JP3830728B2 - Piezoelectric sound device - Google Patents

Piezoelectric sound device Download PDF

Info

Publication number
JP3830728B2
JP3830728B2 JP2000155605A JP2000155605A JP3830728B2 JP 3830728 B2 JP3830728 B2 JP 3830728B2 JP 2000155605 A JP2000155605 A JP 2000155605A JP 2000155605 A JP2000155605 A JP 2000155605A JP 3830728 B2 JP3830728 B2 JP 3830728B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric element
peripheral
acoustic device
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155605A
Other languages
Japanese (ja)
Other versions
JP2001339793A (en
Inventor
嘉幸 渡部
康之 猪又
茂雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2000155605A priority Critical patent/JP3830728B2/en
Publication of JP2001339793A publication Critical patent/JP2001339793A/en
Application granted granted Critical
Publication of JP3830728B2 publication Critical patent/JP3830728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、圧電振動子を用い、音を発する圧電音響装置に関し、特に音圧レベルが高い圧電スピーカと呼ばれるタイプのものであって、音圧レベル及び音質が向上し、ダイナミックタイプスピーカに匹敵する高い音質が得られる圧電音響装置に関する。
【0002】
【従来の技術】
従来における圧電音響装置は、円板状の圧電セラミクス板の両面に電極を施してなる圧電素子を金属円板からなる振動板に貼り付けた圧電振動子を使用する。前記圧電素子の電極間に駆動電圧を印加し、この駆動電圧方向と直交する方向の変位を径方向の伸縮として取り出し、かつその伸縮により振動板に撓みを起こすことで圧電振動子を振動させることにより、音響的に有効な振動を取り出す。
【0003】
一般的に発音体の音響インピーダンスZaは発音体の密度ρとその音の伝達速度v(音速)の積で表される。発音体の振動は波として空気などの媒体を介して我々の耳に到達する。
この際、空気の音響インピーダンスZairも上記の関係で表され、振動体からの振動エネルギの受理が行われる訳である。従って振動エネルギの伝達効率はZa=Zairの状態の時に最大となる。
【0004】
ところが、空気の音響インピーダンスZairは、およそ400(Kg/m2・s)と低い値で表される。それに対して圧電振動子のZaは、4.3×106(Kg/m2・s)と極めて高く、振動エネルギの伝達が非効率的になるのが理解できる。
一方、ダイナミック方式の発音体は振動板に樹脂や紙などを用いていることから、Zaは圧電発音体に比較して低く、エネルギの伝達効率が良くなる。
【0005】
【発明が解決しようとしている課題】
このような観点から考慮すると、圧電振動子の振動エネルギの伝達効率を向上させるためには、主として次のような手段が容易に考えられる。
・圧電振動子の密度を小さくする。
・圧電振動子の弾性係数を小さくして音速を下げる。
【0006】
しかしながら、圧電素子の主要部は焼成されたセラミクス材料でり、これを貼り付けた振動板は金属からなること等から、圧電振動子の密度を小さくしたり、圧電振動子の弾性係数を小さくするには自ずと限度があり。このため従来において、この点の大幅な改善はなされていなかったのが実状である。
【0007】
本発明は前記のような従来の圧電音響装置における課題に鑑み、圧電素子の出す振動エネルギを、その周囲にある部材を介して空気に効率よく伝達し、さらにこの空気を媒介として効率的に伝達することが出来るようにし、これにより圧電音響装置の音質の向上を図ることを目的とするものである。
【0008】
【課題を解決するための手段】
本発明では、前記の目的を達成するため、少なくとも一枚以上の圧電素子12を有し、この圧電素子12の長さあるいは径方向の振動を屈曲振動に変換する圧電振動子1を有する圧電音響装置において、圧電振動子1の圧電素子12からその周辺方向に接続されていく部材の密度が次第に小さくなっていくように圧電音響装置を構成した。
【0009】
より具体的に述べると、本発明による圧電音響装置は、振動板11に圧電素子12を貼り付けた圧電振動子1の周辺部が周辺部材3で支持されたものであって、前記圧電振動子1の周辺部が支持部材2を介して周辺部材3に支持されており、圧電素子12、振動板11、支持部材2及び周辺部材3を構成する材質の密度が、圧電素子12、振動板11、支持部材2及び周辺部材3の順で大きいことを特徴とするものである。
【0010】
より具体的な材料の組み合わせをあげれば、例えば圧電素子12の要部が圧電セラミクス、振動板11が金属板からなるとき、支持部材2は、樹脂、硬質ゴムまたはカーボンの何れかであり、周辺部材3が発泡樹脂または低密度カーボンからなる。
【0011】
圧電素子12は基本的に何らかの部材で支持されている。全ての物質が原則的に音響インピーダンスを持つと考えると、圧電素子12を支持する振動板11や支持部材2も同様に音響インピーダンスを持つ。さらにこの支持部材2を支持している周辺部材3も同様とすると、振動は圧電素子12、振動板11、支持部材2及び周辺部材3へと順次伝わっていく。
【0012】
この場合おいて、振動を変位として考えると、音響インピーダンスの特性上、低いインピーダンスから高いインピーダンスヘの振動エネルギの伝達効率は逆の場合よりも悪化する。従って、周辺部材3まで振動エネルギを伝達しようとする場合、振動エネルギの発生源である圧電素子12から次第に音響インピーダンスを低下させていくことが望ましい。こうすることで圧電素子12を含めて振動板11、支持部材2及び周辺部材3を効率的に振動することが出来る。また圧電素子12から周辺部材3に至る間の音響インピーダンスの低減に伴い、周辺部材3の音響インピーダンスがその周囲の空気に近くなるようにすると、周辺部材3が空気に効率的に振動を伝えてくれるようになる。
【0013】
音響インピーダンスは上述のように、物質の密度と音速の積で示される。音速cと密度ρの関係は次の数1で表され、音響インピーダンスZaは、数2の通りとなる。よって音響インピーダンスをさげるためには、圧電素子12に比べて、その周囲の支持部材2や周辺部材3の密度を小さくすればよいことになる。
【0014】
【数1】

Figure 0003830728
【0015】
【数2】
Figure 0003830728
【0016】
【発明の実施の形態】
次に、図面を参照しながら、本発明の実施の形態について、具体的且つ詳細に説明する。
図1は、本発明の一実施形態による圧電音響装置の基本的な構成部材を示し、図2は同圧電音響装置における圧電振動子の周辺部の支持構造を示す要部縦断側面図である。この圧電音響装置は、圧電振動子と支持部材2と周辺部材3とからなる。
【0017】
圧電振動子1は、円形フィルム状の圧電セラミクスの両面をメタライズして電極とした圧電素子12と、金属円板からなる振動板11とを有し、この振動板11に前記の圧電素子12の片面の電極を導通状態で貼り付けたものである。圧電素子12は、厚さ方向に分極されている。圧電セラミクスとしては、チタン酸ジルコン酸鉛等が使用される。
【0018】
この圧電素子12を振動板11の片主面に貼り付けたものがユニモルフ型圧電振動子であり、圧電素子12を振動板11の両主面に貼り付けたものがバイモルフ型圧電振動子である。図1と図2では、ユニモルフ型圧電振動子を使用しているが、バイモルフ型圧電振動子1を使用することもできる。
【0019】
支持部材2は、板状であって、且つリング状のものであり、例えば、プラスチック、カーボン等の成型品からなるものが好ましい。この支持部材2の内径は、圧電振動子1の振動板11の径より小さく、その外径は、後述する周辺部材3の内径より大きい。
周辺部材3は、リング状の部材であって、発泡樹脂や低密度カーボン等の成形体からなる。この周辺部材3の内周には、取付溝33が形成されている。
【0020】
このような構成部材を有する圧電音響装置は、まず支持部材2の内周部の上に圧電振動子1の振動板11の外周部を載せ、シリコーン接着剤等の弾性接着剤で接着する。さらに、このようにして圧電振動子1とこれを搭載した支持部材2を周辺部材3に挿入し、支持部材2の外周部を周辺部材3の内周の取付溝33に嵌め込む。或いはこの逆に、支持部材2を周辺部材3の中に挿入し、支持部材2の外周部を周辺部材3の内周の取付溝33に嵌め込んだ後、支持部材2の内周部に圧電振動子1の振動板11の外周部を接着してもよい。
【0021】
さらに周辺部材3は、適当な手段で緩衝作用のある音響箱等の中に取り付けられる。周辺部材3を支持する緩衝部材を図2において符号4で示した。
このような圧電音響装置においては、圧電素子12、振動板11、支持部材2及び周辺部材3の密度を、圧電素子12、振動板11、支持部材2及び周辺部材3の順で小さくする。すなわち、圧電素子12よりは振動板11の密度が、振動板11よりは支持部材2の密度が、支持部材2よりは周辺部材3の密度をそれぞれ小さくする。
これら圧電素子12、振動板11、支持部材2及び周辺部材3の具体的な材料の選択の例を表1〜表4に示す。
【0022】
【表1】
Figure 0003830728
【0023】
【表2】
Figure 0003830728
【0024】
【表3】
Figure 0003830728
【0025】
【表4】
Figure 0003830728
【0026】
これらの表から明らかな通り、圧電振動子1の圧電素子12の主要部となる圧電セラミクスの密度は、7.9×103kg/m3であり、圧電振動子1の振動板11の密度は、アルミニウムが約7.7×103kg/m3、ステンレスが約7.8×103kg/m3である。これに対し、その周辺部にある支持部材2の密度は、カーボンが4.3×103kg/m3、樹脂が1.1×103kg/m3、硬質ゴムが1.52×103kg/m3である。さらに、周辺部材3の密度は、発泡スチロールが0.8×103kg/m3、低密度カーボンが2.4×103kg/m3である。従って、支持部材2の材料として硬質ゴムを選択した場合、周辺部材3としては、低密度カーボンではなく、発泡スチロールを選択することになる。
【0027】
例えば、表1に示された材質の組み合わせにおいて、より具体的な圧電音響装置の例をあげる。
チタン酸ジルコン酸鉛からなる直径15mm、厚み0.05mmの円板状の圧電セラミクスの両面をメタライズして電極を施した圧電素子12を用意し、この圧電素子12を直径17mm、厚み0.02mmの円板状のアルミニウム板からなる振動板11に貼り付けて、圧電振動子1を構成する。
【0028】
この圧電振動子1の振動板11の外周部を内径16mm、外径19mm、厚み0.55mmの硬質ゴム製のリング状の支持部材2で支持し、この支持部材2の外周を厚み2mm外径100mmのリング状の発泡スチロールからなる周辺部材3に取り付けた。
【0029】
このように構成された圧電音響装置を、厚み20mm、500mm四方のバッフル板に取り付け、音源から10cmの場所にマイクを設置し、圧電素子12の両面の電極に1Vrmsの正弦波信号を印加した場合の音圧の周波数依存特性を測定した。これを実施例とし、図3において、実線でその測定結果を示した。
参考までに周辺部材に密度がおよそ6.9の亜鉛合金を用いて構成した圧電音響装置を比較例とし、同様にして測定した音圧の周波数依存特性を図3に破線で示した。
【0030】
前者の実施例では、後者の比較例に比べて明らかに周波数特性に改善の効果が見られる。これは、特に低域の振動が圧電振動子1から支持部材2を介して周辺部材3に伝わり、そこから空気へと振動が伝わったためである。
さらに、表2〜表4に示された材質の組み合わせにおいても、前記実施例と同様に音圧の周波数依存特性を測定したが、何れも比較例に比べて、周波数特性に大きな改善がみられた。
【0031】
【発明の効果】
前述した通り、本発明による圧電音響装置では、圧電素子12から振動板11、支持部材2を介して周辺部材3へと、密度の大きな部材で発生した振動を、密度が大きな部材から密度が小さな部材へ振動エネルギを次第に伝えて行けるため、圧電素子12から周辺部材3に至るすべての部材が一つの振動発音体として扱えるようになり、微少な圧電素子12で大きな振動発音体を駆動することが可能になる。これにより、ダイナミックタイプスピーカに匹敵する音質が得られる圧電音響装置を提供できることになる。
【図面の簡単な説明】
【図1】本発明の一実施形態による圧電音響装置の構成部材を示す半断面分解斜視図である。
【図2】同実施形態による圧電音響装置の圧電振動子の周辺部の支持構造を示す要部縦断側面図である。
【図3】本発明の実施例による圧電音響装置とそれと対比すべき比較例の周波数−音圧特性を示すグラフである。
【符号の説明】
1 圧電振動子
2 支持部材
3 周辺部材
11 振動板
12 圧電振動子[0001]
[Industrial application fields]
The present invention relates to a piezoelectric acoustic device that uses a piezoelectric vibrator and emits sound, and is particularly of a type called a piezoelectric speaker having a high sound pressure level, which is improved in sound pressure level and sound quality and comparable to a dynamic type speaker. The present invention relates to a piezoelectric acoustic device capable of obtaining high sound quality.
[0002]
[Prior art]
A conventional piezoelectric acoustic device uses a piezoelectric vibrator in which a piezoelectric element having electrodes on both sides of a disk-shaped piezoelectric ceramic plate is attached to a vibration plate made of a metal disk. A drive voltage is applied between the electrodes of the piezoelectric element, a displacement in a direction perpendicular to the drive voltage direction is taken out as radial expansion and contraction, and the diaphragm is vibrated by the expansion and contraction to vibrate the piezoelectric vibrator. To extract acoustically effective vibrations.
[0003]
In general, the acoustic impedance Za of a sounding body is represented by the product of the density ρ of the sounding body and the transmission speed v (sound speed) of the sound. The vibration of the sounding body reaches our ears as a wave through a medium such as air.
At this time, the acoustic impedance Zair of air is also expressed by the above relationship, and vibration energy from the vibrating body is received. Therefore, the transmission efficiency of vibration energy is maximized when Za = Zair.
[0004]
However, the acoustic impedance Zair of air is represented by a low value of about 400 (Kg / m 2 · s). On the other hand, the piezoelectric vibrator has an extremely high Za of 4.3 × 10 6 (Kg / m 2 · s), and it can be understood that the transmission of vibration energy becomes inefficient.
On the other hand, since the dynamic sounding body uses resin, paper, or the like for the diaphragm, Za is lower than that of the piezoelectric sounding body and energy transmission efficiency is improved.
[0005]
[Problems to be solved by the invention]
Considering from this point of view, in order to improve the transmission efficiency of vibration energy of the piezoelectric vibrator, the following means can be considered easily.
・ Reduce the density of the piezoelectric vibrator.
・ Reduce the acoustic velocity by reducing the elastic coefficient of the piezoelectric vibrator.
[0006]
However, the main part of the piezoelectric element is a sintered ceramic material, and the vibration plate to which the piezoelectric element is attached is made of metal, etc., so that the density of the piezoelectric vibrator is reduced or the elastic coefficient of the piezoelectric vibrator is reduced. Has its own limits. For this reason, the actual situation is that this point has not been greatly improved.
[0007]
In view of the problems in the conventional piezoelectric acoustic device as described above, the present invention efficiently transmits vibration energy generated by a piezoelectric element to air through a member around the piezoelectric element, and further efficiently transmits the air through the air. The purpose of this is to improve the sound quality of the piezoelectric acoustic device.
[0008]
[Means for Solving the Problems]
In the present invention, in order to achieve the above-described object, piezoelectric acoustics having at least one piezoelectric element 12 and having a piezoelectric vibrator 1 that converts vibration in the length or radial direction of the piezoelectric element 12 into bending vibration. In the apparatus, the piezoelectric acoustic device was configured so that the density of members connected in the peripheral direction from the piezoelectric element 12 of the piezoelectric vibrator 1 gradually decreased.
[0009]
More specifically, in the piezoelectric acoustic device according to the present invention, the peripheral portion of the piezoelectric vibrator 1 in which the piezoelectric element 12 is bonded to the diaphragm 11 is supported by the peripheral member 3, and the piezoelectric vibrator 1 is supported by the peripheral member 3 via the support member 2, and the density of the materials constituting the piezoelectric element 12, the vibration plate 11, the support member 2 and the peripheral member 3 is the piezoelectric element 12 and the vibration plate 11. The support member 2 and the peripheral member 3 are larger in this order.
[0010]
More specifically, for example, when the main part of the piezoelectric element 12 is made of piezoelectric ceramics and the vibration plate 11 is made of a metal plate, the support member 2 is either resin, hard rubber, or carbon, The member 3 is made of foamed resin or low density carbon.
[0011]
The piezoelectric element 12 is basically supported by some member. Assuming that all substances have an acoustic impedance in principle, the diaphragm 11 and the support member 2 that support the piezoelectric element 12 also have an acoustic impedance. Further, assuming that the peripheral member 3 supporting the support member 2 is the same, the vibration is sequentially transmitted to the piezoelectric element 12, the diaphragm 11, the support member 2 and the peripheral member 3.
[0012]
In this case, when vibration is considered as displacement, the transmission efficiency of vibration energy from low impedance to high impedance is worse than in the opposite case due to the characteristics of acoustic impedance. Accordingly, when vibration energy is to be transmitted to the peripheral member 3, it is desirable to gradually reduce the acoustic impedance from the piezoelectric element 12 that is the generation source of vibration energy. By doing so, the diaphragm 11, the support member 2, and the peripheral member 3 including the piezoelectric element 12 can be vibrated efficiently. Further, if the acoustic impedance of the peripheral member 3 is made closer to the surrounding air as the acoustic impedance from the piezoelectric element 12 to the peripheral member 3 is reduced, the peripheral member 3 efficiently transmits vibration to the air. I will give you.
[0013]
As described above, the acoustic impedance is represented by the product of the density of matter and the speed of sound. The relationship between the sound speed c and the density ρ is expressed by the following equation 1, and the acoustic impedance Za is expressed by the following equation 2. Therefore, in order to reduce the acoustic impedance, the density of the supporting member 2 and the peripheral member 3 around the piezoelectric element 12 may be reduced.
[0014]
[Expression 1]
Figure 0003830728
[0015]
[Expression 2]
Figure 0003830728
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described specifically and in detail with reference to the drawings.
FIG. 1 shows basic constituent members of a piezoelectric acoustic device according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional side view of a main part showing a supporting structure of a peripheral portion of a piezoelectric vibrator in the piezoelectric acoustic device. This piezoelectric acoustic device includes a piezoelectric vibrator, a support member 2 and a peripheral member 3.
[0017]
The piezoelectric vibrator 1 includes a piezoelectric element 12 that is formed by metallizing both surfaces of a circular film-shaped piezoelectric ceramic as an electrode, and a diaphragm 11 made of a metal disk. A single-sided electrode is attached in a conductive state. The piezoelectric element 12 is polarized in the thickness direction. As the piezoelectric ceramic, lead zirconate titanate or the like is used.
[0018]
A unimorph piezoelectric vibrator is obtained by attaching the piezoelectric element 12 to one main surface of the vibration plate 11, and a bimorph piezoelectric vibrator is provided by attaching the piezoelectric element 12 to both main surfaces of the vibration plate 11. . In FIG. 1 and FIG. 2, a unimorph type piezoelectric vibrator is used, but a bimorph type piezoelectric vibrator 1 can also be used.
[0019]
The support member 2 has a plate shape and a ring shape, and is preferably made of a molded product such as plastic or carbon. The inner diameter of the support member 2 is smaller than the diameter of the diaphragm 11 of the piezoelectric vibrator 1 and the outer diameter thereof is larger than the inner diameter of the peripheral member 3 described later.
The peripheral member 3 is a ring-shaped member and is formed of a molded body such as foamed resin or low density carbon. A mounting groove 33 is formed on the inner periphery of the peripheral member 3.
[0020]
In the piezoelectric acoustic device having such a constituent member, first, the outer peripheral portion of the diaphragm 11 of the piezoelectric vibrator 1 is placed on the inner peripheral portion of the support member 2 and bonded with an elastic adhesive such as a silicone adhesive. Further, the piezoelectric vibrator 1 and the support member 2 on which the piezoelectric vibrator 1 is mounted in this way are inserted into the peripheral member 3, and the outer peripheral portion of the support member 2 is fitted into the mounting groove 33 on the inner periphery of the peripheral member 3. Or, conversely, the support member 2 is inserted into the peripheral member 3, the outer peripheral portion of the support member 2 is fitted into the mounting groove 33 on the inner periphery of the peripheral member 3, and then the piezoelectric member is applied to the inner peripheral portion of the support member 2. You may adhere | attach the outer peripheral part of the diaphragm 11 of the vibrator | oscillator 1. FIG.
[0021]
Further, the peripheral member 3 is mounted in a sound box or the like having a buffering action by an appropriate means. A buffer member for supporting the peripheral member 3 is indicated by reference numeral 4 in FIG.
In such a piezoelectric acoustic device, the density of the piezoelectric element 12, the diaphragm 11, the support member 2, and the peripheral member 3 is decreased in the order of the piezoelectric element 12, the diaphragm 11, the support member 2, and the peripheral member 3. That is, the density of the diaphragm 11 is made smaller than that of the piezoelectric element 12, the density of the support member 2 is made smaller than that of the diaphragm 11, and the density of the peripheral member 3 is made smaller than that of the support member 2.
Tables 1 to 4 show examples of selecting specific materials for the piezoelectric element 12, the diaphragm 11, the support member 2, and the peripheral member 3.
[0022]
[Table 1]
Figure 0003830728
[0023]
[Table 2]
Figure 0003830728
[0024]
[Table 3]
Figure 0003830728
[0025]
[Table 4]
Figure 0003830728
[0026]
As is clear from these tables, the density of the piezoelectric ceramic that is the main part of the piezoelectric element 12 of the piezoelectric vibrator 1 is 7.9 × 10 3 kg / m 3 , and the density of the diaphragm 11 of the piezoelectric vibrator 1 is high. Is about 7.7 × 10 3 kg / m 3 for aluminum and about 7.8 × 10 3 kg / m 3 for stainless steel. On the other hand, the density of the supporting member 2 in the peripheral portion thereof is 4.3 × 10 3 kg / m 3 for carbon, 1.1 × 10 3 kg / m 3 for resin, and 1.52 × 10 6 for hard rubber. 3 kg / m 3 . Further, the density of the peripheral member 3 is 0.8 × 10 3 kg / m 3 for polystyrene foam and 2.4 × 10 3 kg / m 3 for low density carbon. Therefore, when hard rubber is selected as the material of the support member 2, the peripheral member 3 is selected from foamed polystyrene instead of low density carbon.
[0027]
For example, in the combination of materials shown in Table 1, a more specific example of a piezoelectric acoustic device will be given.
A piezoelectric element 12 is prepared by metalizing both sides of a disk-shaped piezoelectric ceramic made of lead zirconate titanate with a diameter of 15 mm and a thickness of 0.05 mm. The piezoelectric element 12 has a diameter of 17 mm and a thickness of 0.02 mm. The piezoelectric vibrator 1 is configured by being attached to a vibration plate 11 made of a disc-shaped aluminum plate.
[0028]
The outer periphery of the diaphragm 11 of the piezoelectric vibrator 1 is supported by a hard rubber ring-shaped support member 2 having an inner diameter of 16 mm, an outer diameter of 19 mm, and a thickness of 0.55 mm. The outer periphery of the support member 2 has an outer diameter of 2 mm. It attached to the peripheral member 3 which consists of a 100-mm ring-shaped foam polystyrene.
[0029]
When the piezoelectric acoustic device configured as described above is attached to a baffle plate having a thickness of 20 mm and a thickness of 500 mm, a microphone is installed at a location 10 cm from the sound source, and a sine wave signal of 1 Vrms is applied to the electrodes on both sides of the piezoelectric element 12 The frequency dependence of sound pressure was measured. This was taken as an example, and the measurement results are shown by solid lines in FIG.
For reference, a piezoelectric acoustic device constructed using a zinc alloy with a density of about 6.9 as a peripheral member is used as a comparative example, and the frequency dependence characteristics of sound pressure measured in the same manner are shown by broken lines in FIG.
[0030]
In the former embodiment, an improvement effect is clearly seen in the frequency characteristics as compared with the latter comparative example. This is because the low-frequency vibration is transmitted from the piezoelectric vibrator 1 to the peripheral member 3 through the support member 2 and from there to the air.
Further, in the combinations of materials shown in Tables 2 to 4, the frequency dependence characteristics of the sound pressure were measured in the same manner as in the above-described example. However, in all cases, the frequency characteristics were greatly improved compared to the comparative example. It was.
[0031]
【The invention's effect】
As described above, in the piezoelectric acoustic device according to the present invention, vibrations generated by a member having a high density from the piezoelectric element 12 to the peripheral member 3 via the diaphragm 11 and the support member 2 are reduced from a member having a high density to a low density. Since vibration energy can be gradually transmitted to the members, all members from the piezoelectric element 12 to the peripheral member 3 can be handled as one vibration sounding body, and a large vibration sounding body can be driven by the minute piezoelectric element 12. It becomes possible. Thereby, it is possible to provide a piezoelectric acoustic device capable of obtaining sound quality comparable to that of a dynamic type speaker.
[Brief description of the drawings]
FIG. 1 is a half sectional exploded perspective view showing components of a piezoelectric acoustic device according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional side view of a main part showing a support structure of a peripheral portion of a piezoelectric vibrator of the piezoelectric acoustic device according to the embodiment.
FIG. 3 is a graph showing frequency-sound pressure characteristics of a piezoelectric acoustic device according to an embodiment of the present invention and a comparative example to be compared with the piezoelectric acoustic device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Piezoelectric vibrator 2 Support member 3 Peripheral member 11 Diaphragm 12 Piezoelectric vibrator

Claims (3)

少なくとも一枚以上の圧電素子(12)を有し、この圧電素子(12)の長さあるいは径方向の振動を屈曲振動に変換する圧電振動子(1)を有する圧電音響装置において、圧電振動子(1)の圧電素子(12)からその周辺方向に接続されていく部材の密度が次第に小さくなっていくことを特徴とする圧電音響装置。In a piezoelectric acoustic device having at least one piezoelectric element (12) and having a piezoelectric vibrator (1) that converts vibration in the length or radial direction of the piezoelectric element (12) into bending vibration, the piezoelectric vibrator A piezoelectric acoustic device characterized in that the density of members connected in the peripheral direction from the piezoelectric element (12) of (1) gradually decreases. 振動板(11)に圧電素子(12)を貼り付けた圧電振動子(1)の周辺部が周辺部材(3)で支持された圧電音響装置において、前記圧電振動子(1)の周辺部が支持部材(2)を介して周辺部材(3)に支持されており、圧電素子(12)、振動板(11)、支持部材(2)及び周辺部材(3)を構成する材料の密度が、圧電素子(12)、振動板(11)、支持部材(2)及び周辺部材(3)の順で大きいことを特徴とする圧電音響装置。In the piezoelectric acoustic device in which the peripheral portion of the piezoelectric vibrator (1) having the piezoelectric element (12) attached to the diaphragm (11) is supported by the peripheral member (3), the peripheral portion of the piezoelectric vibrator (1) is The density of the materials constituting the piezoelectric element (12), the diaphragm (11), the support member (2) and the peripheral member (3) is supported by the peripheral member (3) via the support member (2). A piezoelectric acoustic device characterized in that the piezoelectric element (12), the diaphragm (11), the support member (2), and the peripheral member (3) are larger in this order. 圧電素子(12)の要部が圧電セラミクス、振動板(11)が金属板からなり、支持部材(2)は、樹脂、硬質ゴムまたはカーボンの何れかであり、周辺部材(3)が発泡樹脂または低密度カーボンからなることを特徴とする請求項2に記載の圧電音響装置。The main part of the piezoelectric element (12) is made of piezoelectric ceramics, the diaphragm (11) is made of a metal plate, the support member (2) is either resin, hard rubber or carbon, and the peripheral member (3) is foamed resin. The piezoelectric acoustic device according to claim 2, wherein the piezoelectric acoustic device is made of low density carbon.
JP2000155605A 2000-05-26 2000-05-26 Piezoelectric sound device Expired - Fee Related JP3830728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155605A JP3830728B2 (en) 2000-05-26 2000-05-26 Piezoelectric sound device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155605A JP3830728B2 (en) 2000-05-26 2000-05-26 Piezoelectric sound device

Publications (2)

Publication Number Publication Date
JP2001339793A JP2001339793A (en) 2001-12-07
JP3830728B2 true JP3830728B2 (en) 2006-10-11

Family

ID=18660528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155605A Expired - Fee Related JP3830728B2 (en) 2000-05-26 2000-05-26 Piezoelectric sound device

Country Status (1)

Country Link
JP (1) JP3830728B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185946B2 (en) 2006-07-20 2008-11-26 ホシデン株式会社 Piezoelectric electroacoustic transducer
JP4231879B2 (en) * 2006-07-20 2009-03-04 ホシデン株式会社 Piezoelectric electroacoustic transducer
WO2012001901A1 (en) 2010-06-30 2012-01-05 日本電気株式会社 Vibration device
JP5810484B2 (en) * 2010-06-30 2015-11-11 日本電気株式会社 Oscillator
KR101439935B1 (en) 2013-07-19 2014-09-15 크레신 주식회사 Sound Output Device
JP5985006B1 (en) * 2015-05-30 2016-09-06 オーツェイド株式会社 Speaker

Also Published As

Publication number Publication date
JP2001339793A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR100817384B1 (en) Improved transducer
EP2597892A1 (en) Vibration device
KR20160015348A (en) Piezoelectric Speaker
JPS5911237B2 (en) piezoelectric speaker
JPS63120269A (en) Acoustic transducer
JP2008048312A (en) Speaker system
JP2001339791A (en) Piezoelectric acoustic device
JP3830728B2 (en) Piezoelectric sound device
JP2006165702A (en) Piezoelectric sounder and electronic apparatus
BE1013592A3 (en) Transducer.
CN103262575A (en) Oscillator device and electronic instrument
JP2000201399A (en) Piezoelectric speaker
JP2012142648A (en) Electronic apparatus
JP3690937B2 (en) Piezoelectric speaker
JPH11341584A (en) Speaker device
JP6156387B2 (en) Electroacoustic transducer, manufacturing method thereof, and electronic apparatus using the electroacoustic transducer
JP3871628B2 (en) Electroacoustic transducer
JP2001320798A (en) Piezoelectric diaphragm for acoustic device
KR100959763B1 (en) Piezoelectric speaker
BE1011559A4 (en) Element for reproducing and/or recording sound
JPH1056498A (en) Received call informing device for portable telephone set
JP3538817B2 (en) Underwater transmitter / receiver capable of emitting multiple frequencies
JPH0332958B2 (en)
JP3924777B2 (en) Flat speaker
JPH0888896A (en) Composite piezoelectric loudspeaker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees