JPH11118744A - Odor measuring apparatus - Google Patents

Odor measuring apparatus

Info

Publication number
JPH11118744A
JPH11118744A JP29938297A JP29938297A JPH11118744A JP H11118744 A JPH11118744 A JP H11118744A JP 29938297 A JP29938297 A JP 29938297A JP 29938297 A JP29938297 A JP 29938297A JP H11118744 A JPH11118744 A JP H11118744A
Authority
JP
Japan
Prior art keywords
gas
sample
odor
adsorbent
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29938297A
Other languages
Japanese (ja)
Other versions
JP3777753B2 (en
Inventor
Ryutaro Oda
竜太郎 小田
Hiroo Kinoshita
太生 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29938297A priority Critical patent/JP3777753B2/en
Publication of JPH11118744A publication Critical patent/JPH11118744A/en
Application granted granted Critical
Publication of JP3777753B2 publication Critical patent/JP3777753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To condense a sample gas using an adsorbent deteriorated in performance subsequent to oxidation in an odor measuring apparatus using an odorant sensor of an oxide semiconductor. SOLUTION: When a sample component adsorbed to an adsorbent in a collecting tube 22 is to be sent to flow cells 28a, 28b, N2 is sent to the collecting tube 22 via a nitrogen gas path 15 and a six-way valve 21, and the collecting tube 22 is heated by a heater 23. The N2 including the sample component first passes the flow cell 28a where an odorant sensor 29a constituted of a conductive polymer is set. Thereafter, the air supplied with a predetermined pressure from a tank 34 storing the air is mixed with the N2 , and is sent through the flow cell 28b where an odorant sensor 29b of an oxide semiconductor is installed. Thereafter, O2 does not come in touch with the adsorbent when the adsorbent in the collecting tube 22 is heated, while O2 is adsorbed to the odorant sensor 29b. Accordingly the sample component can be detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスセンサの一種
であるにおいセンサを使用して試料ガスに含まれるにお
い成分を測定するにおい測定装置に関する。本発明のに
おい測定装置は、食品や香料の品質検査、悪臭公害の定
量検知、焦げ臭検知による火災警報機、更には、人物の
追跡、識別、認証や薬物検査等の犯罪捜査等の幅広い分
野に利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an odor measuring device for measuring an odor component contained in a sample gas using an odor sensor which is a kind of gas sensor. The odor measuring device of the present invention is applicable to a wide range of fields such as quality inspection of foods and fragrances, quantitative detection of odor pollution, fire alarm by detection of burnt odor, and further, criminal investigation such as tracking, identification, authentication and drug testing of persons. Available to

【0002】[0002]

【従来の技術】においセンサは、空気(又は供給された
試料ガス)中に含まれるにおい成分がセンサの感応面に
付着することにより生ずる該センサの物理的変化を電気
的(又は光学的)に測定するものである。においセンサ
としては、酸化物半導体を用いたものや導電性高分子を
用いたものが知られている。
2. Description of the Related Art An odor sensor electrically (or optically) converts a physical change of an odor component contained in air (or a supplied sample gas) caused by adhering to a sensitive surface of the sensor. It is to be measured. As an odor sensor, a sensor using an oxide semiconductor and a sensor using a conductive polymer are known.

【0003】このようなにおいセンサを利用したにおい
測定装置にて、比較的低濃度の試料ガス中のにおい成分
を測定する場合、被測定成分の濃度を高めるために加熱
脱着法(サーマルデソープション)によるガス濃縮処理
が行なわれることが多い。加熱脱着法では、まず、被測
定成分を主として吸着する吸着剤を充填した濃縮管に試
料ガスを流通させて、該試料ガスに含まれる被測定成分
を吸着剤に吸着させる。そして、充分に被測定成分が吸
着された後に、該濃縮管にキャリアガスを流しつつ吸着
剤の温度を急速に上昇させる。これにより、吸着されて
いた被測定成分が短時間の間に離脱し、高濃度でにおい
センサに導入される。
[0003] When an odor component in a sample gas having a relatively low concentration is measured by such an odor measurement device using an odor sensor, a thermal desorption method (thermal desorption) is used to increase the concentration of the component to be measured. ) Is often performed. In the thermal desorption method, first, a sample gas is passed through a concentrating tube filled with an adsorbent that mainly adsorbs the component to be measured, and the component to be measured contained in the sample gas is adsorbed by the adsorbent. Then, after the component to be measured is sufficiently adsorbed, the temperature of the adsorbent is rapidly raised while flowing a carrier gas through the concentrating tube. Thereby, the adsorbed component to be measured is released in a short time, and is introduced into the odor sensor at a high concentration.

【0004】[0004]

【発明が解決しようとする課題】ところで、酸化スズ等
の酸化物半導体を感応膜に利用したにおいセンサでは、
酸化物半導体に吸着した酸素と還元性ガスとが酸化還元
反応を行なう際に生じる該酸化物半導体の導電性の変化
を検出している。このため、試料成分を搬送するキャリ
アガスは酸素を含んだガス(例えば空気)でなければな
らない。すなわち、上記の如く濃縮管を用いたにおい測
定装置では、濃縮管内の吸着剤が高温に加熱された状態
で、酸素を含むガスが該濃縮管内を流通する。従って、
吸着剤としては、酸素存在下で高温に加熱されても性能
が劣化しないものを使用しなければならない。
By the way, in an odor sensor using an oxide semiconductor such as tin oxide for a sensitive film,
The change in conductivity of the oxide semiconductor which occurs when the oxygen and the reducing gas adsorbed on the oxide semiconductor perform an oxidation-reduction reaction is detected. Therefore, the carrier gas for transporting the sample components must be a gas containing oxygen (for example, air). That is, in the odor measuring device using the concentration tube as described above, the gas containing oxygen flows through the concentration tube while the adsorbent in the concentration tube is heated to a high temperature. Therefore,
As the adsorbent, one that does not deteriorate in performance even when heated to a high temperature in the presence of oxygen must be used.

【0005】一般に、吸着剤はその種類によって対象成
分が相違するから、上記理由により使用可能な吸着剤の
種類が限定されると、対象成分も限定されてしまう。具
体的には、例えば通常のカーボン系吸着剤は酸素存在下
で加熱されると、吸着剤自体が酸化されて性能が大きく
劣化する。このため、上述のようなにおい測定装置の濃
縮管には使用することはできない。
[0005] Generally, the target component of the adsorbent differs depending on the type thereof. Therefore, if the type of adsorbent that can be used is limited for the above-mentioned reason, the target component is also limited. Specifically, for example, when a normal carbon-based adsorbent is heated in the presence of oxygen, the adsorbent itself is oxidized and its performance is greatly deteriorated. Therefore, it cannot be used for the concentration tube of the odor measuring device as described above.

【0006】本発明は上記課題を解決するために成され
たものであり、その主たる目的は、酸化物半導体等、に
おい成分の検出に酸素を必要とするにおいセンサと加熱
脱着法による濃縮装置を組み合わせた場合でも、濃縮の
ための吸着剤の選択が限定されず、幅広い試料成分を対
象とした測定が行なえるにおい測定装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The main objects of the present invention are to provide an odor sensor which requires oxygen to detect odor components such as an oxide semiconductor and a concentration device by a heat desorption method. Even in the case of combination, it is an object of the present invention to provide an odor measuring device capable of performing measurement on a wide range of sample components without limiting the selection of an adsorbent for concentration.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明のにおい測定装置は、 a)不活性なガスを供給するガス供給手段と、 b)試料成分を吸着するとともに加熱により該試料成分を
離脱する吸着剤を備えた捕集手段と、 c)試料成分を含む試料ガスを該捕集手段に導入した後に
外部に排出する流路と、前記ガス供給手段より供給され
る不活性なガスを該捕集手段に導入する流路とを選択し
て切り替える流路切替手段と、 d)前記捕集手段を通過した不活性なガスに酸素又は酸素
を含むガスを混入する混入手段と、 e)該混入手段にて酸素又は酸素を含むガスが混入された
不活性なガスに含まれる試料成分を検出するにおい検出
手段と、 を備え、前記捕集手段に試料ガスを流通させて該捕集手
段に試料成分を吸着させ、その後に前記流路切替手段を
切り替えて該捕集手段に吸着されている試料成分を不活
性なガス中に離脱させて、酸素又は酸素を含むガスを混
入した後に前記におい検出手段に導入する、ことを特徴
としている。
Means for Solving the Problems To solve the above problems, the odor measuring apparatus of the present invention comprises: a) gas supply means for supplying an inert gas; and b) adsorption and heating of sample components. A) a collecting means provided with an adsorbent for releasing the sample component, c) a flow path for introducing a sample gas containing the sample component into the collecting means and then discharging the gas to the outside, and a gas supply means for supplying the sample gas. Flow path switching means for selecting and switching a flow path for introducing an inert gas into the collection means; andd) mixing oxygen or a gas containing oxygen into the inert gas passing through the collection means. Means, and e) odor detecting means for detecting a sample component contained in an inert gas in which oxygen or a gas containing oxygen is mixed in the mixing means, and allowing the sample gas to flow through the collecting means. To adsorb the sample components to the collecting means, By switching the path switching means to desorb the sample component adsorbed by the collection means into an inert gas, introducing oxygen or a gas containing oxygen into the odor detection means, and then introducing the mixture into the odor detection means. I have.

【0008】[0008]

【発明の実施の形態】前記不活性なガスは、特に酸素を
避ける必要のあるプロセスで不活性なガスであって且つ
におい検出手段等を腐食又は損傷する恐れのないガスで
あれば適宜のガスを用いることができ、例えば窒素ガ
ス、ヘリウムガス等の希ガス、又はこれらの混合ガスを
利用できる。
DETAILED DESCRIPTION OF THE INVENTION The above-mentioned inert gas is an appropriate gas as long as it is an inert gas particularly in a process in which it is necessary to avoid oxygen and does not corrode or damage the odor detecting means and the like. For example, a rare gas such as a nitrogen gas or a helium gas, or a mixed gas thereof can be used.

【0009】本発明に係るにおい測定装置では、まず、
捕集手段に試料ガスが流通するように流路切替手段を切
り替える。捕集手段では、試料ガスに含まれる試料成分
が吸着剤に吸着される。充分に試料成分が吸着された後
に、流路切替手段を切り替えて捕集手段に窒素ガス(又
は他の不活性なガス)を流す。このとき、捕集手段の吸
着剤を加熱することにより、該吸着剤に吸着されていた
試料成分を離脱させて窒素ガス中に放出させる。混入手
段は、この試料成分を含む窒素ガスに酸素ガス又は酸素
を含むガスを混入し、該混入ガスをにおい検出手段に送
出する。これにより、試料成分は、酸素ガスを含む窒素
ガスを主成分としたキャリアガスに乗ってにおい検出手
段に到達する。におい検出手段が、酸化物半導体等を用
いた、試料成分の検出の過程で酸素を必要とするもので
あっても、キャリアガスには酸素が含まれているので試
料成分を検出することができる。一方、捕集手段には酸
素ガスが流通しないので、吸着剤の加熱時にも吸着剤が
酸化する恐れはない。
In the odor measuring device according to the present invention, first,
The flow path switching means is switched so that the sample gas flows through the collecting means. In the collecting means, the sample components contained in the sample gas are adsorbed on the adsorbent. After the sample components have been sufficiently adsorbed, the flow path switching means is switched to flow nitrogen gas (or another inert gas) through the collection means. At this time, by heating the adsorbent of the collecting means, the sample component adsorbed by the adsorbent is released and released into nitrogen gas. The mixing means mixes the oxygen gas or the gas containing oxygen with the nitrogen gas containing the sample component, and sends the mixed gas to the odor detecting means. Thus, the sample component reaches the odor detection means on the carrier gas mainly composed of the nitrogen gas containing the oxygen gas. Even if the odor detection means requires oxygen in the process of detecting a sample component using an oxide semiconductor or the like, the sample component can be detected because the carrier gas contains oxygen. . On the other hand, since oxygen gas does not flow through the collecting means, there is no possibility that the adsorbent is oxidized even when the adsorbent is heated.

【0010】また、本発明に係るにおい測定装置におい
て、におい検出手段として、検出に酸素を必要とするセ
ンサと、酸素を避けることが好ましい導電性高分子等を
用いたセンサとの両方を併用する場合には、以下のよう
な構成とすることができる。すなわち、におい検出手段
を、検出に酸素を必要としないセンサを備えた第1検出
部と、検出に酸素を必要とするセンサを備えた第2検出
部とに分け、前記捕集手段を通過した不活性なガスを第
1検出部に導入し、前記混入手段により該第1検出部か
ら流出したガスに酸素又は酸素を含むガスを混入した後
に第2検出部に導入する構成とする。
[0010] In the odor measuring device according to the present invention, as the odor detecting means, both a sensor that requires oxygen for detection and a sensor that uses a conductive polymer or the like that preferably avoids oxygen are used in combination. In such a case, the following configuration can be adopted. That is, the odor detection means is divided into a first detection section having a sensor that does not require oxygen for detection and a second detection section having a sensor that requires oxygen for detection, and has passed through the collection means. An inert gas is introduced into the first detection unit, and oxygen or a gas containing oxygen is mixed into the gas flowing out of the first detection unit by the mixing unit, and then is introduced into the second detection unit.

【0011】この構成では、第1検出部には窒素ガスの
みをキャリアガスとして試料成分が導入され、第2検出
部には酸素ガスを含み窒素ガスを主成分としたキャリア
ガスにより試料成分が導入される。従って、第1検出部
には酸素ガスが流通しないので、導電性高分子を利用し
たセンサ等に対しても酸化による劣化を防止することが
できる。一方、第2検出部には酸素ガスが流通するの
で、酸化物半導体を利用したにおいセンサ等を用いて試
料成分の検出が行なえる。
In this configuration, the sample component is introduced into the first detection unit using only nitrogen gas as a carrier gas, and the sample component is introduced into the second detection unit using a carrier gas containing oxygen gas and containing nitrogen gas as a main component. Is done. Accordingly, since oxygen gas does not flow through the first detection unit, deterioration due to oxidation can be prevented even for a sensor or the like using a conductive polymer. On the other hand, since oxygen gas flows through the second detection unit, the detection of sample components can be performed using an odor sensor or the like using an oxide semiconductor.

【0012】[0012]

【実施例】以下、本発明に係るにおい測定装置の一実施
例を図を参照して説明する。図1は、本実施例のにおい
測定装置のガス流路を中心とする構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the odor measuring device according to the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram centering on the gas flow path of the odor measuring device of the present embodiment.

【0013】純粋な窒素ガスを充填した窒素ガス容器1
0のガス出口に設けられた定圧バルブ11の出口側の流
路は、それぞれマスフローコントローラ等の流量制御部
13、16及び不純物を除去するためのモレキュラシー
ブフィルタ14、17を備えた二本の第1及び第2なる
窒素ガス流路12、15に分岐される。除塵用のPTF
Eメンブレンフィルタ19を介して試料ガス供給口18
に接続された試料ガス流路と第1窒素ガス流路12と
は、三方バルブ20により選択的に六方バルブ(6ポー
ト2ポジションバルブ)21のポートaに接続される。
また、第2窒素ガス流路15は六方バルブ21のポート
dに接続されている。六方バルブ21のポートcとポー
トfとの間には、加熱用のヒータ23が付設された捕集
管22が接続されている。この捕集管22には、測定対
象の試料成分に応じて、例えばカーボン系吸着剤やその
ほかの適宜の吸着剤が充填されている。
A nitrogen gas container 1 filled with pure nitrogen gas
The flow path on the outlet side of the constant-pressure valve 11 provided at the gas outlet of the first gas outlet includes flow control units 13 and 16 such as a mass flow controller and two molecular sieve filters 14 and 17 for removing impurities. And a second nitrogen gas flow path 12, 15. PTF for dust removal
Sample gas supply port 18 through E membrane filter 19
The sample gas flow path and the first nitrogen gas flow path 12 are selectively connected to a port a of a six-way valve (6-port 2-position valve) 21 by a three-way valve 20.
The second nitrogen gas flow path 15 is connected to the port d of the six-way valve 21. A collection tube 22 provided with a heater 23 for heating is connected between the port c and the port f of the six-way valve 21. The collection tube 22 is filled with, for example, a carbon-based adsorbent or another appropriate adsorbent according to the sample component to be measured.

【0014】六方バルブ21のポートbは、三方バルブ
24により、ポンプ25と流量計26とを通過する流路
又は通過しない流路に選択的に接続され、いずれも排出
口27に達している。六方バルブ21のポートeは、複
数のにおいセンサ29aを備える第1フローセル28a
に接続され、その下流側は複数のにおいセンサ29bを
備える第2フローセル28bに接続され、更にその下流
側は排出口31に連なっている。においセンサ29a
は、種々の試料成分に対してそれぞれ検出感度の相違す
る特性を有する導電性高分子を感応膜に利用したにおい
センサである。一方、においセンサ29bは、種々の試
料成分に対してそれぞれ検出感度の相違する特性を有す
る酸化物半導体を感応膜に利用したにおいセンサであ
る。複数のにおいセンサ29a、29bの検出信号は、
におい成分の識別、分類等の処理を行なう信号処理部3
0に入力される。
The port b of the six-way valve 21 is selectively connected to a flow path that passes through the pump 25 and the flow meter 26 or a flow path that does not pass through the three-way valve 24, and both reach the discharge port 27. The port e of the hexagonal valve 21 is connected to a first flow cell 28a having a plurality of odor sensors 29a.
The downstream side thereof is connected to a second flow cell 28b having a plurality of odor sensors 29b, and the downstream side thereof is connected to the discharge port 31. Odor sensor 29a
Is an odor sensor using a conductive polymer having characteristics different in detection sensitivity from various sample components for a sensitive film. On the other hand, the odor sensor 29b is an odor sensor that uses an oxide semiconductor having characteristics of different detection sensitivities for various sample components as a sensitive film. The detection signals of the plurality of odor sensors 29a and 29b are
Signal processing unit 3 for performing processing such as identification and classification of odor components
Input to 0.

【0015】ポンプ33により空気供給口32から吸引
された空気はタンク34に圧縮して貯蔵され、第3流量
制御部35と不純物を除去するための活性炭フィルタ3
6とを介して、第1フローセル28aから第2フローセ
ル28bへ連なる流路に接続されている。また、六方バ
ルブ21、第1、第2フローセル28a、28b全体は
恒温槽37内に設置されており、恒温槽37は温度調整
部38により所定温度に制御される。
The air sucked from the air supply port 32 by the pump 33 is compressed and stored in a tank 34, and a third flow control unit 35 and an activated carbon filter 3 for removing impurities are used.
6 and is connected to a flow path connected from the first flow cell 28a to the second flow cell 28b. The six-way valve 21 and the entire first and second flow cells 28a and 28b are installed in a thermostat 37, and the thermostat 37 is controlled to a predetermined temperature by a temperature regulator 38.

【0016】制御部40には操作部39が付設されてお
り、所定のプログラムに従って後述のように、三方バル
ブ20、24、六方バルブ21、ポンプ25、33、ヒ
ータ23、温度調整部38等を制御している。なお、各
流路の配管材料としては試料成分の吸着が少ないPTF
Eチューブを利用することが望ましいが、窒素ガス中に
極力、酸素が混じることを防ぐためには、窒素ガス容器
10の出口から三方バルブ20までの第1窒素ガス流路
12と六方バルブ21のポートdまでの第2窒素ガス流
路15とにステンレス等の金属管を、また六方バルブ2
1のポートcから捕集管22までの流路に不活性処理さ
れたフェーズドシリカで内面を被覆されたステンレス管
等を使用することが更に望ましい。
The control unit 40 is provided with an operation unit 39, which controls the three-way valves 20, 24, the six-way valves 21, the pumps 25, 33, the heater 23, the temperature adjustment unit 38, and the like according to a predetermined program, as described later. Controlling. In addition, as a piping material of each flow path, PTF with little adsorption of sample components is used.
It is desirable to use an E tube, but in order to prevent oxygen from being mixed in the nitrogen gas as much as possible, the first nitrogen gas flow path 12 from the outlet of the nitrogen gas container 10 to the three-way valve 20 and the port of the six-way valve 21 metal pipe such as stainless steel in the second nitrogen gas flow path 15 up to d.
It is more desirable to use a stainless steel pipe or the like whose inner surface is coated with a phased silica that has been inertly treated in the flow path from the port c to the collection pipe 22.

【0017】次に、上記におい測定装置の動作を詳述す
る。 (i)試料成分の捕集 まず、制御部40は、試料ガス供給口18と六方バルブ
21のポートaとが接続されるように三方バルブ20を
切り替えるとともに、六方バルブ21のポートbがポン
プ25に接続されるように三方バルブ24を切り替え
る。また、図1に破線で示す接続状態に六方バルブ21
を切り替え、ポンプ25を作動させる。すると、ポンプ
25の吸引力により、試料ガス供給口18から吸引され
た試料ガスはメンブレンフィルタ19にて塵芥等の比較
的大きな固形浮遊物が除去され、三方バルブ20及び六
方バルブ21を介して捕集管22に導入される(図1中
の左から右方向)。更に、六方バルブ21、三方バルブ
24、ポンプ25、流量計26を通って排出口27から
排出される。制御部40は、流量計26による検出値が
所定の値となるようにポンプ25の吸引力を制御する。
Next, the operation of the odor measuring device will be described in detail. (I) Collection of Sample Components First, the control unit 40 switches the three-way valve 20 so that the sample gas supply port 18 and the port a of the six-way valve 21 are connected, and the port b of the six-way valve 21 The three-way valve 24 is switched so as to be connected to. The connection state indicated by the broken line in FIG.
And the pump 25 is operated. Then, by the suction force of the pump 25, the sample gas sucked from the sample gas supply port 18 is subjected to removal of relatively large suspended solids such as dust by the membrane filter 19, and is captured via the three-way valve 20 and the six-way valve 21. It is introduced into the collecting pipe 22 (from left to right in FIG. 1). Further, the gas is discharged from a discharge port 27 through a six-way valve 21, a three-way valve 24, a pump 25, and a flow meter 26. The control unit 40 controls the suction force of the pump 25 so that the value detected by the flow meter 26 becomes a predetermined value.

【0018】試料ガスは、空気に測定対象のにおい成分
を含むものであって、このにおい成分は複数の試料成分
が混合されたものである。上記のように試料ガスが捕集
管22を通過するときヒータ23による加熱は行なわれ
ず、試料ガスに含まれる各試料成分は吸着剤に吸着され
る。
The sample gas contains odor components to be measured in air, and the odor components are a mixture of a plurality of sample components. When the sample gas passes through the collection tube 22 as described above, heating by the heater 23 is not performed, and each sample component contained in the sample gas is adsorbed by the adsorbent.

【0019】一方、窒素ガス容器10のガス出口のガス
圧は高いので、第2窒素ガス流路15を通して供給され
る窒素ガスは六方バルブ21を介して第1、第2フロー
セル28a、28bに流通し、排出口31から外部に排
出される。これにより、においセンサ29a、29bは
常時窒素ガス雰囲気中に保持される。なお、このときフ
ローセル28b側には、窒素ガスに後述のようにタンク
34から送出した空気を混入して流すようにしてもよ
い。
On the other hand, since the gas pressure at the gas outlet of the nitrogen gas container 10 is high, the nitrogen gas supplied through the second nitrogen gas flow path 15 flows through the six-way valve 21 to the first and second flow cells 28a and 28b. Then, it is discharged from the discharge port 31 to the outside. Thereby, the odor sensors 29a and 29b are always kept in the nitrogen gas atmosphere. At this time, the air sent from the tank 34 may be mixed into the nitrogen gas and flow into the flow cell 28b side as described later.

【0020】(ii)捕集管22内のガスの置換 所定時間、捕集管22に試料ガスを流通させた後、三方
バルブ20を切り替えて第1窒素ガス流路12を六方バ
ルブ21のポートaに接続するとともに、三方バルブ2
4を切り替えて六方バルブ21のポートbを直接排出口
27に接続する。すると、試料ガスに代わって、窒素ガ
ス容器10より供給された窒素ガスが、第1窒素ガス流
路12−三方バルブ20−六方バルブ21−捕集管22
−六方バルブ21−三方バルブ24を通り、排出口27
から排出される。これにより、捕集管22を含む上記流
路内部に残っている試料ガスは、窒素ガスにより外部へ
押し出される。このとき、捕集管22はほぼ常温に維持
されるので、先に吸着剤に吸着された試料成分はそのま
ま残る。また、窒素ガスは極めて乾燥しているので、先
の試料ガス導入時に吸着剤に吸着された水分もその大部
分が窒素ガスにより外部に運び去られ、これにより一定
程度までの除湿も達成される。
(Ii) Replacement of Gas in Collection Tube 22 After the sample gas has been circulated through the collection tube 22 for a predetermined time, the three-way valve 20 is switched to connect the first nitrogen gas flow path 12 to the port of the six-way valve 21. a and a three-way valve 2
4 is switched to connect the port b of the six-way valve 21 directly to the discharge port 27. Then, instead of the sample gas, the nitrogen gas supplied from the nitrogen gas container 10 is supplied to the first nitrogen gas channel 12 -the three-way valve 20 -the six-way valve 21 -the collection pipe 22.
Through the six-way valve 21-the three-way valve 24 and the outlet 27
Is discharged from As a result, the sample gas remaining inside the flow path including the collection tube 22 is pushed out to the outside by the nitrogen gas. At this time, since the collection tube 22 is maintained at substantially normal temperature, the sample component previously adsorbed by the adsorbent remains as it is. In addition, since nitrogen gas is extremely dry, most of the water adsorbed by the adsorbent during the introduction of the sample gas is carried away to the outside by the nitrogen gas, thereby achieving a certain degree of dehumidification. .

【0021】(iii)においセンサへの試料成分の導入 所定時間、捕集管22に窒素ガスを流通させた後、六方
バルブ21を図1に実線で示す接続状態に切り替える。
すると、第2窒素ガス流路15−六方バルブ21−捕集
管22−六方バルブ21−第1フローセル28a−第2
フローセル28b−排出口31という流路が形成され
る。この状態でヒータ23に通電し、捕集管22を急速
に加熱する。これにより、捕集管22内の吸着剤に吸着
していた試料成分は吸着剤から離脱し、それ以前とは逆
方向(図1中で右から左方向)に流通する窒素ガスに乗
って第1フローセル28aまで運ばれる。ここで、捕集
管22の加熱を開始した後、吸着剤から試料成分が殆ど
離脱し終わるまでの期間に捕集管22を通過する窒素ガ
スの体積が、上記(i)において捕集管22を通過する
試料ガスの体積よりも小さくなるように各部を設定する
ことにより、試料成分が濃縮されたガスをフローセル2
8aに導入することができる。
(Iii) Introduction of Sample Components into Odor Sensor After nitrogen gas is allowed to flow through the collection tube 22 for a predetermined time, the six-way valve 21 is switched to the connection state shown by the solid line in FIG.
Then, the second nitrogen gas flow path 15-the hexagonal valve 21-the collection pipe 22-the hexagonal valve 21-the first flow cell 28a-the second
A flow path from the flow cell 28b to the outlet 31 is formed. In this state, the heater 23 is energized to rapidly heat the collection tube 22. As a result, the sample component adsorbed on the adsorbent in the collection tube 22 separates from the adsorbent, and rides on the nitrogen gas flowing in the opposite direction (from right to left in FIG. 1) to that before the sample component. It is carried to one flow cell 28a. Here, the volume of the nitrogen gas passing through the collecting tube 22 during the period from when the heating of the collecting tube 22 is started to when the sample component is almost completely separated from the adsorbent is reduced in the above (i). By setting each part so as to be smaller than the volume of the sample gas passing through the sample gas, the gas in which the sample component is concentrated
8a.

【0022】上記の如く捕集管22の温度が変化し、こ
れにより流路抵抗が変化したときにフローセル28aに
流れる窒素ガスの流量が変動すると、においセンサ29
aにおいて検出誤差が生じる恐れがある。流量制御部1
6に例えば機械制御式の二次圧変動型マスフローコント
ローラを使用すると、出口側つまり上記流路の流路抵抗
が変動しても通過する窒素ガスの流量を一定に保つこと
ができる。このマスフローコントローラが正常に動作す
るためには、その入口側圧力と出口側圧力との差圧が一
定以上確保される必要がある。そこで、この差圧が確実
に得られるように、定圧バルブ11の設定圧力、管路の
内径、流量制御部35を介して混入する空気の流量等を
定める。これにより、窒素ガスの流量は正確に制御さ
れ、また空気の混入箇所から第1フローセル28aの方
に混合ガスが逆流することもない。
If the flow rate of the nitrogen gas flowing through the flow cell 28a fluctuates when the temperature of the collection tube 22 changes as described above and the flow path resistance changes, the odor sensor 29
There is a possibility that a detection error may occur in a. Flow control unit 1
For example, if a secondary pressure fluctuation type mass flow controller of a mechanical control type is used for the flow path 6, the flow rate of the nitrogen gas passing therethrough can be kept constant even if the flow path resistance of the outlet side, that is, the flow path fluctuates. In order for this mass flow controller to operate normally, a differential pressure between the inlet side pressure and the outlet side pressure needs to be maintained at a certain level or more. Therefore, the set pressure of the constant pressure valve 11, the inner diameter of the pipe, the flow rate of the air mixed through the flow control unit 35, and the like are determined so that the differential pressure can be reliably obtained. Thus, the flow rate of the nitrogen gas is accurately controlled, and the mixed gas does not flow back to the first flow cell 28a from the location where the air is mixed.

【0023】このようにして試料成分を含む窒素ガスが
第1フローセル28aを通ると、においセンサ29aの
導電性高分子から成る感応膜に試料成分が吸着され、に
おいセンサ29aの電極間の電気抵抗が変化する。この
抵抗変化による検出信号は順次、信号処理部30に送ら
れる。
As described above, when the nitrogen gas containing the sample component passes through the first flow cell 28a, the sample component is adsorbed on the sensitive film made of the conductive polymer of the odor sensor 29a, and the electric resistance between the electrodes of the odor sensor 29a is reduced. Changes. The detection signals due to the resistance change are sequentially sent to the signal processing unit 30.

【0024】ポンプ33により加圧されてタンク34に
貯蔵されている空気は、流量制御部35により適宜の流
量に調節され、活性炭フィルタ36により測定の外乱と
なる不所望の成分が除去された後に、第1フローセル2
8aを通過した試料成分を含む窒素ガスに混入される。
空気には酸素ガスが含まれているから、第2フローセル
28bには試料成分とともに酸素ガスが流入し、酸化物
半導体から成る感応膜に酸素ガス分子が吸着され、試料
成分の分子との間で酸化還元反応を生じる。これによ
り、においセンサ29bの導電性が変化し、その電極間
の電気抵抗が変化する。この抵抗変化による検出信号も
順次、信号処理部30に送られる。
The air pressurized by the pump 33 and stored in the tank 34 is adjusted to an appropriate flow rate by the flow rate control unit 35, and after an undesired component which becomes a disturbance of the measurement is removed by the activated carbon filter 36. , First flow cell 2
It is mixed with the nitrogen gas containing the sample component passed through 8a.
Since oxygen gas is contained in air, oxygen gas flows into the second flow cell 28b together with the sample component, and oxygen gas molecules are adsorbed on the sensitive film made of an oxide semiconductor. This causes a redox reaction. As a result, the conductivity of the odor sensor 29b changes, and the electrical resistance between the electrodes changes. The detection signal due to the resistance change is also sequentially sent to the signal processing unit 30.

【0025】複数のにおいセンサ29a、29bはそれ
ぞれ異なる特性を有しているので、例えば、或る試料成
分に対して或るにおいセンサからは大きな検出信号が得
られ、他のにおいセンサからは全く検出信号が得られな
いということがあり得る。そこで、信号処理部30は、
このようにして得られる複数の検出信号を用いて、例え
ば主成分分析、階層的クラスタ分析処理等の所定の多変
量解析処理を行ない、におい成分を総合的に識別又は分
類する。
Since the plurality of odor sensors 29a and 29b have different characteristics, for example, a large detection signal is obtained from a certain odor sensor with respect to a certain sample component and completely different from other odor sensors. It is possible that a detection signal cannot be obtained. Therefore, the signal processing unit 30
Using the plurality of detection signals thus obtained, a predetermined multivariate analysis process such as a principal component analysis process or a hierarchical cluster analysis process is performed to comprehensively identify or classify odor components.

【0026】上記試料成分の測定の期間中、六方バルブ
21、第1、第2フローセル28a、28bとこれらの
間を連結する流路は、温度調整部38により室温よりも
高い一定温度(例えば40℃)に維持される。これによ
り、周囲温度の変動によるにおいセンサ29a、29b
の受ける影響を軽減し、且つ、高沸点化合物が流路内壁
等に付着して検出感度の安定性が損なわれることを防止
することができる。
During the measurement of the sample components, the hexagonal valve 21, the first and second flow cells 28a and 28b, and the flow path connecting them are controlled by the temperature control unit 38 at a constant temperature higher than room temperature (for example, 40 ° C.). ° C). Thereby, the odor sensors 29a, 29b due to the fluctuation of the ambient temperature
And it is possible to prevent the high-boiling point compound from adhering to the inner wall of the flow path and the like, thereby deteriorating the stability of the detection sensitivity.

【0027】なお、上述のような測定に関する一連の処
理は、制御部40に予め設定したプログラムに従って自
動的に行なうことができるが、例えば、各バルブを切り
替える時間やヒータ23の加熱温度等のパラメータは、
試料成分の種類に応じて適宜操作部39から設定できる
ようにしておくとよい。また、自動的な測定のみなら
ず、操作部39より測定者が逐次指示を与えることによ
り、手動で測定の各処理を進める構成としてもよい。
A series of processes relating to the above-described measurement can be automatically performed in accordance with a program preset in the control unit 40. For example, parameters such as the time for switching each valve and the heating temperature of the heater 23 can be used. Is
It is preferable that the setting can be appropriately made from the operation unit 39 according to the type of the sample component. In addition to the automatic measurement, a configuration may be adopted in which each measurement process is manually advanced by the measurer giving successive instructions from the operation unit 39.

【0028】また、上記実施例では、第2フローセル2
8bの手前の流路で空気を混入しているが、空気に換え
て純粋な酸素ガスを混入する構成としてもよい。純粋な
酸素ガスを用いれば、空気と比較して混合する体積を遙
かに減らすことができるので、試料成分が希釈される割
合が小さく、においセンサ29bによる検出の感度の向
上に有利である。
In the above embodiment, the second flow cell 2
Although air is mixed in the flow path before 8b, pure oxygen gas may be mixed instead of air. If pure oxygen gas is used, the volume to be mixed can be much reduced as compared with air, so that the rate of dilution of the sample component is small, which is advantageous in improving the sensitivity of detection by the odor sensor 29b.

【0029】また、第1又は第2フローセル28a、2
8bには、水晶振動子に合成二分子膜を被覆したにおい
センサ等、他の構造を有するにおいセンサを用いること
もできる。検出に酸素を必要としないにおいセンサは、
より上流側に位置する第1フローセル28a内に設置す
るほうが検出感度の点で有利である。その理由は、まず
第一に、第2フローセル28bにおいては、混入された
空気により流通ガスが希釈され、試料成分の濃度が低く
なるからである。更に第二に、第1フローセル28aは
流路上で捕集管22により近い位置に在るため、試料成
分を含むガスが流れてくる間の試料成分の流路に沿った
方向の(つまりにおいセンサに到達したときの時間的
な)広がりが少なく、試料成分の濃度が相対的に高いか
らである。
Further, the first or second flow cell 28a,
As the 8b, an odor sensor having another structure, such as an odor sensor in which a quartz oscillator is coated with a synthetic bilayer film, can be used. Odor sensors that do not require oxygen for detection
Installation in the first flow cell 28a located further upstream is more advantageous in terms of detection sensitivity. The reason is that, first of all, in the second flow cell 28b, the flowing gas is diluted by the mixed air, so that the concentration of the sample component becomes low. Secondly, since the first flow cell 28a is located closer to the collection tube 22 on the flow path, the first flow cell 28a is directed along the flow path of the sample component while the gas containing the sample component flows (that is, the odor sensor). This is because the (time-wise) spread at the time of reaching is small and the concentration of the sample component is relatively high.

【0030】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変形や修正を行なえることは明らか
である。
It should be noted that the above embodiment is merely an example, and it is apparent that modifications and modifications can be made as appropriate within the spirit of the present invention.

【0031】[0031]

【発明の効果】以上説明したように、本発明に係るにお
い測定装置では、捕集管の内部が不活性なガスで置換さ
れた後に試料成分離脱のために加熱が行なわれ、捕集管
と酸化物半導体等の検出に酸素を必要とするにおいセン
サとを連結する流路の途中で酸素ガスが混入される。従
って、捕集管内の吸着剤が高温であるときに酸素ガスが
吸着剤に接触しないため、酸化により性能が劣化する恐
れがあるような吸着剤も利用することができる。これに
より、吸着剤の選択の幅が広がり、測定可能な試料成分
の種類も多くなる。
As described above, in the odor measuring device according to the present invention, after the inside of the collection tube is replaced with an inert gas, heating is performed for sample separation and removal, and the collection tube and the sample are separated. Oxygen gas is mixed in the middle of a flow path connecting an odor sensor that requires oxygen to detect an oxide semiconductor or the like. Accordingly, since the oxygen gas does not come into contact with the adsorbent when the adsorbent in the collection tube is at a high temperature, an adsorbent whose performance may be deteriorated by oxidation can be used. As a result, the range of selection of the adsorbent is expanded, and the types of sample components that can be measured are increased.

【0032】また、酸素又は酸素を含むガスの混入箇所
よりも上流側に導電性高分子等を用いたにおいセンサを
配置し、下流側に酸化物半導体等を用いたにおいセンサ
を配置した構成によれば、酸素を避けることが好ましい
センサと検出に酸素を必要とするセンサという種類の異
なるセンサを併用することができる。このため、測定可
能な試料成分の種類が増加する。また、その上流側のに
おいセンサでは酸素又は酸素を含むガスにより希釈され
る前の試料成分を測定しているので、試料成分の濃度が
高く、高感度の測定が可能である。また、その上流側の
においセンサでは捕集管により近い流路上で試料成分を
測定しているので、試料成分の時間的な広がりが少な
く、高感度の測定に有利である。
In addition, an odor sensor using a conductive polymer or the like is disposed upstream of a portion where oxygen or a gas containing oxygen is mixed, and an odor sensor using an oxide semiconductor or the like is disposed downstream. According to this, it is possible to use sensors of different types, that is, a sensor that preferably avoids oxygen and a sensor that requires oxygen for detection. Therefore, the types of sample components that can be measured increase. Further, since the odor sensor on the upstream side measures the sample component before being diluted with oxygen or a gas containing oxygen, the concentration of the sample component is high, and high-sensitivity measurement is possible. In addition, since the odor sensor on the upstream side measures the sample components on the flow path closer to the collection tube, the spread of the sample components over time is small, which is advantageous for high-sensitivity measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例であるにおい測定装置の構
成図。
FIG. 1 is a configuration diagram of an odor measuring device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…窒素ガス容器 11…定圧バルブ 12、15…窒素ガス流路 13、16、35
…流量制御部 18…試料ガス供給口 20、24…三方
バルブ 21…六方バルブ 22…捕集管 23…ヒータ 25、33…ポン
プ 26…流量計 27、31…排出
口 28a、28b…フローセル 29a…においセンサ(導電性高分子) 29b…においセンサ(酸化物半導体) 30…信号処理部 32…空気供給口 34…タンク 37…恒温槽 38…温度調整部 39…操作部 40…制御部
DESCRIPTION OF SYMBOLS 10 ... Nitrogen gas container 11 ... Constant pressure valve 12,15 ... Nitrogen gas flow path 13,16,35
... Flow control unit 18 ... Sample gas supply port 20, 24 ... Three-way valve 21 ... 6-way valve 22 ... Collection tube 23 ... Heater 25, 33 ... Pump 26 ... Flow meter 27, 31 ... Outlet 28a, 28b ... Flow cell 29a ... Odor sensor (conductive polymer) 29b ... Odor sensor (oxide semiconductor) 30 ... signal processing unit 32 ... air supply port 34 ... tank 37 ... constant temperature bath 38 ... temperature adjustment unit 39 ... operation unit 40 ... control unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 a)不活性なガスを供給するガス供給手段
と、 b)試料成分を吸着するとともに加熱により該試料成分を
離脱する吸着剤を備えた捕集手段と、 c)試料成分を含む試料ガスを該捕集手段に導入した後に
外部に排出する流路と、前記ガス供給手段より供給され
る不活性なガスを該捕集手段に導入する流路とを選択し
て切り替える流路切替手段と、 d)前記捕集手段を通過した不活性なガスに酸素又は酸素
を含むガスを混入する混入手段と、 e)該混入手段にて酸素又は酸素を含むガスが混入された
不活性なガスに含まれる試料成分を検出するにおい検出
手段と、 を備え、前記捕集手段に試料ガスを流通させて該捕集手
段に試料成分を吸着させ、その後に前記流路切替手段を
切り替えて該捕集手段に吸着されている試料成分を不活
性なガス中に離脱させて、酸素又は酸素を含むガスを混
入した後に前記におい検出手段に導入する、ことを特徴
とするにおい測定装置。
1. a) gas supply means for supplying an inert gas; b) collection means provided with an adsorbent for adsorbing a sample component and releasing the sample component by heating; A flow path for selecting and switching between a flow path for discharging a sample gas containing the gas to the collection means and then discharging the sample gas to the outside and a flow path for introducing an inert gas supplied from the gas supply means to the collection means. Switching means; d) mixing means for mixing oxygen or a gas containing oxygen into the inert gas that has passed through the collecting means; ande) inert gas containing oxygen or a gas containing oxygen in the mixing means. An odor detecting means for detecting a sample component contained in the natural gas, and allowing the sample gas to flow through the collecting means to adsorb the sample component to the collecting means, and then switching the flow switching means. The sample components adsorbed by the collection means are placed in an inert gas. An odor measuring device, wherein the odor detecting device is separated and mixed with oxygen or a gas containing oxygen and then introduced into the odor detecting means.
JP29938297A 1997-10-15 1997-10-15 Odor measuring device Expired - Lifetime JP3777753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29938297A JP3777753B2 (en) 1997-10-15 1997-10-15 Odor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29938297A JP3777753B2 (en) 1997-10-15 1997-10-15 Odor measuring device

Publications (2)

Publication Number Publication Date
JPH11118744A true JPH11118744A (en) 1999-04-30
JP3777753B2 JP3777753B2 (en) 2006-05-24

Family

ID=17871843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29938297A Expired - Lifetime JP3777753B2 (en) 1997-10-15 1997-10-15 Odor measuring device

Country Status (1)

Country Link
JP (1) JP3777753B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350299A (en) * 2001-05-25 2002-12-04 Shimadzu Corp Odor measurement method and device
KR101206586B1 (en) * 2008-04-15 2012-11-29 현대중공업 주식회사 Improved maintenance method for ballast tanks gas detectors in double hull tankers
CN107688042A (en) * 2017-08-14 2018-02-13 中国水产科学研究院渔业机械仪器研究所 A kind of scallop attributional analysis device based on metal oxide semiconductor sensor
WO2020241768A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Gas detection system
CN112881551A (en) * 2021-01-14 2021-06-01 自然资源部第三海洋研究所 Device and method for simultaneously measuring methane and nitrous oxide in water body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350299A (en) * 2001-05-25 2002-12-04 Shimadzu Corp Odor measurement method and device
KR101206586B1 (en) * 2008-04-15 2012-11-29 현대중공업 주식회사 Improved maintenance method for ballast tanks gas detectors in double hull tankers
CN107688042A (en) * 2017-08-14 2018-02-13 中国水产科学研究院渔业机械仪器研究所 A kind of scallop attributional analysis device based on metal oxide semiconductor sensor
WO2020241768A1 (en) * 2019-05-29 2020-12-03 京セラ株式会社 Gas detection system
JPWO2020241768A1 (en) * 2019-05-29 2020-12-03
CN112881551A (en) * 2021-01-14 2021-06-01 自然资源部第三海洋研究所 Device and method for simultaneously measuring methane and nitrous oxide in water body

Also Published As

Publication number Publication date
JP3777753B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US6374662B1 (en) Devices and methods for measuring odor
JP3501109B2 (en) Odor measuring device
US6494077B2 (en) Odor identifying apparatus
JP3282586B2 (en) Odor measurement device
US7051573B2 (en) Gas sensor chamber and odor detection method
US6042634A (en) Moisture extractor system for gas sampling
US4063446A (en) Method of and apparatus for automatically detecting traces of organic solvent vapors in air
JP3809734B2 (en) Gas measuring device
US4399688A (en) Air pollution detection
JP3832073B2 (en) Gas measuring device
JP3777753B2 (en) Odor measuring device
CN114235941A (en) Direct detection device and method for non-methane total hydrocarbons in ambient air
JP4472893B2 (en) Odor measurement method
JP3367398B2 (en) Odor measurement device
JP3138009B2 (en) Method and apparatus for evaluating impurity adsorption amount
EP1099949B1 (en) Device for measuring gases with odors
JP2000002679A (en) Odor measuring apparatus
US20200132628A1 (en) Compact measuring appliance and method for detecting hydrocarbons
JP4042232B2 (en) Gas measuring device
JPH11125612A (en) Odor-measuring device
JP4165341B2 (en) Infrared gas analyzer
JPH11125614A (en) Odor-measuring device
JP3849265B2 (en) Odor measuring device
US20230045584A1 (en) Apparatus and method for detecting gas
JP3941653B2 (en) Odor measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

EXPY Cancellation because of completion of term