JP3831214B2 - Separator take-out device for fuel cell - Google Patents

Separator take-out device for fuel cell Download PDF

Info

Publication number
JP3831214B2
JP3831214B2 JP2001181852A JP2001181852A JP3831214B2 JP 3831214 B2 JP3831214 B2 JP 3831214B2 JP 2001181852 A JP2001181852 A JP 2001181852A JP 2001181852 A JP2001181852 A JP 2001181852A JP 3831214 B2 JP3831214 B2 JP 3831214B2
Authority
JP
Japan
Prior art keywords
separator
suction
groove
take
out device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001181852A
Other languages
Japanese (ja)
Other versions
JP2002370245A (en
Inventor
隆次 椋本
尚 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001181852A priority Critical patent/JP3831214B2/en
Publication of JP2002370245A publication Critical patent/JP2002370245A/en
Application granted granted Critical
Publication of JP3831214B2 publication Critical patent/JP3831214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Fuel Cell (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、効率的に吸着力を高めることができる燃料電池用セパレータ取出装置に関する。
【0002】
【従来の技術】
燃料電池は、水の電気分解の逆の原理を利用し、水素と酸素とを反応させて水を得る過程で電気を得ることができる電池である。一般に、水素に燃料ガスを置き換え、酸素に空気や酸化剤ガスを置き換えるので、燃料ガス、空気、酸化剤ガスの用語を使用することが多い。
【0003】
このような燃料電池としては、例えば、特開2000−123848公報「燃料電池」が知られている。
同公報の図1によれば、電解質膜18(符号は公報に記載されているものを使用した。以下同様。)にアノード側電極20及びカソード側電極22を添わせ、これらをガスケット24,26を介して第1セパレータ14及び第2セパレータ16で挟むことでセルモジュールを構成する。
【0004】
詳細には、第1セパレータ14の面14aに燃料ガスの流路となる第1流路38が形成され、第2セパレータ16の面16aに酸化剤ガスの流路となる第2流路46が形成され、各々中央の電解質膜18に燃料ガスと酸化剤ガスとを臨ませる構造である。
【0005】
図1に記載の1個のセルモジュールで得る電気出力はごく小さいので、このようなセルモジュールを多数個積層することで、所望の電気出力を得る。従って、第1・第2セパレータ14,16は隣のセルに燃料ガスや酸化剤ガスが洩れないようにする分離部材であることから「セパレータ」と呼ばれる。
【0006】
第1セパレータ14は面14aに燃料ガスのための流路38を備え、第2セパレータ16は面16aに酸化剤ガスのための流路46を備えるが、ガスを効果的にアノード側電極20及びカソード側電極22に接触させる必要があり、そのために、流路38,46はごく浅い溝を多数本条設する必要がある。
【0007】
例えば、上記した第1セパレータ14、第2セパレータ16を成形した後に、成形型から取出す方法として、吸着装置で吸着する方法が知られている。
この方法を次図で説明する。
図6(a),(b)はセパレータを吸着する従来の吸着装置を説明する説明図であり、(a)は、吸着装置100で成形下型101上からセパレータ102を取り出す状態を示す。吸着装置100は図示せぬ真空発生装置に連結した吸気管104と、この吸気管104の先端に取付けた吸着板105とからなる。なお、107は吸着板105の吸着面107である。
【0008】
(b)は吸着板105の吸着面107にほぼ全面に亘って菱形状の凸部108・・・(・・・は複数個を示す。以下同様。)を設け、吸着面107の中央に吸気管104((a)参照)に通じる吸気口109を設けたことを示す。なお、111は吸着面107の周縁部に設けた凸状のランド部である。
【0009】
【発明が解決しようとする課題】
上記した吸着装置100の作用を説明する。
図7は従来の吸着装置の作用を説明する作用図であり、吸着を開始すると、エアは吸着板105の周囲から吸着面107に流れ込む。即ち、エアの一部は矢印▲1▼,▲2▼のように、ランド部111とセパレータ102(図6(a)参照)との間を抜け、各凸部108の間を蛇行しながら吸気口109に至る。このように、エアは各凸部108間を進むのでエアの流速は小さい。
【0010】
このような吸着装置100でセパレータ102を吸着するときに発生する負圧をA−A線箇所の分布で見ると、図中のグラフのようになる。
即ち、負圧は、吸着面107の中央部ほど大きくなり、吸着時にセパレータ102に作用する圧力は局部的に大きくなる。また、このときの負圧の最大値b1は、上記したようにエアの流速が小さいために大きくならない。
【0011】
これは、流体の有する全圧(全圧=速度圧+静圧)は流線に沿って変わらないというベルヌーイの定理により、流体の速度が小さくなれば速度圧が小さくなり、その分だけ静圧が増大することによるものである。
そこで、吸着させるためのエアの量を増し、吸着装置100の吸着力を増すことが考えられる。
【0012】
しかし、吸着装置100の吸着力を増せば、その吸着力でセパレータ102にダメージを与えることが予想される。
また、吸着装置100の吸着力を増すには、真空発生装置の能力を上げる必要があり、コストアップを招く。従って、真空発生装置の能力を上げることなしに、効率的に吸着力を高めることが望まれる。
【0013】
そこで、本発明の目的は、燃料電池用セパレータ取出装置を改良することで、効率的に吸着力を高め、しかも、セパレータが受けるダメージを無くすことにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために請求項1は、カーボン及び熱硬化性樹脂からなるプリフォームを圧縮成形することで筋状に溝を形成した平板状の燃料電池用セパレータを圧縮成形型から取り出すための燃料電池用セパレータ取出装置において、この取出装置に、セパレータを吸着するために、溝を形成したセパレータ面に臨む吸着面を設け、この吸着面の中央部に4個の吸気口を設け、これらの吸気口からそれぞれ放射状に延びる吸着溝を設けたことを特徴とする。
【0015】
セパレータ面に取出装置の吸着面を臨ませることで、吸着溝で、セパレータに筋状に形成した各溝内のエアをスムーズに吸引することができ、真空発生装置等の能力を高めることなしに、吸引するエアの流速を大きくすることでセパレータの吸着力を増すことができる。また、吸着面における吸着溝に対応する部分でほぼ均一にセパレータを吸着することができ、セパレータへのダメージを無くすことができる。
【0016】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る燃料電池用セパレータ取出装置の斜視図であり、図示せぬセパレータ成形型で成形したセパレータ10を、セパレータ成形型から燃料電池用セパレータ取出装置11(以下「取出装置11」と記す。)で取り出す状態を示す。
【0017】
セパレータ10は、燃料ガスを流すために複数の溝を平行に設けたガス流路13を形成したものであり、セパレータ成形型から取り出した後の工程で、図中に想像線で示す、ガス流路13に燃料ガスを供給するための燃料ガス供給孔14と、ガス流路13から燃料ガスを排出するための燃料ガス排出孔15と、別のセパレータ(不図示)に設けたガス流路溝に酸化剤ガスを供給するための酸化剤ガス供給孔16と、別のセパレータのガス流路溝から酸化剤ガスを排出するための酸化剤ガス排出孔17と、冷却水のための供給孔18及び排出孔21とを開ける。セパレータ10におけるガス流路13を設けた面を、セパレータ面としてのガス流路面23とする。
【0018】
取出装置11は、セパレータ10のガス流路面23に近接させる吸着板25と、この吸着板25の上部に設けた4本の吸気管26・・・とからなる。
吸気管26は、図示せぬ真空発生装置に接続したものであり、吸着板25の下部からエアを吸引する。
【0019】
図2は本発明に係る取出装置の底面図であり、吸着板25の下面である吸着面28を示す。
吸着面28は、中央部に設けた4ヵ所の吸気口31・・・と、これらの吸気口31・・・からそれぞれ吸着面28の4隅に向けて放射状に形成した吸着溝32・・・と、周縁部に形成した環状の第1溝33と、この第1溝33の外側の周縁部に形成した環状の第2溝33aとを備える。
【0020】
吸気口31・・・は、図1に示した吸気管26・・・にそれぞれ連通するものである。
第1溝33及び第2溝33aは、セパレータ10(図1参照)を吸着する際に、セパレータ10と吸着板25との間の空気流路の形状を複雑にすることで、流入した空気の流れを乱し、空気の流れの抵抗となるものである。これらの第1・第2溝33,33aにより、セパレータ10、吸着板25間に流入する空気量が減少するため、セパレータ10に作用する負圧が高くなって、セパレータ10を吸着する吸着力が高まる。
【0021】
図3は本発明に係る取出装置でセパレータを吸着したときの吸着溝とセパレータのガス流路面との位置関係を説明する説明図であり、取出装置11(図1参照)の各吸着溝32の端部を、それぞれガス流路13の範囲を越えた外側まで延ばしたことを示す。即ち、各吸着溝32の端部を、セパレータ10の図1に示した燃料ガス供給孔14、燃料ガス排出孔15、酸化剤ガス供給孔16、酸化剤ガス排出孔17の位置に対応する部分まで吸着面28上で延ばした。
【0022】
以上に述べた取出装置11の作用を図4及び図5で説明する。
図4(a)〜(c)は本発明に係る取出装置の作用を説明する第1作用図であり、(a)において、取出装置11を白抜き矢印のように下降させ、成形型34上のセパレータ10に接近させる。
【0023】
(b)において、図示せぬ真空発生装置を作動させ、吸気管26でエアを吸引し、取出装置11でセパレータ10を吸着し、白抜き矢印のように成形型34から取り出す。
(c)において、(b)でセパレータ10を取り出すときのエアの一部は、吸着面28の外側から吸着面28とセパレータのガス流路面との間を矢印のように各吸着溝32及び各吸気口31に向かって流れる。
【0024】
図5(a),(b)は本発明に係る取出装置の作用を説明する第2作用図であり、(a)は図4(c)のB部拡大図、(b)は(a)のb−b線断面図である。
(a)において、吸着溝32は、セパレータ10のガス流路13を構成する複数の溝13a,13b,13cにそれぞれ交差する。これらの交差部を35,36,37(位置を容易に理解できるようにクロスハッチングを施した。)とすると、各溝13a,13b,13c内を直線的に流れるエアは、矢印で示すように、交差部35,36,37を介して吸着溝32内に流れ、吸気口31へ直線的に流れる。また、溝13d内のエアは、ほぼ直接的に吸気口31へ流れる。
【0025】
即ち、エアは、(b)において、例えば溝13bでは、溝13bの各部から交差部36に集まり、この交差部36から吸着溝32に入り、吸着溝32を吸気口31((a)参照)の方向に流れる。このように各エアの流れは直線的であるから、エアの流速は大きくなる。
【0026】
従って、エアの流速が大きいことと、図3に戻って、4本の吸着溝32・・・でセパレータ11のガス流路13のほぼ全体の溝からエアを吸引することから、図4(c)で示したC−C線における負圧の分布を示すグラフのように、ほぼ平坦な負圧の分布になるとともに負圧の最大値b2は、図7に示した従来の吸着装置の負圧の最大値b1よりも大きくなる。
【0027】
これは、前述のベルヌーイの定理により、流体の速度が大きくなると速度圧が大きくなり、その分だけ静圧が減少する(即ち、負圧が増加する)ことによるものである。
【0028】
即ち、図4(b)において、各吸気管26でのエアの吸気量が少ない(図示せぬ真空発生装置の能力が小さいことである。)にもかかわらず、セパレータ10を吸着する吸着力が大きく、且つ吸着面28のほぼ全体で均一にセパレータ10を吸着するため、セパレータ10へダメージを与えることがない。
【0029】
また、図4(b)において、成形型34内からセパレータ10を取り出した後、各吸気管26での吸気を停止すれば、図3に示したように、セパレータ10の燃料ガス供給孔14,燃料ガス排出孔15,酸化剤ガス供給孔16,酸化剤ガス排出孔17に臨む各吸着溝32の端部からエアが図4(b)に示したセパレータ10のガス流路面23と取出装置11の吸着面28との間に入り込み、セパレータ10は取出装置11から容易に離れる。
【0030】
以上の図1、図2及び図5で説明したように、本発明は、カーボン及び熱硬化性樹脂からなるプリフォームを圧縮成形することで筋状に溝13a,13b,13c,13d・・・を形成した平板状の燃料電池用セパレータ10を圧縮成形型から取り出すための燃料電池用セパレータ取出装置11において、この取出装置11に、セパレータ10を吸着するために、溝13a,13b,13c,13d・・・を形成したガス流路面23に臨む吸着面28を設け、この吸着面28の中央部に4個の吸気口31を設け、これらの吸気口31からそれぞれ放射状に延びる吸着溝32を設けたことを特徴とする。
【0031】
ガス流路面23に取出装置11の吸着面28を臨ませることで、吸着溝32で、セパレータ10に筋状に形成した各溝13a,13b,13c,13d・・・内のエアをスムーズに吸引することができ、真空発生装置等の能力を高めることなしに、吸引するエアの流速を大きくすることでセパレータ10の吸着力を増すことができる。また、吸着面28における吸着溝32に対応する部分でほぼ均一にセパレータ10を吸着することができ、セパレータ10へのダメージを無くすことができる。
この結果、セパレータ10の品質を向上させることができるとともに、真空発生装置等のエア吸引源を作動させるためのコストを抑えることができる。
【0032】
尚、本発明の吸着溝は、実施の形態に示した直線状のものに限らず、曲率半径の大きな曲線でもよい。また、吸着溝は、実施の形態に示したような吸着面の中央部から4隅に向けたものに限らず、吸着面の中央部からセパレータのガス流路の溝に略直交する方向に向ける、即ち、吸着面の中央部に吸気口を設け、この吸気口から吸着板の辺の中央(図2では吸着板25の上辺及び下辺の各中央)に向けて延ばしてもよい。
【0033】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の燃料電池用セパレータ取出装置は、セパレータを吸着するために、溝を形成したセパレータ面に臨む吸着面を設け、この吸着面の中央部に4個の吸気口を設け、これらの吸気口からそれぞれ放射状に延びる吸着溝を設けたので、セパレータ面に取出装置の吸着面を臨ませることで、吸着溝で、セパレータに筋状に形成した各溝内のエアをスムーズに吸引することができ、真空発生装置等の能力を高めることなしに、吸引するエアの流速を大きくすることでセパレータの吸着力を増すことができる。また、吸着面における吸着溝に対応する部分でほぼ均一にセパレータを吸着することができ、セパレータへのダメージを無くすことができる。
この結果、セパレータの品質を向上させることができるとともに、真空発生装置等のエア吸引源を作動させるためのコストを抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池用セパレータ取出装置の斜視図
【図2】本発明に係る取出装置の底面図
【図3】本発明に係る取出装置でセパレータを吸着したときの吸着溝とセパレータのガス流路面との位置関係を説明する説明図
【図4】本発明に係る取出装置の作用を説明する第1作用図
【図5】本発明に係る取出装置の作用を説明する第2作用図
【図6】セパレータを吸着する従来の吸着装置を説明する説明図
【図7】従来の吸着装置の作用を説明する作用図
【符号の説明】
10…セパレータ、11…燃料電池用セパレータ取出装置、13…ガス流路、13a、13b、13c、13d…溝、23…セパレータ面(ガス流路面)、28…吸着面、31…吸気口、32…吸着溝、34…成形型。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator take-out device for a fuel cell that can efficiently increase the adsorptive power.
[0002]
[Prior art]
A fuel cell is a battery that utilizes the reverse principle of water electrolysis and can obtain electricity in the process of obtaining water by reacting hydrogen and oxygen. In general, since the fuel gas is replaced by hydrogen and the air or oxidant gas is replaced by oxygen, the terms fuel gas, air, and oxidant gas are often used.
[0003]
As such a fuel cell, for example, Japanese Unexamined Patent Publication No. 2000-123848 “Fuel Cell” is known.
According to FIG. 1 of the publication, the anode side electrode 20 and the cathode side electrode 22 are attached to the electrolyte membrane 18 (the reference numerals are those described in the publication. The same applies hereinafter), and these are attached to the gaskets 24, 26. The cell module is configured by being sandwiched between the first separator 14 and the second separator 16 via.
[0004]
Specifically, a first flow path 38 serving as a fuel gas flow path is formed on the surface 14 a of the first separator 14, and a second flow path 46 serving as an oxidant gas flow path is formed on the surface 16 a of the second separator 16. Each is formed and has a structure in which fuel gas and oxidant gas are allowed to face the electrolyte membrane 18 at the center.
[0005]
Since the electrical output obtained by one cell module shown in FIG. 1 is very small, a desired electrical output can be obtained by stacking a large number of such cell modules. Accordingly, the first and second separators 14 and 16 are called “separators” because they are separation members that prevent fuel gas and oxidant gas from leaking into adjacent cells.
[0006]
The first separator 14 has a flow path 38 for fuel gas on the surface 14a, and the second separator 16 has a flow path 46 for oxidant gas on the surface 16a. It is necessary to make contact with the cathode side electrode 22, and for this purpose, the flow paths 38 and 46 need to be provided with a number of extremely shallow grooves.
[0007]
For example, as a method for removing the first separator 14 and the second separator 16 from the mold after the first separator 14 and the second separator 16 are molded, a method of adsorbing with a suction device is known.
This method is described in the next figure.
FIGS. 6A and 6B are explanatory views for explaining a conventional adsorption device for adsorbing the separator, and FIG. 6A shows a state in which the separator 102 is taken out from the lower mold 101 by the adsorption device 100. The suction device 100 includes an intake pipe 104 connected to a vacuum generator (not shown) and an adsorption plate 105 attached to the tip of the intake pipe 104. Reference numeral 107 denotes a suction surface 107 of the suction plate 105.
[0008]
(B) is provided with a diamond-shaped convex portion 108 (... indicates a plurality, the same applies hereinafter) on the suction surface 107 of the suction plate 105 over the entire surface. It shows that an inlet 109 leading to the pipe 104 (see (a)) is provided. Reference numeral 111 denotes a convex land portion provided on the peripheral edge of the suction surface 107.
[0009]
[Problems to be solved by the invention]
The operation of the above-described adsorption device 100 will be described.
FIG. 7 is an operation diagram for explaining the operation of the conventional suction device. When suction is started, air flows from the periphery of the suction plate 105 to the suction surface 107. That is, a part of the air passes between the land portion 111 and the separator 102 (see FIG. 6A) as indicated by arrows (1) and (2), and is sucked while meandering between the convex portions. It reaches the mouth 109. Thus, since air advances between each convex part 108, the flow velocity of air is small.
[0010]
When the negative pressure generated when the separator 102 is adsorbed by such an adsorbing device 100 is viewed in the distribution along the line AA, a graph in the figure is obtained.
That is, the negative pressure increases toward the center of the suction surface 107, and the pressure acting on the separator 102 during suction increases locally. Further, the maximum value b1 of the negative pressure at this time does not increase because the air flow velocity is small as described above.
[0011]
This is because Bernoulli's theorem that the total pressure of fluid (total pressure = velocity pressure + static pressure) does not change along the streamline, the velocity pressure decreases as the fluid velocity decreases, and the static pressure accordingly. This is due to the increase.
Therefore, it is conceivable to increase the amount of air to be adsorbed and increase the adsorption power of the adsorption device 100.
[0012]
However, if the suction force of the suction device 100 is increased, the separator 102 is expected to be damaged by the suction force.
Further, in order to increase the suction force of the suction device 100, it is necessary to increase the capacity of the vacuum generation device, resulting in an increase in cost. Therefore, it is desirable to increase the adsorption power efficiently without increasing the capacity of the vacuum generator.
[0013]
Accordingly, an object of the present invention is to improve the adsorption power efficiently by improving the separator for taking out the fuel cell, and to eliminate the damage received by the separator.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 is a method for taking out a flat fuel cell separator having a streak-like groove formed by compression molding a preform made of carbon and a thermosetting resin from a compression mold. In the separator take-out device for a fuel cell, in order to adsorb the separator, the take-out device is provided with an adsorbing surface facing the separator surface in which grooves are formed, and four intake ports are provided in the central portion of the adsorbing surface. Adsorption grooves extending radially from the intake port are provided, respectively .
[0015]
By letting the suction surface of the take-out device face the separator surface, the suction groove can smoothly suck the air in each groove formed in the separator, without increasing the capacity of the vacuum generator etc. The adsorption power of the separator can be increased by increasing the flow rate of the sucked air. Further, the separator can be adsorbed almost uniformly at the portion corresponding to the adsorbing groove on the adsorbing surface, and damage to the separator can be eliminated.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a perspective view of a fuel cell separator take-out device according to the present invention. A separator 10 molded with a separator mold (not shown) is removed from a separator mold with a fuel cell separator take-out device 11 (hereinafter “take-out device 11”). The state of taking out is shown in ().
[0017]
The separator 10 is formed with a gas flow path 13 in which a plurality of grooves are provided in parallel for flowing a fuel gas, and the gas flow shown by an imaginary line in the figure in the process after being taken out from the separator mold. A fuel gas supply hole 14 for supplying fuel gas to the passage 13, a fuel gas discharge hole 15 for discharging the fuel gas from the gas passage 13, and a gas passage groove provided in another separator (not shown) An oxidant gas supply hole 16 for supplying oxidant gas to the gas, an oxidant gas discharge hole 17 for discharging the oxidant gas from the gas flow channel groove of another separator, and a supply hole 18 for cooling water. And the discharge hole 21 is opened. Let the surface in which the gas flow path 13 in the separator 10 was provided be the gas flow path surface 23 as a separator surface.
[0018]
The take-out device 11 includes an adsorption plate 25 that is brought close to the gas flow path surface 23 of the separator 10 and four intake pipes 26 provided on the upper portion of the adsorption plate 25.
The intake pipe 26 is connected to a vacuum generator (not shown), and sucks air from the lower part of the suction plate 25.
[0019]
FIG. 2 is a bottom view of the take-out device according to the present invention, and shows a suction surface 28 which is the lower surface of the suction plate 25.
The suction surface 28 includes four suction ports 31 provided in the central portion, and suction grooves 32 formed radially from the suction ports 31 to the four corners of the suction surface 28, respectively. And an annular first groove 33 formed on the peripheral edge, and an annular second groove 33a formed on the outer peripheral edge of the first groove 33.
[0020]
The intake ports 31 communicate with the intake pipes 26 shown in FIG.
When the first groove 33 and the second groove 33a adsorb the separator 10 (see FIG. 1), the shape of the air flow path between the separator 10 and the adsorption plate 25 is complicated, so that It disturbs the flow and becomes the resistance of the air flow. Since the first and second grooves 33 and 33a reduce the amount of air flowing between the separator 10 and the suction plate 25, the negative pressure acting on the separator 10 is increased, and the suction force for sucking the separator 10 is increased. Rise.
[0021]
FIG. 3 is an explanatory view for explaining the positional relationship between the adsorption groove and the gas flow path surface of the separator when the separator is adsorbed by the take-out device according to the present invention, and each of the adsorbing grooves 32 of the take-out device 11 (see FIG. 1). It shows that the end portion is extended to the outside beyond the range of the gas flow path 13. That is, the end of each adsorption groove 32 corresponds to the position of the fuel gas supply hole 14, the fuel gas discharge hole 15, the oxidant gas supply hole 16, and the oxidant gas discharge hole 17 shown in FIG. It was extended on the adsorption surface 28.
[0022]
The operation of the take-out device 11 described above will be described with reference to FIGS.
4 (a) to 4 (c) are first operation views for explaining the operation of the take-out device according to the present invention. In FIG. 4 (a), the take-out device 11 is lowered as indicated by a white arrow and the mold 34 is moved over. The separator 10 is brought closer.
[0023]
In (b), a vacuum generator (not shown) is operated, air is sucked by the intake pipe 26, the separator 10 is sucked by the take-out device 11, and is taken out from the mold 34 as indicated by the white arrow.
In (c), a part of the air when the separator 10 is taken out in (b) is formed between each adsorption groove 32 and each gap between the adsorption surface 28 and the gas flow path surface of the separator from the outside of the adsorption surface 28 as indicated by arrows. It flows toward the intake port 31.
[0024]
5 (a) and 5 (b) are second operation diagrams for explaining the operation of the take-out device according to the present invention, (a) is an enlarged view of a portion B in FIG. 4 (c), and (b) is (a). It is a bb sectional view taken on the line.
In (a), the adsorption groove 32 intersects with a plurality of grooves 13 a, 13 b, 13 c constituting the gas flow path 13 of the separator 10. Assuming that these intersecting portions are 35, 36, and 37 (cross-hatched so that the position can be easily understood), the air that linearly flows in the grooves 13a, 13b, and 13c is indicated by arrows. , Flows into the suction groove 32 through the intersecting portions 35, 36, and 37, and flows linearly to the intake port 31. Further, the air in the groove 13d flows almost directly to the intake port 31.
[0025]
That is, in (b), for example, in the groove 13b, the air gathers at the intersection 36 from each part of the groove 13b, enters the adsorption groove 32 from the intersection 36, and passes through the adsorption groove 32 to the intake port 31 (see (a)). Flowing in the direction of. Thus, since the flow of each air is linear, the flow velocity of air becomes large.
[0026]
Therefore, since the flow velocity of air is large, and returning to FIG. 3, the air is sucked from almost the entire groove of the gas flow path 13 of the separator 11 by the four adsorption grooves 32. As shown in the graph showing the negative pressure distribution along the line C-C shown in FIG. 7), the negative pressure distribution b becomes almost flat and the maximum negative pressure b2 is the negative pressure of the conventional adsorption device shown in FIG. Is greater than the maximum value b1.
[0027]
This is due to the above-mentioned Bernoulli's theorem that the velocity pressure increases as the fluid velocity increases, and the static pressure decreases (that is, the negative pressure increases) by that amount.
[0028]
That is, in FIG. 4B, the suction force for adsorbing the separator 10 despite the small amount of air sucked in each of the intake pipes 26 (that is, the ability of a vacuum generator (not shown) is small). Since the separator 10 is large and adsorbs the separator 10 uniformly over almost the entire adsorption surface 28, the separator 10 is not damaged.
[0029]
4B, after the separator 10 is taken out from the molding die 34, if the intake air in the intake pipes 26 is stopped, as shown in FIG. From the end of each adsorption groove 32 facing the fuel gas discharge hole 15, oxidant gas supply hole 16, and oxidant gas discharge hole 17, the air flows from the gas flow path surface 23 of the separator 10 shown in FIG. The separator 10 is easily separated from the take-out device 11.
[0030]
As described with reference to FIGS. 1, 2 and 5 above, the present invention compresses a preform made of carbon and a thermosetting resin to form grooves 13a, 13b, 13c, 13d. In the fuel cell separator take-out device 11 for taking out the flat plate-like fuel cell separator 10 formed from the compression mold, the grooves 13a, 13b, 13c, 13d are attached to the take-out device 11 so as to adsorb the separator 10. ... provided suction surface 28 facing the gas flow path 23 formed with, the four air inlet 31 in the central portion of the suction surface 28 is provided, the suction grooves 32 provided extending radially from each of these inlets 31 It is characterized by that.
[0031]
By allowing the suction surface 28 of the take-out device 11 to face the gas flow path surface 23, the suction groove 32 smoothly sucks the air in the grooves 13a, 13b, 13c, 13d,. The suction force of the separator 10 can be increased by increasing the flow rate of the air to be sucked without increasing the capability of the vacuum generator or the like. Further, the separator 10 can be adsorbed almost uniformly at the portion corresponding to the adsorbing groove 32 on the adsorbing surface 28, and damage to the separator 10 can be eliminated.
As a result, the quality of the separator 10 can be improved and the cost for operating an air suction source such as a vacuum generator can be suppressed.
[0032]
The suction groove of the present invention is not limited to the linear shape shown in the embodiment, and may be a curve with a large curvature radius. Further, the adsorption grooves are not limited to those from the central part of the adsorption surface to the four corners as shown in the embodiment, but are directed from the central part of the adsorption surface in a direction substantially orthogonal to the groove of the gas flow path of the separator. That is, an air inlet may be provided at the center of the suction surface, and may extend from the air inlet toward the center of the side of the suction plate (the centers of the upper side and the lower side of the suction plate 25 in FIG. 2).
[0033]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The separator take-out device for a fuel cell according to claim 1 is provided with an adsorption surface facing the separator surface in which grooves are formed in order to adsorb the separator, and four intake ports are provided in the central portion of the adsorption surface. is provided with the suction groove extending respectively radially from the mouth, is made to face the suction surface of the take-out apparatus to the separator surface, be sucked by suction groove, smooth air in each groove formed in streaked separator In addition, the suction force of the separator can be increased by increasing the flow velocity of the air to be sucked without increasing the capability of the vacuum generator or the like. Further, the separator can be adsorbed almost uniformly at the portion corresponding to the adsorbing groove on the adsorbing surface, and damage to the separator can be eliminated.
As a result, the quality of the separator can be improved and the cost for operating an air suction source such as a vacuum generator can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view of a fuel cell separator take-out device according to the present invention. FIG. 2 is a bottom view of the take-out device according to the present invention. Explanatory drawing explaining the positional relationship with the gas flow path surface of a separator. [FIG. 4] The 1st action figure explaining the effect | action of the taking-out apparatus which concerns on this invention [FIG. 5] 2nd explaining the effect | action of the taking-out apparatus which concerns on this invention FIG. 6 is an explanatory diagram illustrating a conventional adsorption device that adsorbs a separator. FIG. 7 is an operational diagram illustrating an operation of a conventional adsorption device.
DESCRIPTION OF SYMBOLS 10 ... Separator, 11 ... Separator taking-out apparatus for fuel cells, 13 ... Gas flow path, 13a, 13b, 13c, 13d ... Groove, 23 ... Separator surface (gas flow path surface), 28 ... Adsorption surface, 31 ... Intake port, 32 ... adsorption groove, 34 ... molding die.

Claims (1)

カーボン及び熱硬化性樹脂からなるプリフォームを圧縮成形することで筋状に溝を形成した平板状の燃料電池用セパレータを圧縮成形型から取り出すための燃料電池用セパレータ取出装置において、この取出装置は、前記セパレータを吸着するために、前記溝を形成したセパレータ面に臨む吸着面を設け、この吸着面の中央部に4個の吸気口を設け、これらの吸気口からそれぞれ放射状に延びる吸着溝を設けたことを特徴とする燃料電池用セパレータ取出装置。In a fuel cell separator take-out device for taking out a flat plate fuel cell separator having a streak-like groove formed by compression molding a preform made of carbon and a thermosetting resin from a compression mold, the take-out device is In order to adsorb the separator, an adsorbing surface facing the separator surface on which the groove is formed is provided, and four intake ports are provided in the central portion of the adsorbing surface, and adsorbing grooves extending radially from these intake ports, respectively. A separator take-out device for a fuel cell, comprising:
JP2001181852A 2001-06-15 2001-06-15 Separator take-out device for fuel cell Expired - Fee Related JP3831214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181852A JP3831214B2 (en) 2001-06-15 2001-06-15 Separator take-out device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181852A JP3831214B2 (en) 2001-06-15 2001-06-15 Separator take-out device for fuel cell

Publications (2)

Publication Number Publication Date
JP2002370245A JP2002370245A (en) 2002-12-24
JP3831214B2 true JP3831214B2 (en) 2006-10-11

Family

ID=19022056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181852A Expired - Fee Related JP3831214B2 (en) 2001-06-15 2001-06-15 Separator take-out device for fuel cell

Country Status (1)

Country Link
JP (1) JP3831214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428931A (en) * 2012-07-10 2015-03-18 日产自动车株式会社 Holding device for fuel cell gasket

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407485C (en) * 2003-08-15 2008-07-30 上海神力科技有限公司 Proton exchange film fuel cell pile collecting panel and its manufacturing method
JP4281781B2 (en) * 2006-10-26 2009-06-17 トヨタ自動車株式会社 Separator suction device for fuel cell
WO2013057815A1 (en) * 2011-10-20 2013-04-25 東洋機械金属株式会社 Extraction device
WO2014010398A1 (en) * 2012-07-10 2014-01-16 日産自動車株式会社 Holding device for fuel cell electrolyte membrane
JP2014123501A (en) * 2012-12-21 2014-07-03 Nissan Motor Co Ltd Adsorption device of separator for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104428931A (en) * 2012-07-10 2015-03-18 日产自动车株式会社 Holding device for fuel cell gasket

Also Published As

Publication number Publication date
JP2002370245A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
CN101335356B (en) Fuel cell
JP2001266925A (en) Fuel cell stack
US7494737B2 (en) Fuel cell having manifold apertures and cover plates
US20050008912A1 (en) Cooling of air-cooled fuel cell system
CN1886845A (en) Fuel cell end plate assembly
CN102593477A (en) Fuel cell
US9991524B2 (en) Fuel cell separator, fuel cell current collector plate, fuel cell and fuel cell stack
JPH10172594A (en) Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
CN109473681B (en) Fuel cell bipolar plate with intermittent structure
US20040115513A1 (en) Integrated module of bipolar plate for fuel cell stack
KR20200117958A (en) Separator, and Fuel cell comprising the same
KR20190047822A (en) Cell frame for fuel cell and fuel cell stack using the same
CN101432905B (en) Seal configuration for fuel cell stack
CN1783564A (en) Fuel cell endplate and fuel cell
JP3831214B2 (en) Separator take-out device for fuel cell
US20190288302A1 (en) Fuel cell stack
KR100953273B1 (en) Metal seperator for fuel cell and fuel cell stack having the same
CN1898825A (en) Fuel cell and fuel cell stack
JP4193015B2 (en) Gasket for fuel cell
EP1432060A1 (en) Integrated bipolar plate module for fuel cell stack
CN101546835B (en) Tunnel bridge with elastomeric seal for a fuel cell stack repeating unit
JP3627834B2 (en) Stack stack structure of fuel cells
CA2490669A1 (en) Fuel cell
CN106887618B (en) A kind of film separating structure water segregator for Proton Exchange Membrane Fuel Cells
JP2000323149A (en) Separator for fuel cell and manufacturing device thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees