JP3830781B2 - Maintenance method for oil odor detector - Google Patents

Maintenance method for oil odor detector Download PDF

Info

Publication number
JP3830781B2
JP3830781B2 JP2001221496A JP2001221496A JP3830781B2 JP 3830781 B2 JP3830781 B2 JP 3830781B2 JP 2001221496 A JP2001221496 A JP 2001221496A JP 2001221496 A JP2001221496 A JP 2001221496A JP 3830781 B2 JP3830781 B2 JP 3830781B2
Authority
JP
Japan
Prior art keywords
odor
detection
oil
oily
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001221496A
Other languages
Japanese (ja)
Other versions
JP2003035646A (en
Inventor
光俊 佐野
智嗣 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001221496A priority Critical patent/JP3830781B2/en
Publication of JP2003035646A publication Critical patent/JP2003035646A/en
Application granted granted Critical
Publication of JP3830781B2 publication Critical patent/JP3830781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、油臭検知装置に関し、例えば浄水場などの取水プラントにおける油臭検知装置の脱着を適切なタイミングで行い、配管の汚れを少なくする油臭検知装置のメンテナンス方法に関するものである。
【0002】
【従来の技術】
炭化水素系の油を含む河川水が浄水場に流入すると、上記油の除去に多量の活性炭の投入が必要となるので、浄水場では取水口の手前で河川水について油含有の油無を油臭検知装置による油臭の有無から判定し、油臭が検知されると直ちに警報を発して取水を中止することが行われている。例えば、特開平11−295203号公報には、浄水場に流入する河川水につき、水晶振動子センサを用いた油臭の有無の管理方法が提案されている。
【0003】
水晶振動子センサは、軽油,灯油,重油などの炭化水素系油から発せられる油臭を選択的に検知する能力を有する。よってこの水晶振動子センサは、河川水が油臭以外の種々の臭気を発する場合でも雑多な臭気中から油臭のみを検知できるので、河川水への炭化水素系油の混入を検知することができる。
【0004】
図7は一般的な油臭検知装置の構成を示す概略構成図であり、洗浄,脱着処理状態を表している。被測定流体である採水されたサンプル水は、電磁三方弁1,配管を通ってパージ装置2へ送給され、サンプル水に含まれる油成分などが気化される。気化された被測定ガスは配管を通って油臭検知センサである水晶振動子センサ3に送られ、油臭の有無が判定される。温度制御装置4は水晶振動子センサ3の温度ドリフトの影響を取り除き精度を上げるために、被測定ガス及び水晶振動子センサ3の温度を一定温度に制御している。5は電磁三方弁である。
【0005】
油臭成分を吸着すると水晶振動子センサ3の共振周波数変化が低下する。この共振周波数変化を検出して油臭の臭気強度として出力する。図8は図7の油臭検知装置における水晶振動子センサ3により検出された油臭の応答、臭気強度の時間的変化の典型例を示すグラフである。縦軸は水晶振動子センサにより検知された臭気強度、横軸は経過時間、gは臭気強度曲線である。またAはサンプル水に油成分が混入した(換言すると被測定ガスに油臭が発生した)時点であり、Bはサンプル水から油成分が十分除去された、油臭が消滅した消臭時点を示す。なお上記の臭気強度は、油臭のみを選択的に検知する水晶振動子センサにより検知されたものであるから、とりもなおさず油臭強度となる。
【0006】
油臭の有無、油臭検知は油臭の応答、油臭の臭気強度の時間的変化に基づいて行っている。即ち、油臭信号の立ち上がりの時間的特性、及び油臭信号の立ち下がりの時間的特性により油臭の検知及び油臭なしを判断している。また、図8から明らかな通り、時点Aでの変化(上昇)は緩慢ではあっても注意すればその変化の開始時点の認識は可能であるが、時点B以降の変化(低下)は、時点Aからの変化(上昇)と比較して一層緩慢であって、消臭時点の判断が極めて困難となる。
【0007】
従来は、消臭(油臭がなくなった)と判断された段階で、図7で電磁三方弁1を洗浄水に切り替え、配管を洗浄するとともに電磁三方弁5を切り替え水晶振動子センサ3に洗浄空気を送り、センサを洗浄、即ち吸着したガスの脱着を行わせるのが一般的である。そのため、消臭の判断が遅くなると、配管が汚れて脱着に時間を要する、メンテナンスが面倒である等の問題があった。さらには配管内の汚れによりセンサ3の油臭検知の信頼性低下を招くおそれがあった。
【0008】
【発明が解決しようとする課題】
水晶振動子膜センサによる油臭の有無の検出は、図8から明らかなように油臭検出の判断は比較的容易であるが、消臭、油臭なしの検出判断が極めて難しく、消臭と判断された段階で洗浄、脱着を開始する従来のメンテナンス法では、油臭なしの判断が遅れると、配管が汚れて脱着までに時間がかかる、メンテナンスが面倒であるという問題があった。
【0009】
本発明は、上記の問題点を解消するためになされたもので、油臭検知を高信頼性をもって速やかに判定し、配管及び/又は油臭検知センサの洗浄、脱着処理を遅滞なく行えるようにして、配管及び/又は油臭検知センサの汚れを少なくでき、簡便にメンテナンスができる油臭検知装置のメンテナンス方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の油臭検知装置のメンテナンス方法の第1の方法は、被測定流体中に含まれる油臭を検知する油臭検知センサと、これに上記被測定流体を送給する配管とを備え、検知した油臭強度が油臭検知と判定する所定の第1検知レベルに達した段階で警報を発し、警報を発した上記所定の第1検知レベルを越える所定の第2検知レベルに達した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたものである。
【0011】
本発明の油臭検知装置のメンテナンス方法の第2の方法は、被測定流体中に含まれる油臭を選択的に検知可能であるが応答の遅い第1油臭検知センサと、応答は早いが選択性の低い第2油臭検知センサと、これらに上記被測定流体を送給する配管とを備え、上記第1油臭検知センサにより油臭を検知した後に、上記第2油臭検知センサで油臭無しを検知した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたものである。
【0012】
本発明の油臭検知装置のメンテナンス方法の第3の方法は、第2の方法において、上記第1油臭検知センサの検知出力が所定レベル以上で所定時間以上継続したとき油臭検知とするようにしたものである。
【0013】
本発明の油臭検知装置のメンテナンス方法の第4の方法は、第2の方法において、上記第1油臭検知センサの検知出力が所定レベル以上で、かつ、上記第2油臭検知センサの検知出力が所定レベル以上であるとき油臭検知とするようにしたものである。
【0014】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施の形態を図に基づいて説明する。
図1は本発明の実施の形態1の油臭検知装置のメンテナンス方法に係り、油臭検知センサである水晶振動子センサ3により検出された油臭の応答、油臭強度の時間的変化を示すグラフである。縦軸は水晶振動子センサにより検知された油臭強度、横軸は経過時間、gは本実施の形態1を適用した場合の油臭強度曲線、g は配管及び水晶振動子センサ3に洗浄、即ち脱着処理を施さなかった場合の油臭強度曲線である。Lは第1検知レベル、L は第2検知レベル、Kは油臭検知段階、Dは脱着処理開始段階である。
水晶振動子センサ3としては、例えば水晶振動子の表面にガスを吸着させるための有機高分子薄膜を成膜した構造を有し、ガスの吸着による質量変化を水晶振動子の共振振動数の変化(ΔF)から油臭を選択的に検知するものが用いられる。
【0015】
次に動作について説明する。
従来例と同様に図7に示す構成の油臭検知装置の水晶振動子センサ3により油臭の有無を検出する。被測定流体であるサンプル水を電磁三方弁1,配管を通してパージ装置2へ送給し、パージ装置2でサンプル水に含まれる油成分などを気化させ、気化させた被測定ガスを配管を通して油臭検知センサである水晶振動子センサ3に送給し、油臭の有無を判定する。温度制御装置4は水晶振動子センサ3の温度ドリフトの影響を取り除き精度を上げるために、被測定ガス及び水晶振動子センサ3の温度を一定温度、この場合は50℃に制御している。
【0016】
油臭有りの判断は油臭の応答、油臭臭気強度の立ち上がりの時間的変化から行うが、本実施の形態1では、図1に示すように検知した油臭強度が油臭検知と判定する第1検知レベルLと、第1検知レベル以上の第2検知レベルL (換言すると脱着処理開始確認レベルで、誤差でなく相当の油臭であると確認できるレベル)を設定している。そして、第1検知レベルを超えた段階で油臭検知(油臭有り)と判断し、第2検知レベルを超えた段階で油臭の検出は完了とし、配管及び/又は水晶振動子センサ等の洗浄、脱着処理を開始するようにしている。
なお、第1、第2検知レベルはそれぞれ経験的に決定することができる。
例えばこの場合は、第1検知レベルは臭気強度で2Ton(2倍希釈)の検知レベルで、第2検知レベルは臭気強度で1Ton(1倍希釈)の検知レベルである。第2検知レベルは第1検知レベルの2倍程度である。検知した油臭強度が油臭検知と確認できる検知レベルは周波数変位で(―)40〜(―)90Hz(Max)で、周波数帯は約9MHzである。
【0017】
配管と水晶振動子センサ3等の洗浄、脱着処理は、電磁三方弁1を切り替え、サンプル水に替えて洗浄水を配管を経てパージ装置2に送給するとともに、電磁三方弁5を切り替え水晶振動子センサ3に洗浄空気を送り込んで行われる。センサ3の洗浄、即ち吸着したガスの脱着作業に際しては適切な温度を上昇させ、適切な温度、湿度に制御することにより速やかに行える。
【0018】
本実施の形態1では、油臭検知と判定する第1検知レベルの段階で油臭有りの警報を発し、消臭、油臭がなくなったと判断される段階ではなく、それよりも早い段階の誤差でなく相当の油臭があると確認できる第2検知レベルの段階で、洗浄,脱着を開始している。洗浄,脱着をより早いタイミングで行うことにより、配管の汚れを少なくすることが可能となり、メンテナンス周期が長くなり、メンテナンス性に優れた油臭検知が可能となる。即応性があり、油臭の検出時間や脱着時間を低減でき、配管内の汚れによるセンサの信頼性低下を防止し信頼性を向上できる。
【0019】
参考例1.
図2は参考例1の油臭検知装置のメンテナンス方法に係る水晶振動子センサ3により検出された油臭の応答、油臭強度の時間的変化を示すグラフである。縦軸は水晶振動子センサにより検知された油臭強度、横軸は経過時間、gは本実施の形態1を適用した場合の油臭強度曲線、g は配管及び水晶振動子センサ3を洗浄、即ち脱着処理を施さなかった場合の油臭強度曲線である。Lは油臭検知レベル、Kは油臭検知段階、Dは脱着処理開始段階、tは油臭検知段階Kから脱着処理を開始するまでの油臭検知レベル継続時間である。
【0020】
上記実施の形態1では、油臭検知と判定する第1検知レベルと脱着処理を開始する第2検知レベルとをレベル分けしているが、参考例1では図2に示すように検知した油臭強度が油臭検知と判定する所定の油臭検知レベル以上に達した段階Kでタイマーにより時間を計測し、油臭検知レベル以上の油臭強度が所定時間(t)以上、例えば数分間継続した段階Dで油臭検出を止め、配管、水晶振動子センサ3等の洗浄を開始するようにしている。この油臭検知レベル以上の油臭強度が所定の数分間継続した段階では、確実に油臭があると認められる。
なお、油臭の有無の検出は上記実施の形態1と同様に、図7に示す構成の油臭検知装置の油臭検知センサである水晶振動子センサ3により行い、洗浄脱着作業も同様に行っている。
【0021】
参考例1において、消臭、油臭がなくなったと判断される段階前に脱着を開始しているので、同様に油臭の検出時間や脱着時間を低減でき、配管内の汚れによるセンサの信頼性低下を防止し信頼性を向上できる。
【0022】
実施の形態
上記実施の形態では、油臭検知センサとして選択性は高いが応答の遅い水晶振動センサ3のみを用いた油臭検知装置におけるメンテナンス方法について述べたが、この実施の形態では油臭を選択的に検知可能であるが応答の遅い第1油臭検知センサである水晶振動子センサ3と、応答は早いが選択性の低い第2油臭検知センサである半導体式センサ6の2つの油臭検知センサを用いる場合について説明する。
図3は実施の形態に係る油臭検知装置の構成を示す概略構成図であり、洗浄,脱着処理状態を表している。水晶振動子センサ3と直列に,これより下流に半導体式センサ6を設けている。図4は図3に示す油臭検知装置により検出された被測定流体中の臭気の応答、臭気強度の時間的変化の一例を示すグラフである。縦軸は油臭検知センサにより検知された臭気強度、横軸は経過時間を示し、gは水晶振動子センサによる臭気強度曲線、g は半導体式センサによる臭気強度曲線で、各時間軸は一致させている。
【0023】
半導体式センサ6としては、例えば一対の白金属合金線コイルの間にプレス成形した酸化錫系物などの金属酸化物半導体を塗布し焼結した構造を有し、上記金属酸化物半導体の表面でのガス吸着による熱伝導度の変化および電気伝導度の変化を上記白金属合金線コイルの両端よりみた抵抗値の変化として臭気を検知するものが用いられる。
【0024】
本実施の形態では、水晶振動子センサ3により検知した臭気強度が上昇を開始した段階Aをもって油臭の発生とし、また油臭を検知した後は、半導体式センサ6により検知した臭気強度が急低下する段階Bをもって油臭の消滅と判定し、配管,水晶振動子センサ3,半導体式センサ6等の洗浄、脱着処理を開始するようにしている。
油臭の検知、洗浄動作は上記実施の形態と同様である。
【0025】
本実施の形態では、油臭の検知は油臭に対して選択性の高い水晶振動子センサ3により行うが、油臭無し(消臭)の判断は、消臭時点の判断が極めて困難な応答の遅い水晶振動子センサ3ではなく、応答の早い半導体式センサ6により行っているので、消臭の判断が容易で遅滞なく的確に行える。油臭の有無をリアルタイムに検知でき、配管、油臭検知センサ等の洗浄、脱着処理を遅滞なく行える。そのため、配管の汚れを少なくし、簡便にメンテナンスが行え、油臭を高い信頼性で検知できる。
【0026】
実施の形態
図5は本発明の実施の形態に係る油臭検知装置の構成を示す概略構成図であり、洗浄,脱着処理状態を表している。上記実施の形態では、水晶振動子センサ3と直列に,これより下流に半導体式センサ6を設けているが、この実施の形態では図5に示すように半導体式センサ6を直列式ではあるが、サンプル水導入側に近い水晶振動子センサ3より上流に設けている。
これにより油臭無しの検知を上記実施の形態3より時間的に早く行うことができるので、洗浄,脱着も早く行うことが可能となる。
【0027】
実施の形態
図6は本発明の実施の形態に係る油臭検知判定法を示すフロー図である。上記実施の形態2,3では、油臭の検知を水晶振動子センサ3による油臭の検知出力、油臭強度だけで判定していたが、本実施の形態では、図6に示すように水晶振動子センサ3による油臭の検知出力(臭気強度)が所定レベル以上で、所定レベル以上の強度が所定時間以上継続し、かつ半導体式センサ6による検知出力が所定レベル以上のとき油臭検知と判定している。油臭検知の判定の信頼性が高められる。
なお、油臭無しの判定は上記実施の形態2,3と同様半導体式センサ6により行っており、洗浄、脱着処理を遅滞なく、配管の汚れを少なくでき、簡便にメンテナンスが行える。
【0028】
【発明の効果】
本発明の油臭検知装置のメンテナンス方法の第1の方法は、被測定流体中に含まれる油臭を検知する油臭検知センサと、これに上記被測定流体を送給する配管とを備え、検知した油臭強度が油臭検知と判定する所定の第1検知レベルに達した段階で警報を発し、警報を発した上記所定の第1検知レベルを越える所定の第2検知レベルに達した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたので、所定の第1検知レベルに達した段階で警報を発する第1ステップ、と、警報を発した上記所定の第1検知レベルを越える所定の第2検知レベルに達した段階で上記配管及び/又は上記油臭検知センサの洗浄を開始する第2ステップをとり、警報と、その後の高信頼性を伴なう洗浄、脱着処理を早いタイミングで行うことになるため、配管及び/又は上記油臭検知センサの汚れを低減でき、配管及び/又は上記油臭検知センサの汚れによる油臭検知センサの信頼性低下を低減できる。
【0029】
本発明の油臭検知装置のメンテナンス方法の第2の方法は、被測定流体中に含まれる油臭を選択的に検知可能であるが応答の遅い第1油臭検知センサと、応答は早いが選択性の低い第2油臭検知センサと、これらに上記被測定流体を送給する配管とを備え、上記第1油臭検知センサにより油臭を検知した後に、上記第2油臭検知センサで油臭無しを検知した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたので、油臭無しの判定が容易に遅滞なく行える。上記効果に加え、油臭有無の検出の信頼性が向上する。
【0030】
本発明の油臭検知装置のメンテナンス方法の第3の方法は、第2の方法において、上記第1油臭検知センサの検知出力が所定レベル以上で所定時間以上継続したとき油臭検知とするようにしたので、さらに油臭検知の信頼性が増す。
【0031】
本発明の油臭検知装置のメンテナンス方法の第4の方法は、第2の方法において、上記第1油臭検知センサの検知出力が所定レベル以上で、かつ、上記第2油臭検知センサの検知出力が所定レベル以上であるとき油臭検知とするようにしたので、さらに油臭検知の信頼性が増す。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る水晶振動子センサにより検出された油臭の応答、臭気強度の時間的変化を示すグラフである。
【図2】 参考例1に係る水晶振動子センサにより検出された油臭の応答、臭気強度の時間的変化を示すグラフである。
【図3】 本発明の実施の形態に係る油臭検知装置の構成を示す概略構成図である。
【図4】 図3に示す油臭検知装置により検出された油臭(臭気)の応答、臭気強度の時間的変化を示すグラフである。
【図5】 本発明の実施の形態に係る油臭検知装置の構成を示す概略構成図である。
【図6】 本発明の実施の形態に係る油臭検知判定法を示すフロー図である。
【図7】 一般的な油臭検知装置の概略構成図である。
【図8】 一般的な水晶振動子センサにより検知された油臭の臭気強度の時間的変化を示すグラフである。
【符号の説明】
1 電磁三方弁 2 パージ装置
3 水晶振動子センサ 4 温度制御装置
5 電磁三方弁 6 半導体式センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oily odor detector, and more particularly to a maintenance method for an oily odor detector that removes and removes an oily odor detector at an appropriate timing in a water intake plant such as a water purification plant.
[0002]
[Prior art]
When river water containing hydrocarbon-based oil flows into a water purification plant, it is necessary to input a large amount of activated carbon to remove the oil. Therefore, at the water purification plant, the oil containing oil is not contained in the river water before the intake. Judgment is made based on the presence or absence of oily odor by the odor detection device, and when oily odor is detected, an alarm is issued immediately and water intake is stopped. For example, Japanese Patent Application Laid-Open No. 11-295203 proposes a management method for the presence or absence of an oily odor using a quartz vibrator sensor for river water flowing into a water purification plant.
[0003]
The quartz oscillator sensor has an ability to selectively detect an oily odor emitted from hydrocarbon oils such as light oil, kerosene, and heavy oil. Therefore, this quartz crystal sensor can detect only the oily odor from the miscellaneous odors even when the river water emits various odors other than oily odor, so it can detect the mixing of hydrocarbon oil into the river water. it can.
[0004]
FIG. 7 is a schematic configuration diagram showing a configuration of a general oil odor detection device, and shows a cleaning and desorption processing state. The sampled water sampled as the fluid to be measured is fed to the purge device 2 through the electromagnetic three-way valve 1 and the piping, and the oil component contained in the sample water is vaporized. The gas to be measured passes through the pipe and is sent to the crystal resonator sensor 3 which is an oily odor detection sensor, and the presence or absence of oily odor is determined. The temperature control device 4 controls the temperature of the gas to be measured and the crystal resonator sensor 3 to a constant temperature in order to remove the influence of the temperature drift of the crystal resonator sensor 3 and increase the accuracy. 5 is an electromagnetic three-way valve.
[0005]
When the oily odor component is adsorbed, the change in the resonance frequency of the crystal resonator sensor 3 is reduced. This resonance frequency change is detected and output as the odor intensity of the oily odor. FIG. 8 is a graph showing a typical example of the response of the oily odor detected by the quartz vibrator sensor 3 in the oily odor detection apparatus of FIG. The vertical axis represents the odor intensity detected by the quartz oscillator sensor, the horizontal axis represents the elapsed time, and g represents the odor intensity curve. A is the time when the oil component is mixed into the sample water (in other words, the oil odor is generated in the gas to be measured), and B is the deodorization time when the oil component is sufficiently removed from the sample water. Show. The odor intensity is detected by a quartz vibrator sensor that selectively detects only the oily odor, and thus becomes the oily odor intensity.
[0006]
Presence / absence of oily odor and detection of oily odor are performed based on the response of oily odor and the temporal change of odor intensity of oily odor. That is, the detection of oil odor and the absence of oil odor are determined based on the time characteristic of the rising edge of the oil odor signal and the time characteristic of the falling edge of the oil odor signal. Further, as is clear from FIG. 8, although the change (rise) at the time point A is slow, it is possible to recognize the start time of the change with care, but the change (decrease) after the time point B is Compared with the change (increase) from A, it is more gradual, and the determination of the deodorization time becomes extremely difficult.
[0007]
Conventionally, when it is determined that deodorization (oil odor has been eliminated), the electromagnetic three-way valve 1 is switched to cleaning water in FIG. In general, air is sent to clean the sensor, that is, to desorb the adsorbed gas. For this reason, if the judgment of deodorization is delayed, there are problems such as the pipes becoming dirty and it takes time to detach and the maintenance is troublesome. Furthermore, there is a possibility that the reliability of oil odor detection of the sensor 3 may be reduced due to dirt in the pipe.
[0008]
[Problems to be solved by the invention]
As can be seen from FIG. 8, the detection of the presence or absence of the oily odor by the quartz vibrator membrane sensor is relatively easy, but it is extremely difficult to detect the odor and the absence of oily odor. In the conventional maintenance method in which cleaning and desorption are started at the determined stage, there is a problem that if the determination of no oily odor is delayed, the piping becomes dirty and it takes time until desorption, and maintenance is troublesome.
[0009]
The present invention has been made to solve the above-described problems, and can quickly and reliably determine oil odor detection so that the piping and / or oil odor detection sensor can be cleaned and desorbed without delay. Thus, an object of the present invention is to provide a maintenance method for an oily odor detection apparatus that can reduce contamination of piping and / or an oily odor detection sensor and can be easily maintained.
[0010]
[Means for Solving the Problems]
The first method of the maintenance method of the oily odor detection apparatus of the present invention comprises an oily odor detection sensor for detecting an oily odor contained in the fluid to be measured, and a pipe for supplying the fluid to be measured to this, When the detected oil odor intensity reaches a predetermined first detection level for determining oil odor detection , an alarm is issued, and when the alarm reaches the predetermined second detection level that exceeds the predetermined first detection level Thus, cleaning of the pipe and / or the oily odor detection sensor is started .
[0011]
The second method of the maintenance method of the oil odor detection apparatus of the present invention is capable of selectively detecting the oil odor contained in the fluid to be measured, but the first oil odor detection sensor having a slow response and a quick response. A second oil odor detection sensor having low selectivity, and a pipe for supplying the fluid to be measured to the second oil odor detection sensor. After the oil odor is detected by the first oil odor detection sensor, the second oil odor detection sensor When the absence of oily odor is detected, cleaning of the pipe and / or the oily odor detection sensor is started.
[0012]
According to a third method of the maintenance method of the oily odor detection apparatus of the present invention, in the second method, when the detection output of the first oily odor detection sensor continues for a predetermined time at a predetermined level or more, the oil odor detection is performed. It is a thing.
[0013]
According to a fourth method of the maintenance method of the oil odor detection apparatus of the present invention, in the second method, the detection output of the first oil odor detection sensor is equal to or higher than a predetermined level, and the detection of the second oil odor detection sensor is performed. Oil odor detection is performed when the output is above a predetermined level.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 relates to the maintenance method of the oil odor detection apparatus according to Embodiment 1 of the present invention, and shows the response of the oil odor detected by the quartz vibrator sensor 3 which is an oil odor detection sensor and the temporal change of the oil odor intensity. It is a graph. The vertical axis represents the oil odor intensity detected by the quartz vibrator sensor, the horizontal axis represents the elapsed time, g 1 represents the oil odor intensity curve when the first embodiment is applied, and g 0. These are oil odor intensity curves when the piping and the quartz vibrator sensor 3 are not washed, that is, subjected to the desorption process. L 1 is the first detection level, L 2 Is the second detection level, K is the oil odor detection stage, and D is the desorption process start stage.
The crystal resonator sensor 3 has a structure in which, for example, an organic polymer thin film for adsorbing a gas is formed on the surface of the crystal resonator, and the mass change due to the gas adsorption is changed by the change in the resonance frequency of the crystal resonator. What detects oily odor selectively from (ΔF) is used.
[0015]
Next, the operation will be described.
As in the conventional example, the presence or absence of oily odor is detected by the quartz vibrator sensor 3 of the oily odor detecting device having the configuration shown in FIG. Sample water, which is the fluid to be measured, is supplied to the purge device 2 through the electromagnetic three-way valve 1 and piping, and the purge device 2 vaporizes oil components and the like contained in the sample water. It is fed to the quartz crystal sensor 3 which is a detection sensor, and the presence or absence of oily odor is determined. The temperature control device 4 controls the temperature of the gas to be measured and the crystal resonator sensor 3 to a constant temperature, in this case, 50 ° C., in order to remove the influence of the temperature drift of the crystal resonator sensor 3 and increase the accuracy.
[0016]
The determination of the presence of oily odor is made from the response of the oily odor and the time change of the rise of the oily odor odor intensity. In the first embodiment, the detected oily odor intensity is determined to be the oily odor detection as shown in FIG. The first detection level L 1 and the second detection level L 2 equal to or higher than the first detection level (In other words, the desorption process start confirmation level is a level at which it can be confirmed that the oil odor is not an error but a substantial oily odor). Then, it is determined that oil odor is detected (with oil odor) when the first detection level is exceeded, and detection of oil odor is completed when the second detection level is exceeded. The cleaning and desorption processes are started.
The first and second detection levels can be determined empirically.
For example, in this case, the first detection level is a detection level of 2 Ton (2-fold dilution) in terms of odor intensity, and the second detection level is a detection level of 1 Ton (1-fold dilution) in terms of odor intensity. The second detection level is about twice the first detection level. The detection level at which the detected oil odor intensity can be confirmed as oil odor detection is (−) 40 to (−) 90 Hz (Max) in terms of frequency displacement, and the frequency band is about 9 MHz.
[0017]
The cleaning and desorption processing of the piping and the crystal oscillator sensor 3 and the like are performed by switching the electromagnetic three-way valve 1 and supplying the cleaning water to the purge device 2 through the piping instead of the sample water and switching the electromagnetic three-way valve 5 This is performed by feeding cleaning air into the child sensor 3. When the sensor 3 is washed, that is, when the adsorbed gas is desorbed, the temperature can be increased quickly and controlled to an appropriate temperature and humidity.
[0018]
In the first embodiment, an oil odor alarm is issued at the first detection level stage where it is determined that oil odor is detected, and it is not a stage at which it is determined that the deodorization or oil odor has run out. In addition, cleaning and desorption are started at the second detection level where it can be confirmed that there is a considerable oily odor. By performing cleaning and desorption at an earlier timing, it is possible to reduce the contamination of the piping, the maintenance cycle becomes longer, and oil odor detection with excellent maintainability becomes possible. It is responsive and can reduce the detection time and desorption time of oily odors, prevent deterioration of sensor reliability due to dirt in the piping, and improve reliability.
[0019]
Reference Example 1
FIG. 2 is a graph showing the response of the oily odor detected by the quartz vibrator sensor 3 according to the maintenance method of the oily odor detection apparatus of Reference Example 1 and the temporal change of the oily odor intensity. The vertical axis represents the oil odor intensity detected by the quartz resonator sensor, the horizontal axis represents the elapsed time, g 2 represents the oil odor intensity curve when the first embodiment is applied, and g 0. These are oil odor intensity curves when the piping and the quartz oscillator sensor 3 are washed, that is, not subjected to the desorption process. L is the oil odor detection level, K is the oil odor detection stage, D is the desorption process start stage, and t is the oil odor detection level duration from the oil odor detection stage K to the start of the desorption process.
[0020]
In the first embodiment, the first detection level for determining the detection of oily odor and the second detection level for starting the desorption process are divided into levels, but in Reference Example 1 , the detected oily odor is shown in FIG. The time is measured by a timer at the stage K when the strength reaches or exceeds the predetermined oil odor detection level determined as oil odor detection, and the oil odor intensity above the oil odor detection level continues for a predetermined time (t) or more, for example, for several minutes. In step D, the detection of the oily odor is stopped, and cleaning of the piping, the crystal resonator sensor 3 and the like is started. When the oil odor intensity equal to or higher than this oil odor detection level continues for a predetermined number of minutes, it is recognized that there is an oil odor.
The presence or absence of oily odor is detected by the quartz vibrator sensor 3 which is the oily odor detecting sensor of the oily odor detecting device having the configuration shown in FIG. ing.
[0021]
In Reference Example 1, since desorption is started before the stage where it is determined that the deodorization and oily odor are gone, the detection time and desorption time of oily odor can be similarly reduced, and the reliability of the sensor due to dirt in the piping Decrease can be prevented and reliability can be improved .
[0022]
Embodiment 2 FIG.
In the first embodiment, the maintenance method in the oil odor detection apparatus using only the crystal vibration sensor 3 having high selectivity but slow response as the oil odor detection sensor has been described, but in this embodiment 2 , the oil odor is selected. Oil odor of the crystal sensor 3 which is a first oil odor detection sensor which can be detected automatically but is slow in response, and a semiconductor sensor 6 which is a second oil odor detection sensor which is quick in response but low in selectivity A case where a detection sensor is used will be described.
FIG. 3 is a schematic configuration diagram showing a configuration of the oily odor detection apparatus according to the second embodiment, and shows a cleaning and desorption processing state. A semiconductor sensor 6 is provided in series with the crystal resonator sensor 3 and downstream thereof. FIG. 4 is a graph showing an example of the response of odor in the fluid to be measured and the temporal change in odor intensity detected by the oil odor detector shown in FIG. The vertical axis represents the odor intensity detected by the oily odor detection sensor, the horizontal axis represents the elapsed time, g 3 represents the odor intensity curve obtained by the quartz vibrator sensor, and g 4 Is an odor intensity curve by a semiconductor sensor, and each time axis is matched.
[0023]
The semiconductor sensor 6 has, for example, a structure in which a metal oxide semiconductor such as a press-formed tin oxide is applied between a pair of white metal alloy wire coils and sintered. What detects odor as a change in the resistance value when the change in thermal conductivity and the change in electrical conductivity due to gas adsorption are viewed from both ends of the white metal alloy wire coil is used.
[0024]
In the present embodiment, the oil odor is generated at the stage A when the odor intensity detected by the crystal resonator sensor 3 starts to rise, and after the oil odor is detected, the odor intensity detected by the semiconductor sensor 6 is suddenly increased. It is determined that the oily odor is extinguished at the stage B that decreases, and cleaning and desorption processing of the piping, the crystal oscillator sensor 3, the semiconductor sensor 6 and the like are started.
Oil odor detection and cleaning operations are the same as in the above embodiment.
[0025]
In this embodiment, the detection of oily odor is performed by the crystal resonator sensor 3 having high selectivity to the oily odor, but the determination of the absence of oily odor (deodorization) is a response that makes it very difficult to determine the point of deodorization. Since it is performed not by the quartz crystal sensor 3 having a slow response but by the semiconductor sensor 6 having a quick response, the determination of deodorization is easy and can be accurately performed without delay. The presence or absence of oily odor can be detected in real time, and the piping and oily odor detection sensors can be cleaned and desorbed without delay. Therefore, dirt on the piping is reduced, maintenance can be performed easily, and the oily odor can be detected with high reliability.
[0026]
Embodiment 3 FIG.
FIG. 5 is a schematic configuration diagram showing a configuration of an oily odor detection apparatus according to Embodiment 3 of the present invention, and shows a cleaning and desorption processing state. In the second embodiment, the semiconductor sensor 6 is provided in series with the crystal resonator sensor 3 and downstream thereof. However, in the third embodiment, the semiconductor sensor 6 is not connected in series as shown in FIG. However, it is provided upstream of the crystal resonator sensor 3 close to the sample water introduction side.
As a result, the detection of no oily odor can be performed earlier in time than the third embodiment, so that cleaning and desorption can be performed earlier.
[0027]
Embodiment 4 FIG.
FIG. 6 is a flowchart showing an oily odor detection determination method according to Embodiment 4 of the present invention. In the second and third embodiments, the detection of the oily odor is determined only by the detection output of the oily odor and the oily odor intensity by the crystal resonator sensor 3, but in the fourth embodiment, as shown in FIG. Oil odor detection when the oil odor detection output (odor intensity) by the quartz vibrator sensor 3 is equal to or higher than a predetermined level, the intensity above the predetermined level continues for a predetermined time or more, and the detection output by the semiconductor sensor 6 is higher than a predetermined level. It is determined. The reliability of oil odor detection is improved.
The determination of the absence of oily odor is performed by the semiconductor sensor 6 as in the second and third embodiments, so that cleaning and desorption processing can be performed without delay, dirt on the piping can be reduced, and maintenance can be performed easily.
[0028]
【The invention's effect】
The first method of the maintenance method of the oily odor detection apparatus of the present invention comprises an oily odor detection sensor for detecting an oily odor contained in the fluid to be measured, and a pipe for supplying the fluid to be measured to this, When the detected oil odor intensity reaches a predetermined first detection level for determining oil odor detection , an alarm is issued, and when the alarm reaches the predetermined second detection level that exceeds the predetermined first detection level Since the cleaning of the pipe and / or the oily odor detection sensor is started, the first step of issuing an alarm when the predetermined first detection level is reached, and the predetermined first of the alarm When a predetermined second detection level exceeding 1 detection level is reached, the second step of starting cleaning of the pipe and / or the oily odor detection sensor is taken, and an alarm and subsequent cleaning with high reliability are performed. The desorption process can be performed at an early timing. To become, piping and / or reduces the contamination of the oil odor sensor may piping and / or reduce the reliability deterioration of the oil odor detection sensor due to contamination of the oil odor sensor.
[0029]
The second method of the maintenance method of the oil odor detection apparatus of the present invention is capable of selectively detecting the oil odor contained in the fluid to be measured, but the first oil odor detection sensor having a slow response and a quick response. A second oil odor detection sensor having low selectivity, and a pipe for supplying the fluid to be measured to the second oil odor detection sensor. After the oil odor is detected by the first oil odor detection sensor, the second oil odor detection sensor Since the cleaning of the pipe and / or the oily odor detection sensor is started at the stage where the oily odor is detected, the determination of the oily odor can be easily performed without delay. In addition to the above effects, the reliability of detection of the presence or absence of oily odor is improved.
[0030]
According to a third method of the maintenance method of the oily odor detection apparatus of the present invention, in the second method, when the detection output of the first oily odor detection sensor continues for a predetermined time at a predetermined level or more, the oil odor detection is performed. As a result, the reliability of oil odor detection is further increased.
[0031]
According to a fourth method of the maintenance method of the oil odor detection apparatus of the present invention, in the second method, the detection output of the first oil odor detection sensor is equal to or higher than a predetermined level, and the detection of the second oil odor detection sensor is performed. Since the oil odor detection is performed when the output is equal to or higher than a predetermined level, the reliability of the oil odor detection is further increased.
[Brief description of the drawings]
FIG. 1 is a graph showing a temporal change in response of oily odor and odor intensity detected by a quartz resonator sensor according to Embodiment 1 of the present invention.
FIG. 2 is a graph showing the response of oily odor detected by the quartz resonator sensor according to Reference Example 1 and the temporal change in odor intensity.
FIG. 3 is a schematic configuration diagram showing a configuration of an oily odor detection apparatus according to Embodiment 2 of the present invention.
4 is a graph showing the response of oily odor (odor) detected by the oily odor detector shown in FIG. 3 and the temporal change in odor intensity. FIG.
FIG. 5 is a schematic configuration diagram showing a configuration of an oily odor detection apparatus according to Embodiment 3 of the present invention.
FIG. 6 is a flowchart showing an oily odor detection determination method according to Embodiment 4 of the present invention.
FIG. 7 is a schematic configuration diagram of a general oil odor detection device.
FIG. 8 is a graph showing temporal changes in odor intensity of oily odor detected by a general crystal resonator sensor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electromagnetic three-way valve 2 Purge device 3 Quartz crystal sensor 4 Temperature control device 5 Electromagnetic three-way valve 6 Semiconductor type sensor.

Claims (4)

被測定流体中に含まれる油臭を検知する油臭検知センサと、これに上記被測定流体を送給する配管とを備え、検知した油臭強度が油臭検知と判定する所定の第1検知レベルに達した段階で警報を発し、警報を発した上記所定の第1検知レベルを越える所定の第2検知レベルに達した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたことを特徴とする油臭検知装置のメンテナンス方法。An oily odor detection sensor for detecting an oily odor contained in the fluid to be measured, and a pipe for supplying the fluid to be measured to the oil odor detection sensor, and a predetermined first detection for determining that the detected oily odor intensity is an oily odor detection. When the level is reached, an alarm is issued, and when the predetermined second detection level that exceeds the predetermined first detection level at which the alarm is issued is reached, cleaning of the pipe and / or the oily odor detection sensor is started. The maintenance method of the oily odor detection apparatus characterized by having carried out. 被測定流体中に含まれる油臭を選択的に検知可能であるが応答の遅い第1油臭検知センサと、応答は早いが選択性の低い第2油臭検知センサと、これらに上記被測定流体を送給する配管とを備え、上記第1油臭検知センサにより油臭を検知した後に、上記第2油臭検知センサで油臭無しを検知した段階で、上記配管及び/又は上記油臭検知センサの洗浄を開始するようにしたことを特徴とする油臭検知装置のメンテナンス方法。  A first oil odor detection sensor that can selectively detect an oily odor contained in a fluid to be measured but has a slow response, a second oil odor detection sensor that has a quick response but a low selectivity, and the above-described measurement object A pipe for feeding fluid, and after detecting the oily odor by the first oily odor detection sensor, the pipe and / or the oily odor at the stage where the second oily odor detection sensor detects no oily odor. A maintenance method for an oily odor detection device, wherein cleaning of the detection sensor is started. 上記第1油臭検知センサの検知出力が所定レベル以上で所定時間以上継続したとき油臭検知とするようにした請求項記載の油臭検知装置のメンテナンス方法。The maintenance method of the oil odor detection apparatus of Claim 2 made to carry out oil odor detection when the detection output of the said 1st oil odor detection sensor is more than predetermined level and continued more than predetermined time. 上記第1油臭検知センサの検知出力が所定レベル以上で、かつ、上記第2油臭検知センサの検知出力が所定レベル以上であるとき油臭検知とするようにした請求項記載の油臭検知装置のメンテナンス方法。The detection output of the first oil odor detection sensor is equal to or higher than a predetermined level, and oil odor of claim 2, wherein the detection output of the second oil odor detection sensor is set as the oil odor detection when a predetermined level or higher Maintenance method of the detection device.
JP2001221496A 2001-07-23 2001-07-23 Maintenance method for oil odor detector Expired - Lifetime JP3830781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221496A JP3830781B2 (en) 2001-07-23 2001-07-23 Maintenance method for oil odor detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221496A JP3830781B2 (en) 2001-07-23 2001-07-23 Maintenance method for oil odor detector

Publications (2)

Publication Number Publication Date
JP2003035646A JP2003035646A (en) 2003-02-07
JP3830781B2 true JP3830781B2 (en) 2006-10-11

Family

ID=19055154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221496A Expired - Lifetime JP3830781B2 (en) 2001-07-23 2001-07-23 Maintenance method for oil odor detector

Country Status (1)

Country Link
JP (1) JP3830781B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2460077C1 (en) * 2011-05-17 2012-08-27 Юрий Николаевич Николаев Method of determining concentration of gaseous components in gas-air mixture, corresponding to irritant odour action, and continuous monitoring multi-sensor gas analyser

Also Published As

Publication number Publication date
JP2003035646A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
KR960705205A (en) DIFFERENTIAL GAS SENSING IN-LINE MONITORING SYSTEM
US6374662B1 (en) Devices and methods for measuring odor
US20020002857A1 (en) Odor identifying apparatus
JP5056898B2 (en) Failure detection device for exhaust gas purification device
CN110140190B (en) Utilization of quartz crystal microbalance for quantification of preceding stage solid formation
JP3830781B2 (en) Maintenance method for oil odor detector
JP6653175B2 (en) Volatile organic compound measuring device and volatile organic compound measuring method
JP5233903B2 (en) Atmospheric gas measuring device for soldering
JP3840104B2 (en) Humidity sensor control device and humidity sensor control method
JP3830788B2 (en) Odor management device and odor management method
JP3830778B2 (en) Odor management device and odor management method
JP2920161B2 (en) Diesel engine exhaust purification system
JP4042232B2 (en) Gas measuring device
JP4840257B2 (en) Signal processing device for VOC analyzer
JP5900518B2 (en) NOx sensor control device
JP2002350313A (en) Method and device for chemicals quantification
JP3113917U (en) Volatile organic compound measuring device
US20140223993A1 (en) Adsorbent gas analysis device and adsorbent gas analysis method
JPH11118744A (en) Odor measuring apparatus
JP2000146882A (en) Gas measuring device
JP2894141B2 (en) Adsorption amount estimation device for hydrocarbon adsorption / desorption device of internal combustion engine
JP2003065927A (en) Chemical substance detection method and apparatus
JP2006508355A (en) Gas measuring device and method with noise compensation
JPH11125612A (en) Odor-measuring device
JP3941653B2 (en) Odor measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R151 Written notification of patent or utility model registration

Ref document number: 3830781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term