to obtain a comfortable environment.
[0015]
It is another object of the present invention to provide a highly reliable dehumidifier that saves space and weight, reduces costs, easily realizes rust prevention, corrosion prevention, and bacterial growth prevention.
[0038]
[Means for Solving the Problems]
  In order to achieve the above object, a dehumidifier according to the present invention includes first and second regions having different humidity, and a rotating body that is filled with a moisture absorbent that absorbs moisture and rotates to pass through the first and second regions. A moisture absorber consisting of
  A moisture absorption path through which moisture absorption air that passes through the first region and moisture is absorbed by the moisture absorbent body;
  A regeneration path that passes through the second region and through which regeneration air that takes moisture from the hygroscopic body passes,
  A heater that heats the regeneration air so that the regeneration air put in the moisture absorber uniformly raises the temperature of the second region of the moisture absorber;
  A condenser that condenses and discharges the moisture of the regeneration air that has passed through the moisture absorber;
Made ofThe heater is arranged to face the fan-shaped surface forming the second region of the hygroscopic device and is formed of a curved electric heater that extends in the circumferential direction of the fan-shaped surface and is bent. A portion having a length of 1/2 or more is inclined with respect to a center line that bisects the fan-shaped surface.It is characterized by that.
[0039]
  According to this configuration, the heater heats the regeneration air passing through the second region so that the temperature of the second region of the moisture absorber is uniformly increased.In addition, an electric heating element arranged so as not to be orthogonal to the center line of the fan-shaped surface forming the second region heats the regeneration air, and passes through the second region of the hygroscopic device facing the heater, at any one point of the rotating body Rotates alternately behind the electric heaters and the gaps between the electric heaters.
[0041]
  The electric heating element isA row formed in a substantially fan-shaped planar shape that is bent so as to face the fan-shaped surface.A plurality of rows are arranged in parallel in a direction perpendicular to the fan-shaped surface, and in two adjacent rowsThe electric heating element with respect to a center line that bisects the fan-shaped surfaceIt is characterized by different inclination angles. According to this configuration, the electric heaters arranged in a plurality of rows in the traveling direction of the regeneration air have different inclination directions for each row, and the hygroscopic member rotates behind the electric heater arranged in a mesh shape and rises uniformly. It has come to be heated.
[0047]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiment of the present inventionReference form for the present inventionWill be described with reference to the drawings. 1 to 22, the same members as those in the conventional example are denoted by the same reference numerals. 1 is the firstreference1 shows a schematic diagram of a dehumidifier in form. The difference from the conventional example (see FIG. 23) is that a heat exchanger 9 is provided for exchanging heat between the hot and humid regeneration air that has passed through the moisture absorber 2 and the regeneration air that has passed through the condenser 3. Yes.
[0048]
In such a configuration, the regeneration path 8 passes through the condenser 3 and reaches the dew point in the dehumidifier 1 having an open circuit so that the regeneration air after passing through the condenser 3 is released into the room. The temperature of the air is raised by exchanging heat with the high-temperature and high-humidity regeneration air that has passed through the moisture absorber 2 to prevent condensation on the regeneration path 8 c after the heat exchanger 9.
[0049]
  2 is the secondreference1 shows a schematic diagram of a dehumidifier in form. According to the figure, the first case where the regeneration path 8 in which the regeneration air after passing through the condenser 3 enters the heater 5 is a closed circuit is shown in FIG.referenceThe configuration is the same as that of the form (see FIG. 1). With this configuration, the firstreferenceAs in the embodiment, condensation in the regeneration path 8c after the heat exchanger 9 can be prevented, and regeneration air entering the heater 5 (regeneration path 8).c) Can be raised in advance, so that the power consumption of the heater 5 can be reduced.
[0050]
In addition, an open circuit is adopted in which the regeneration air (regeneration path 8 b) entering the heat exchanger 9 is taken from the room and the regeneration air (regeneration path 8 c) after passing through the condenser 3 is discharged out of the dehumidifier 1. In some cases, the power consumption of the heater 5 can be reduced as described above.
[0051]
  Then the thirdreferenceThe form dehumidifier is demonstrated with reference to FIG. According to the drawing, in the recovery unit 2bb adjacent to the regeneration unit 2b of the moisture absorber 2 and in the front of the rotation body 21 (see FIG. 25) in the moisture absorber 2, the moisture absorber 22 ( 25) is still rotated while maintaining the high temperature state. A branch path 7 a that branches from the moisture absorption path 7 is provided so as to pass through the recovery section 2 bb, and the heat of the recovery section 2 bb is recovered by moisture absorption air passing through the branch path 7 a and before entering the heater 5 by the heat exchanger 9. Exchanging heat with the regenerative air.
[0052]
  With this configuration, the secondreferenceAs in the embodiment, the regeneration air entering the heater 5 can be heated in advance, so that the power consumption of the heater can be reduced. Furthermore, the moisture absorption body 22 is cooled by moisture absorption air passing through the branch path 7a before the moisture absorption body 22 enters the moisture absorption section 2a with the rotation of the rotating body 21, and the moisture absorption efficiency in the moisture absorption section 2a can be improved.
[0053]
At this time, the hygroscopic air passing through the branch path 7a which has become high temperature is recovered by the heat exchanger 9, so that it becomes low temperature and is released outside the dehumidifier 1 so that the room temperature is not raised. Here, a part of the moisture in the hygroscopic body 22 is released to the outside of the dehumidifier 1 by the hygroscopic air passing through the branch path 7a. However, the indoor humidity is increased by reducing the flow rate in the branch path 7a. The temperature of the hygroscopic body can be lowered without causing it to fall.
[0054]
  4threferenceThe form dehumidifier is demonstrated with reference to FIG. According to the figure, the thirdreferenceAlthough the configuration is the same as the configuration (see FIG. 3), the rotation direction of the rotating body 21 (see FIG. 25) in the moisture absorber 2 can be selected from forward rotation (arrow A) and reverse rotation (arrow A ′). ing. In this way, when the rotating body 21 is rotated forward in the direction of arrow A, the thirdreferenceThe same effect as the form can be obtained.
[0055]
  When the rotating body 21 is reversed in the direction of the arrow A ′, the recovery portion 2bb through which the branch path 7a passes is at a low temperature. Therefore, the branch path 7a and the moisture absorption path 7 are one moisture absorption path similar to the conventional example (see FIG. 24). 7 can be considered. At this time, a high temperature in front of the rotation direction (arrow A ′) of the rotating body 21 with respect to the reproducing unit 2b.PartThe relatively high-temperature dry moisture-absorbing air that passes through is discharged out of the dehumidifier 1 as in the conventional example. Since the clothes can be dried using this high-temperature dry air, the user can selectively use the dehumidification priority or clothes drying by selecting the rotation direction of the rotating body 21.
[0056]
  Next, fifthreferenceThe form dehumidifier is demonstrated with reference to FIG. According to the figure, the thirdreferenceThe blower 12 is provided in the branch path 7a of the form (see FIG. 3). With this configuration, moisture absorption through the branch path 7a is performed so that the moisture absorption air passing through the branch path 7a is absorbed from the hygroscopic body and the amount of moisture released to the outside of the dehumidifier 1 is not increased to deteriorate the dehumidification performance. The flow rate of working air can be set optimally.
[0057]
  6threferenceThe form dehumidifier is demonstrated with reference to FIG. According to the figure, a dew condensation prevention heater 17 is provided on the regeneration path 8 after passing through the condenser 3 to prevent condensation on the regeneration path 8c through which the regeneration air cooled to the dew point and has reached the dew point is passed. To be able to.
[0058]
  Then the seventhreferenceThe form dehumidifier is demonstrated with reference to FIG. According to the figure, a branch path 7b branched from the moisture absorption path 7 so as not to pass through the moisture absorber 2 is provided. If it does in this way, the flow volume of the moisture absorption air which passes through the condenser 3 can be increased, and the efficiency of condensation can be improved. When a predetermined amount or more of hygroscopic air is passed through the hygroscopic device 2, the hygroscopic capacity of the hygroscopic body 22 (see FIG. 25) decreases, so that the predetermined amount or more of the hygroscopic air is dehumidified without passing through the hygroscopic device 2 through the branch path 7 b. It is discharged outside the machine 1.
[0059]
In order to allow a predetermined amount of hygroscopic air to pass through the hygroscopic device 2, a restricting plate 32 is arranged to shield the hygroscopic air entering the hygroscopic device 2 in the hygroscopic path 7 as shown in the detailed view of the main part of FIG. 8. The limiting plate 32 has a through hole 32a. In this way, the amount of air passing through the restriction plate 32 becomes constant, and the flow of air entering the hygroscopic device 2 becomes uniform, improving the moisture absorption efficiency. Similarly, a restriction plate 43 having a through hole 43a may be installed between the heater 5 and the hygroscopic device 2 in the regeneration path 8, and the air flow of regeneration air entering the regeneration unit 2b is made uniform. Thus, the temperature of the hygroscopic body 22 can be increased uniformly.
[0060]
  Next is the eighthreferenceA form is demonstrated with reference to FIG. 9, FIG. (A), (b) and (c) in FIG.referenceThe top view, the front view, and the side view of the condenser 3 of the form are shown, and FIG. 10 is a schematic perspective view which shows the D section in FIG. According to these figures, the high-temperature and high-humidity regeneration air flowing into the condenser 3 from the air inlet 37 provided above the condenser 3 is a plurality of condensation passages 34 ( Branches to the first passage) and proceeds downward.
[0061]
A through-hole 36 is provided between adjacent condensing passages 34, and the low-temperature moisture-absorbing air passes perpendicularly to the surface 3d as indicated by the arrow F and exchanges heat with the regeneration air to regenerate air. The water inside is condensed. The dried regeneration air is sent out from an air outlet 38 provided in the lower part of the condenser 3, and the condensed water flows down through the condensation passage 34 and is discharged from the outlet 39.
[0062]
The air outlet 38 is provided at a position not in contact with the lower end surface 40 b so that the condensed water flowing down the lower end surface 40 b does not leak from the air outlet 38. A guide surface 40a is provided so as to guide the regenerating air that passes through each condensing passage 34 and joins to the air outlet 38. The guide surface 40a prevents the regeneration air from leaking from the discharge port 39, and the condensed water drops on the lower end surface 40b from a hole (not shown) provided in the guide surface 40a while flowing down the inclined guide surface 40a. It is like that. A passage 35 (second passage) formed so as to be connected across the condensing passages 34 is provided in order to make the pressure of each condensing passage 34 uniform.
[0063]
Such a condenser 3 is formed of a resin, and as shown schematically in FIG. 11, a blow molding process for molding a resin 42 such as polypropylene with a mold 41 while feeding air into the interior as indicated by an arrow G. Then, the through-hole 36 can be easily formed by punching by Thomson processing or the like. Therefore, the weight of the dehumidifier body is reduced compared with the conventional metal condenser, and the carrying of the dehumidifier body is facilitated, and the material cost and the processing cost can be reduced. Further, since rust does not occur, the cause of failure such as water leaking from the hole due to rust can be eliminated and the reliability can be improved.
[0064]
  In addition, since the heat conductivity is lower than that of a metal condenser, the condensation efficiency is lowered. However, the thickness t is reduced to 0.5 to 0.7 mm, and the cross-sectional shape of the condensing passage 34 is reduced in width. The condensing efficiency is improved by increasing the number of the condensing passages 34 by forming a long hole with a short direction (see H part in FIG. 9). BookreferenceIn the embodiment, the inner diameter of the condensing passage 34 is the width direction D = 8.6 mm, the thickness direction W = 20.6 mm, and the pitch in the width direction of the condensing passage 34 is P = 15 mm.
[0065]
Further, a plurality of condensers 3 may be arranged in parallel with the surface 3d so that the through holes 36 are not aligned on a straight line. In this way, after the low-temperature air from the direction of arrow F passes through the through hole 36 of the first condenser 3, a part of the air passes through the surface 3d of the second condenser 3 (condensation passage 34 portion). ) To generate a vortex, and after stopping for a short time, it passes through the through-hole 36 of the second condenser 3 and the substantial contact area with high-temperature air is increased, thereby improving the condensation efficiency.
[0066]
  Next is the ninthreferenceA form is demonstrated with reference to FIG. According to the figure, a primary water tank 10 for storing condensed water is provided andreferenceIt connects with the discharge port 39 of the condenser 3 of a form. A water level sensor 14 is installed in the primary water tank 10, and when a predetermined water level J is reached, the pump 11 sends water to a secondary water tank (not shown), and when the water level drops (water level W), the pump 11 is stopped. It has become.
[0067]
According to such a configuration, the condensed water is always accumulated and blocked in the discharge port 39 portion of the condenser 3, and the water surface can further prevent the regeneration air from leaking from the discharge port 39. It becomes like this. Further, when the water level J is disposed below the lower end 38a of the air outlet 38, the water level rises when the water level sensor 14 or the pump 11 breaks down, and the air outlet 38 is closed to flow out the regeneration air. The amount is reduced.
[0068]
As shown in the side view of FIG. 13, in the case of a closed circuit in which the regeneration air that has passed through the condenser 3 is introduced into the heater 5, the regeneration that exits the heater 5 when the flow rate of the regeneration air entering the heater 5 decreases. Since the temperature of the working air is higher than the predetermined temperature, it is possible to stop the operation of the dehumidifier 1 by detecting that the temperature of the regenerating air exiting the heater 5 is high by the temperature sensor 13 or the like. As a result, the water level sensor 14 and the pump 11 can be detected to prevent water leakage.
[0069]
  Eighth, ninthreferenceAlthough the form was demonstrated about the condenser 3, since it heat-exchanges with high temperature air and low temperature air, it is 1st thru | or 5th.referenceThe heat exchanger 9 as used in the embodiment can have the same configuration, and the same effect can be obtained.
[0070]
  10threferenceThe form will be described with reference to FIG. Figure 14 shows a bookreferenceIt is the schematic explaining the structure of the heater 5 of a form. According to the figure, the branched regeneration paths 8j and 8k pass through the first and second temperature raising passages 5c and 5d passing through the heater 5 and pass through the regeneration portions 2b1 and 2b2 of the moisture absorber 2. The hygroscopic body 22 (see FIG. 25) of the regenerating unit 2b1 of the hygroscopic device 2 is heated in advance through the regenerating unit 2b2 behind the rotating body 21 (see FIG. 25) rotating in the hygroscopic device 2. Therefore, it has residual heat and releases moisture. Therefore, the regeneration air passing through the regeneration path 8j can absorb the released moisture and regenerate the hygroscopic body 22 even at a lower temperature than the regeneration air passing through the regeneration path 8k.
[0071]
Therefore, the temperature of the regenerating air heated through the first temperature rising passage 5c is set to be lower than the temperature of the regenerating air heated through the second temperature rising passage 5d. Since the temperature of the hygroscopic body 22 that moves to the hygroscopic section 2a can be lowered with the rotation of the rotating body 21 in the A direction without causing the regenerating section 2b2 to be unnecessarily high, it is for moisture absorption through the hygroscopic path 7. The amount of heat released to the outside of the dehumidifier 1 by air can be suppressed, and power consumption can be reduced without using wasted power.
[0072]
In addition, the regeneration air passing through the first temperature raising passage 5c may be configured not to rise in temperature, and in this case as well, the regeneration air is released from the hygroscopic body 22 heated by the regeneration air passing through the regeneration path 8k. Moisture is absorbed by the regeneration air passing through the regeneration path 8j, and before the hygroscopic body 22 of the regeneration unit 2b1 enters the hygroscopic unit 2a as the rotating body 21 rotates, the temperature of the hygroscopic body 22 is lowered to increase the hygroscopic capacity. Can be improved.
[0073]
  Next eleventhreferenceA form is demonstrated with reference to FIG. Figure 15 shows the bookreferenceIt is the schematic explaining the structure of the heater 5 of a form. According to the figure, the branched regeneration paths 8j and 8k pass through the regeneration parts 2b3 and 2b4 of the moisture absorber 2 through the inner peripheral part 5e and the outer peripheral part 5f of the heater 5. Since the regeneration unit 2b4 on the outer peripheral side has a larger amount of regeneration air than the regeneration unit 2b3 on the inner peripheral side, the density of the electric heating element 5a (see FIG. 26) constituting the heater 5 is set to the inner peripheral part 5e with respect to the outer peripheral part 5f. When the temperature of the regeneration air passing through the regeneration path 8j is made lower than the temperature of the regeneration air passing through the regeneration path 8k, the regeneration section 2b3 on the inner peripheral side does not become unnecessarily high, and the regeneration section 2b rotates. The temperature of the hygroscopic body 22 (see FIG. 25) passing through becomes uniform, and power consumption can be reduced without using wasted power.
[0074]
  Next1The embodiment will be described with reference to FIG. FIG. 16 is a front view showing the heater 5 of the present embodiment. The heater 5 is composed of an electric heating element 5a arranged so as to cover the regenerating part 2b of the hygroscopic device 2, and the electric heating element 5a does not cross more than 1/2 with respect to the center line J that bisects the reproducing part 2b. Is formed. In this way, when the rotating body 21 (see FIG. 25) rotates in the hygroscopic device 2 behind the heater 5, any point in the rotating body 21 is in the same manner as any contact point with the electric heating element 5a. Since the temperature is alternately raised to the regeneration air behind the electric heater 5a and the regeneration air behind the gap 5b, the hygroscopic body 22 of the regeneration unit 2b can be uniformly heated, and wasteful power can be used. Power consumption can be reduced.
[0075]
Here, when the length of the electric heating element 5a that is not orthogonal to the center line J is ½ or less of the entire length of the electric heating element 5a, the rotation of the rotating element 21 causes only the electric heating element 5a or the gap 5b behind. The number of rotational movements increases and the temperature of the reproducing unit 2b cannot be increased uniformly.
[0076]
  Further, in FIG.2As shown in the embodiment, when the electric heating elements 5a are arranged so as to be arranged in a plurality of rows in the inflow direction of the regeneration air, and the inclination angle of the electric heating elements 5a with respect to the center line J is different in each row, the reproduction unit 2b is more uniform. This is desirable because it allows a high temperature increase.
[0077]
  Next12 ReferenceThe form will be described with reference to FIG. BookreferenceIn the embodiment, the heater 5 (see FIG. 26) is not required, and the moisture absorber is regenerated in the moisture absorber 2. According to FIG. 18 (a), when the heat-absorbing material 52 such as glass fiber is dipped in the moisture-absorbing body 53 such as zeolite and then pulled up and cooled, the fibrous moisture-absorbing body 54 in the form of fibers can be formed. it can.
[0078]
The fibrous hygroscopic body 54 is wound around the heating wire 51 and filled in the rotating body 21 (see FIG. 25) that rotates in the hygroscopic device 2, and the current is passed through the heating wire 51 to raise the temperature of the hygroscopic body 53 and moisture. Can be released. In this way, since the heater 5 is not necessary, the main body of the dehumidifier 1 can be downsized. Further, as shown in (b), the fibrous hygroscopic body 54 may be knitted in a net shape so as to cover the heating wire 51.
[0079]
As shown in a schematic perspective view and a side view of the rotator 21 in FIGS. 19A and 19B, the rotator 21 is divided into a plurality of blocks 21a to 21f, and the fibrous moisture absorber 54 filled in each block. The heating wire 51 covered with (see FIG. 18) is connected to a terminal 51a whose one end is fixed to the rotating body 21, and the terminal 51a is rotated when each block rotates and passes through the reproducing unit 2b (see FIG. 1). Is configured to come into contact with the electrode 31 provided on the bearing 27 part, the temperature of the hygroscopic body 53 can be raised only when the hygroscopic body 53 (see FIG. 18) passes through the regenerating part 2b.
[0080]
  Furthermore, in FIG.13 ReferenceAs shown in the embodiment, when the integral member 55 in which the heating wire 51 is covered with the fibrous moisture absorber 54 is integrated with the flexible member 56 in a band shape, the density of the moisture absorber 53 is formed to a desired density and installed in the moisture absorber 2. Will be able to.
[0081]
  Next14 ReferenceA form is demonstrated with reference to FIG. Figure 21 shows the bookreferenceIt is a front view which shows the support frame 24 of the rotary body 21 (refer FIG. 25) in a form. According to the figure, lattice holes 24c are formed by concentric ribs 24a and radial ribs 24b so that the regeneration air or moisture absorption air can pass therethrough. Here, the radial ribs 24b that connect the three adjacent concentric ribs 24a are not formed on a straight line but are shifted.
[0082]
In such a support frame 24, when the moisture absorption body 22 (refer to FIG. 25) inside the rotating body 21 is thermally expanded when the temperature is raised, a schematic view of FIG. 22 shows concentric ribs 24a, The expansion amount of the radial ribs 24b is absorbed in each lattice hole 24c. The outer diameter of the support frame 24 is increased by the length of thermal expansion of the outermost radial ribs 24b and the outermost concentric ribs 24a, and the thermal expansion is reduced compared to the case where the radial ribs are provided on a straight line. be able to. Thus, even if the moisture absorber 22 repeats heating and cooling, even if the support frame 24 is repeatedly expanded and contracted, the amount of deformation remains and the contact with the outer frame 28 (see FIG. 25) is prevented. Reliability can be improved.
[0095]
【The invention's effect】
  The present inventionAccording to this, it is possible to raise the temperature of the hygroscopic body uniformly, and it is possible to configure without using wasted power in order to obtain a desired regeneration efficiency.
[0096]
  AlsoAny point on the rotating body that rotates behind the heater is moved in the same way alternately behind the electric heating element and the gap, and the temperature is raised by the regeneration air passing through the heater, so the temperature rises uniformly. Do not use wasted power.
[0097]
  AlsoThe hygroscopic body can be heated evenly and does not use wasted power.
[Brief description of the drawings]
FIG. 1 shows the first of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 2 shows the second of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 3 shows the third of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 4 shows the fourth of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 5 shows the fifth aspect of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 6 shows the sixth of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 7 shows the seventh aspect of the present invention.referenceIt is the schematic which shows the form dehumidifier.
FIG. 8 shows the seventh aspect of the present invention.referenceIt is a side view which shows the detail of the form dehumidifier.
FIG. 9 shows the eighth embodiment of the present invention.referenceIt is a figure which shows the condenser used for the dehumidifier of a form.
FIG. 10 shows the eighth embodiment of the present invention.referenceIt is a partial detail drawing of the condenser used for the form dehumidifier.
FIG. 11 shows the eighth embodiment of the present invention.referenceIt is a figure which shows the manufacturing method of the condenser used for the dehumidifier of a form.
FIG. 12 shows the ninth embodiment of the present invention.referenceIt is a figure which shows the condenser used for the dehumidifier of a form.
FIG. 13 shows the ninth aspect of the present invention.referenceIt is a schematic side view which shows the form dehumidifier.
FIG. 14 shows the tenth aspect of the present invention.referenceIt is the schematic which shows the structure of the heater used for the form dehumidifier.
FIG. 15 shows the eleventh aspect of the present invention.referenceIt is the schematic which shows the structure of the heater used for the form dehumidifier.
FIG. 16 shows the first of the present invention.1It is a front view which shows the heater used for the dehumidifier of embodiment.
FIG. 17 shows the first of the present invention.2It is a front view which shows the heater used for the dehumidifier of embodiment.
FIG. 18 shows the first of the present invention.12 ReferenceIt is a figure which shows the heating wire used for the dehumidifier of a form.
FIG. 19 shows the first of the present invention.12 ReferenceIt is a figure which shows the connection method of the heating wire used for the dehumidifier of a form.
FIG. 20 shows the first of the present invention.13 ReferenceIt is a figure which shows the heating wire used for the dehumidifier of a form.
FIG. 21 shows the first of the present invention.14 ReferenceIt is a front view which shows the support frame of the rotary body used for the dehumidifier of a form.
FIG. 22 shows the first of the present invention.14 ReferenceIt is the schematic which shows the state which thermally expanded the support frame of the rotary body used for the form dehumidifier.
FIG. 23 is a schematic view showing an example of a conventional dehumidifier.
FIG. 24 is a schematic view showing another example of a conventional dehumidifier.
FIG. 25 is a side view showing a hygroscopic device used in a conventional dehumidifier.
FIG. 26 is a front view showing a heater used in a conventional dehumidifier.
[Explanation of symbols]
1 Dehumidifier
2 Moisture absorber
2a Playback unit
2b Moisture absorption part
3 Condenser
5 Heater
6 Blower
7 Moisture absorption pathway
8 Playback path
9 Heat exchanger
10 water tank
11 Pump
14 Water level sensor
21 Rotating body
22, 53 Hygroscopic body

Claims (2)

湿度が異なる第1、第2領域と、水分を吸収する吸湿体が充填され第1、第2領域を通過するように回転する回転体とから成る吸湿器と、
第1領域を通るとともに前記吸湿体により水分が吸湿される吸湿用空気が通る吸湿経路と、
第2領域を通るとともに前記吸湿体から水分を取る再生用空気が通る再生経路と、
前記吸湿器に入れられる再生用空気が前記吸湿器の第2領域を均一に昇温するように該再生用空気を加熱するヒータと、
前記吸湿器を通過した再生用空気の水分を凝縮して排出する凝縮器と、
から成り、前記ヒータは前記吸湿器の第2領域をなす扇形面に対面して配置されるとともに該扇形面の周方向に延びて曲折される曲線状の電熱体から成り、前記電熱体の全長の1/2以上の長さの部分が該扇形面を2等分する中心線に対して傾斜していることを特徴とする除湿機。
A moisture absorber composed of first and second regions having different humidity, and a rotating body that is filled with a moisture absorbent that absorbs moisture and rotates to pass through the first and second regions;
A moisture absorption path through which moisture absorption air that passes through the first region and moisture is absorbed by the moisture absorber,
A regeneration path that passes through the second region and through which regeneration air that takes moisture from the hygroscopic body passes,
A heater for heating the regeneration air so that the regeneration air put in the moisture absorber uniformly raises the temperature of the second region of the moisture absorber;
A condenser that condenses and discharges the moisture of the regeneration air that has passed through the moisture absorber;
From adult is, the heater consists circumferentially extending bending is the curved electric heater of the fan-shaped surface while being positioned to face the fan-shaped surface forming the second region of the moisture absorption apparatus, of the electric heater A dehumidifier characterized in that a portion having a length of ½ or more of the entire length is inclined with respect to a center line that bisects the fan-shaped surface .
前記電熱体は前記扇形面に対面して曲折した略扇形の平面形状に形成される列が前記扇形面に対して垂直な方向に複数列平行に配されるとともに、隣接した2列において前記電熱体は前記扇形面を2等分する中心線に対する傾斜角度が異なることを特徴とする請求項に記載の除湿機。Together with the heating body row formed in a planar shape of a substantially fan-shaped is bent to face the fan-shaped surfaces are arranged in a plurality of rows parallel to the direction perpendicular to the fan plane, the in two rows adjacent electrothermal The dehumidifier according to claim 1 , wherein the body has different inclination angles with respect to a center line that bisects the fan-shaped surface .
JP2003163693A 2003-06-09 2003-06-09 Dehumidifier Expired - Lifetime JP3833191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163693A JP3833191B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163693A JP3833191B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11740698A Division JP3574325B2 (en) 1998-04-27 1998-04-27 Dehumidifier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005110040A Division JP2005262213A (en) 2005-04-06 2005-04-06 Dehumidifier

Publications (3)

Publication Number Publication Date
JP2004000979A JP2004000979A (en) 2004-01-08
JP2004000979A5 JP2004000979A5 (en) 2005-09-22
JP3833191B2 true JP3833191B2 (en) 2006-10-11

Family

ID=30438267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163693A Expired - Lifetime JP3833191B2 (en) 2003-06-09 2003-06-09 Dehumidifier

Country Status (1)

Country Link
JP (1) JP3833191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187624A (en) * 2017-12-05 2018-06-22 曹平 A kind of drier self-indicating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707440B1 (en) * 2005-03-08 2007-04-13 엘지전자 주식회사 Humidifier
JP5262160B2 (en) * 2008-02-14 2013-08-14 パナソニック株式会社 Dehumidifier
JP5272582B2 (en) * 2008-08-25 2013-08-28 ダイキン工業株式会社 Condenser
KR101534292B1 (en) * 2008-08-27 2015-07-03 엘지전자 주식회사 Dehumidifier

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3017850A1 (en) * 1979-05-16 1980-11-20 Erling Lauritz Anderberg DEVICE FOR DRYING OR DRYING DEHUMIDIFYING GASES
JPH07308537A (en) * 1994-05-18 1995-11-28 Matsushita Seiko Co Ltd Rotary dry dehumidifier
JPH08155247A (en) * 1994-12-02 1996-06-18 Kankyo:Kk Dehumidifier
JP3704778B2 (en) * 1996-01-19 2005-10-12 三菱電機株式会社 Static dehumidifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187624A (en) * 2017-12-05 2018-06-22 曹平 A kind of drier self-indicating

Also Published As

Publication number Publication date
JP2004000979A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4945956B2 (en) Dehumidifier
JP3574325B2 (en) Dehumidifier
JP5261865B2 (en) Dehumidifier
KR20120113608A (en) Heat exchanger having a dehumidifying liquid and a dehumidifier having the same
KR20050012735A (en) Dehumidifier
JP3182805U (en) Desiccant wheel dehumidifier and its heat exchanger
JP3833191B2 (en) Dehumidifier
JP3860374B2 (en) Air conditioner
JP5251065B2 (en) Dehumidifier
JP2011036782A (en) Dehumidifier and method of controlling operation of the same
JP5135673B2 (en) Dehumidifier
JP2005262068A (en) Dehumidifier
JP2005262213A (en) Dehumidifier
JP3581137B2 (en) Dehumidifier
JP3933606B2 (en) Dehumidifier
WO2007013483A1 (en) Dehumidifier
JP2009189944A (en) Dehumidifier
JP5522289B2 (en) Dehumidifier
JP4411966B2 (en) Dehumidifier
JP2005211743A (en) Dehumidifier
JP2009139071A (en) Condenser and dehumidifier using it
JP3668428B2 (en) Dehumidifier
JP2006223918A (en) Dehumidifying drier
JP6339038B2 (en) Dehumidifier
JP5067220B2 (en) Dehumidifier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

EXPY Cancellation because of completion of term