JP3829234B2 - Panel and manufacturing method thereof - Google Patents

Panel and manufacturing method thereof Download PDF

Info

Publication number
JP3829234B2
JP3829234B2 JP18448399A JP18448399A JP3829234B2 JP 3829234 B2 JP3829234 B2 JP 3829234B2 JP 18448399 A JP18448399 A JP 18448399A JP 18448399 A JP18448399 A JP 18448399A JP 3829234 B2 JP3829234 B2 JP 3829234B2
Authority
JP
Japan
Prior art keywords
adhesive
shape
cross
panel
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18448399A
Other languages
Japanese (ja)
Other versions
JP2001012009A (en
Inventor
博光 石川
博通 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP18448399A priority Critical patent/JP3829234B2/en
Publication of JP2001012009A publication Critical patent/JP2001012009A/en
Application granted granted Critical
Publication of JP3829234B2 publication Critical patent/JP3829234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Panels For Use In Building Construction (AREA)
  • Connection Of Plates (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム合金からなる偏平な断面を有する複数の押出形材を接合して形成するパネルと、係るパネルの製造方法に関する。
【0002】
【従来の技術】
商店街のアーケードや歩行路又はバス停留所等の雨除け用のシェルターは、鉄骨構造体に屋根板を被覆したものや、アルミニウム合金の押出形材からなる枠組体に樹脂板を嵌合したものが採用されている。しかしながら、これらは鉄骨や形材の枠組みに屋根板や樹脂板を取り付けるため、部材数及び工数を要すると共に、シェルターの件名毎に設計・施工するため、設計から竣工までに長期の時間とコストを必要とする、という問題がある。
【0003】
一方、アルミニウム合金の押出形材は、その断面設計が自在であるため、扁平な断面を有する複数の押出形材を接合することにより、任意サイズのシェルターを自在に設計・施工することが可能である。しかし、この場合でも、隣接する押出形材の接合部を、例えば雄・雌嵌合してボルト止めすると共に、雨仕舞いのため両形材の目地に沿ってシリコン・コーキングを充填するという、煩雑な手間が必要なため、工数とコストの低減が不十分であった。
【0004】
ところで、アルミニウム合金の押出形材同士を接着剤で接合することも、これまで種々研究されてきた。例えば、発明者らは、先に特願平10−21398の特許出願において、アルミニウム合金の押出形材同士を接着剤で接合するパネルについて、その接合構造と利用形態について開示した。これによれば、押出形材はその押出方向に沿った長手方向においては長尺なパネルが容易に得られるが、反面その幅方向に沿った寸法は制限されるため接着剤を形材間の接合部に用いることにより広い面積を有するパネルが得られることが理解される。
【0005】
また、住友軽金属技報(1986年4月号、69〜73頁)には、「アルミニウムの接着下地処理」とのタイトルで、アルミニウム材の接着に関する研究報告が成されている。これは、陽極酸化(アルマイト)処理により生じる多孔質面の性状や下地処理と接着強度との関係についての知見が開示されている。
更に、(社)軽金属協会発行のアルミニウムハンドブック(1994.7.25)にも同様な事柄が掲載されている。例えば、サンドペーパー等によりアルミ生地を露出させトリクレンによる下地処理の後で接着することが開示されている。
これらの技術は、アルミニウム材の接着強度を大きくすることを主眼とするもので、アルマイト層の多孔質な表面を利用して接着することにより、多孔質部分に対する接着剤のアンカー的効果で接着強度を得ることに関するものであった。
【0006】
ところで、アルミニウム合金からなる複数の押出形材を並べて接着しパネルを形成する場合、その製造工程は次の2つの方法(1),(2)が考えられる。
(1)押出機で形材を押し出す工程→接着工程→陽極酸化処理工程→電着塗装工程
(2)押出機で形材を押し出す工程→陽極酸化処理工程→接着工程→電着塗装工程
(1),(2)の方法では形材を陽極酸化処理槽への浸漬や電着塗装時の溶剤により接着剤が劣化するため、パネルを製造する場合、表面処理設備によって操業が困難になる場合が生じる、という問題を有する。また、(2)の方法では表面処理ラインで連続して行われる陽極酸化処理処理工程及び電着塗装工程の途中に接着工程が入るため、製造工程が全体に煩雑化する、という問題があった。尚、押出形材は一般に陽極酸化処理した後で電着塗装して利用されることが多い。これにより、光沢を有する外観とし、表面に汚れが付着しにくくするためである。
【0007】
【発明が解決すべき課題】
本発明は、以上のような従来の技術における問題点を解決し、複数のアルミニウム合金の押出形材を接着剤により強力且つ確実に接合できるパネルと、係るパネルを得るための製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、発明者らが鋭意研究・調査した結果、表面に陽極酸化皮膜層及び電着塗膜層を被覆したアルミニウム合金の押出形材同士の接着強度が、無地のアルミニウム表面の形材同士の場合に比べて僅かしか低下しないという知見を見出したことにより、得られたものである。
即ち、本発明のパネルは、アルミニウム合金からなり偏平な断面を有する複数の押出形材を接合して形成され、係る形材同士の対向する各接合部の表面を含む外表面に陽極酸化皮膜層が生成されると共に、その上に電着塗膜層が被覆され、且つこの電着塗膜間が接着剤で接着されることにより、上記形材同士が接合されている、ことを特徴とする。
【0009】
これによれば、接着剤が電着塗膜層の間に介在し且つ両形材が強固に接着されるため、無地のアルミニウム表面同士の接着の場合と略同等の接着強度が得られる。従って、接着剤のみにより、強固に接合したパネルを形成することが可能となる。しかも、各形材は表面に陽極酸化皮膜層が生成されていると共に、その上に更に電着塗膜層が被覆されているので、耐食性と外観光沢性の双方とも高い性能を有するパネルを得ることができる。
【0010】
また、前記形材同士の対向する各接合部が、前記接着剤に対して引き裂き力又は引き剥がし力の作用しないように互いに嵌合する凹断面形状及び凸断面形状である、パネルも含まれる。
一般に、接着剤による接合部の破断強度のうち、引張力や引張剪断力に比べて、引き裂き力や引き剥がし力は著しく小さい。しかし、上記パネルによれば、接合された一対の押出形材が互いに離間する方向に引張荷重を受けても、上記接着剤の位置する接合部では引き裂き力又は引き剥がし力が作用せず、該接合部で破断されることがない。むしろ、場合によっては何れかの押出形材の中間において破断が生じる程度に、上記接合部が確実な高強度を有するようにすることができ、パネルの構造体として安全性を保証することができる。
尚、引き裂き力は、板材同士を重複して接着したとした場合で、その接着面に対して当該接着面の面外方向に各板材を引っ張る外力を、引き剥がし力は、重複して接着された板材同士の一方の板材を接着面の面外方向に剥がす外力である。
【0011】
更に、前記形材同士の対向する各接合部が、当該形材における他の部分の断面形状よりも剛性の高い断面形状をそれぞれ有することにより、上記接合部に前記引き裂き力又は引き剥がし力を作用しにくくしてなる、パネルも含まれる。
これによれば、例えば雄・雌嵌合式の剛性の高い断面形状を有する接合部として、接合される押出形材を離間させる方向の引張り剪断面に沿って接着剤が塗布されるので、引き裂き力又は引き剥がし力が作用せず、大きな接着強度を有するパネルとすることが可能となる。
一方、前記接合される形材の何れか一方の接合部が、当該形材における他の部分の断面形状よりも剛性の低い断面形状を有することにより、上記接合部に前記引き裂き力又は引き剥がし力を作用しにくくしてなる、パネルも含まれる。
これによれば、引張剪断力が作用する前に、接着された形材の一方がその接合部以外の中間部分で変形するため、接合部(接着剤)への引き裂き力や引き剥がし力の作用を回避することが可能となる。
【0012】
また、前記接着剤により接合される接合部が、パネルに求められる引張強度Wに対し、下記数式3を満たすものである、パネルも含まれる。
【0013】
【数3】
τ×Σx≧W
【0014】
これによれば、接合される形材同士を離間させる引張強度に対し、これ以上の接着強度を有する接合部を確実に有するパネルが容易に形成でき、安全なパネルにすることができる。尚、数式3で、τは形材同士の接合部における引張剪断強度(N/mm2)、Σxは接合部の断面における接着部の長さの合計値(mm)、Wは接合された形材同士が互いに離間する方向に対して要求される単位長さ当たりの引張強度(N/mm)を示す。
【0015】
更に、前記接着剤により接合される接合部が、前記接合された各形材の断面形状に対し、下記数式4を満たすものである、パネルも含まれる。
【0016】
【数4】
σ0.2×t≧τ×Σx
【0017】
これによれば、接合される一対の押出形材が互いに離間する方向に引張荷重を受けても、上記接着剤の位置する接合部では破断しにくいパネルを容易且つ確実に得ることができる。
尚、数式4において、σ0.2は形材自体の0.2%耐力(N/mm2)、tは接合部を除いた形材同士の離間方向と直交する断面における厚みの各合計値のうちでの最小値(mm)、τは形材同士の接合部における引張剪断強度(N/mm2)、Σxは接合部の断面における接着部の長さの合計値(mm)を示す。
【0018】
また、前記電着塗膜層が、前記形材に陽極酸化皮膜層を被覆し且つ湯洗された後、アクリル系樹脂を電着塗装して焼き付け処理されたものである、パネルも含まれる。これにより、未封孔状態の陽極酸化皮膜層の上に電着塗膜層が形成されるため、係る塗膜層を強固に被覆できる。従って、形材を接合する接着剤の引張剪断強度等をアルミニウム素地の場合と同程度としたパネルが得られる。
加えて、前記接着剤が、エポキシ系又はアクリル系樹脂からなる2液性の常温硬化型接着剤である、パネルも含まれる。これによれば、接着剤によって接合される各押出形材の接合部間において、上述した引張強度を確実に付与することが可能となる。
【0019】
一方、本発明のパネルの製造方法は、アルミニウム合金からなり偏平な断面を有する複数の押出形材を接合して形成するパネルの製造方法であって、係る形材の表面に陽極酸化皮膜層を生成する陽極酸化工程と、上記形材における陽極酸化皮膜層の表面に電着塗膜層を被覆する電着塗装工程と、上記形材同士の対向する接合部の表面における電着塗膜層同士の間に接着剤を塗布し、形材同士を密着させた後に上記接着剤を硬化させる接着工程と、を含む、ことを特徴とする。
これによれば、隣接する押出形材間に塗布される接着剤が陽極酸化処理や電着塗装の影響を受けず、無地のアルミニウム表面同士の接着の場合と略同等の剪断強さ等が得られるので、複数の押出形材を接着剤のみにより、強固に接合したパネルを確実に製造することができる。しかも、優れた耐食性と外観光沢性が得られると共に、接着剤が従来のように陽極酸化処理液や電着塗装の溶剤に接触して劣化しないので、所要の接着強度を確実に得ることが可能となる。
【0020】
また、前記電着塗装工程は、前記陽極酸化処理工程により生成された陽極酸化皮膜層を湯洗した後に行われる、パネルの製造方法も含まれる。
これによれば、電着塗膜層が封孔されていない陽極酸化皮膜層に強固に密着するので、接合した押出形材間に引張剪断力が働いても、上記皮膜層と塗膜層との間での剪断破壊を確実に防止することができる。従って、パネルにおける押出形材間に高い引張り剪断強さを与えることができる。
【0021】
【発明の実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1(A)は、本発明のパネルを得るために行った引張試験の状態を示す。
まず、アルミニウム合金(A6063−T5)からJIS K6850「接着剤の引張剪断接着強さ試験方法」に基づき、一対の板片(長さ100mm×幅25mm×板厚1.5mm)1a,1bを用意した。図1(A)のように左右方向の長さが12.5mmの接着面6に、2液性エポキシ系接着剤(長瀬チバ社の商品名:アラルダイト(樹脂:Aw106、硬化剤:HV953U))8を塗布して板片1a,1bを接着した。
上記板片1a,1bは、その表面に平均厚さ5μmの陽極酸化(硫酸)皮膜層2と、アクリル系樹脂からなり平均厚さ10μmの電着塗膜層4を予め被覆している。この電着塗膜層4は、上記皮膜層2を生成し且つ湯洗した未封孔の状態で被覆され、180℃で30分間焼き付け処理が施されている。
【0022】
また、上記接着剤8が塗布される発明例の板片1a,1bの接着面6,6は、アセトンで脱脂された後、接着面6,6間にて接着剤8の厚みを一定にするため、線径0.1mmの鋼線を一対平行に挿入して前記接着剤8を塗布した。係る接着剤8の硬化条件は、常温で3日間保持するものとした。
一方、上記板片1a,1bと同じ材質とサイズを有する比較例1の板片は、上記皮膜層2や塗膜層4のない表面がアルミ素地のものであり、予め240メッシュのサンドペーパーで接着面6を仕上げ研磨した後、上記と同様の条件で接着剤8を塗布して接着した。更に、上記板片1a,1bと同じ材質とサイズを有する比較例2の板片は、表面に酸化皮膜層2のみを被覆し且つこれを湯洗した未封孔の状態で、上記と同様の条件で接着剤8を塗布して接着した。
5組ずつの発明例及び比較例1,2の各板片(1a,1b)について、接着剤の引張剪断強さ試験方法(JIS K6850−1994)に基づいて、図1(A)中の矢印方向に沿って引張速度2mm/分により行った。それらの結果を表1に示した。
【0023】
【表1】

Figure 0003829234
【0024】
表1の結果は、「比較例2>比較例1>発明例」の順による引張剪断強度であったが、実質的には略同等であった。即ち、発明例による接着力は、最大の強度を得るものではないが、所定の接着面積を用いることにより、実用的な接着強度を有するパネルが得られることが判明した。
また、発明例と同じ板片を用い同じ方法及び条件で接着した試験片により、接着面の引張力の加わり方による各種の接着強度を測定した。
その結果を表2に示す。尚、表2中における引張強度は「接着剤の引張強さ試験方法/JIS K6849−1994」に基づく角棒引張試験片を用いた。また、引張剪断強度は、前記表1に示した試験方法によって得た。両試験共に5組の試験片に対して行った。
【0025】
【表2】
Figure 0003829234
【0026】
表2の結果は、「引張強度>引張剪断強度」であることが判明した。尚、引き裂き強度の結果は表2に示していないが、引張剪断強度の約10%程度であり、かなり小さな外力で引き裂かれたり、引き剥がされることが既に知られている。
図1(B)は、上記試験結果を前提に、アルミニウム合金(A6063−T5)からなる一対の押出形材10a,10bを接着した状態を示す。形材10a,10bは、断面が扁平で矩形の中空部12を内蔵し、大小の縦端面14,16と、これらの間の水平面15とからなる接着面を有し、表面全体に平均厚さ5μmの陽極酸化皮膜層2と、平均厚さ10μmの電着塗膜4を被覆している。
図1(B)に示すように、何れかの形材10における予めアセトンで脱脂した接着面(14,15,16)に前記接着剤8と同様の2液性エポキシ系接着剤18を塗布し、同様に脱脂した他方の形材10を図示のように点対称にして接着する。
【0027】
ところで、図1(B)において、略断面Z字形に固着し硬化する接着剤18のうち、形材10a,10bを互いに離間する引張力に実質的に抵抗する引張剪断強度は、水平面15間に挟まれた水平部分18aにより得られる。表2に示したように、接着部では引張剪断強度(τ)よりも引張強度(W)の方が大きい。即ち、要求される引張強度に対して、接着剤18により引張剪断強度相当の接着強度が得られた場合、常にそれ以上の引張強度が得られていることになり、係る場合は必要とする接着強度が得られることになる。
従って、図1(B)において、接着剤18の図示の水平部分18aの長さ及び一対の垂直部分18bの長さの合計値(Σx(mm))と、形材10a,10bの接合部における引張剪断強度(τ(N/mm2))との積が、数式5に示すように、接着剤18に求められる、図1(B)において紙面奥行き方向に沿う単位長さ当たりの引張強度(W(N/mm))以上であれば、支障ないことが理解される。
【0028】
【数5】
τ×Σx≧W
【0029】
更に、図1(B)において、形材10a,10bにおける中間部における断面の厚みの合計値(t(mm))と形材10a,10b自体の0.2%耐力(σ0.2(N/mm2))との積が、下記の数式6に示すように、上記引張剪断強度(τ(N/mm2))と水平部分18a及び各垂直部分18bの長さの合計値(Σx(mm))との積と同じ値か、それ以上の値であれば一層十分な接着強度を有することが理解できる。
【0030】
【数6】
σ0.2×t≧τ×Σx
【0031】
一方、図1(B)に示すように、左側の形材10aの接着部E1の板厚が薄い場合、形材10aの中間部E0に加わる引張力Wにより上記接着部E1が変形し、図示で矢印方向の引き裂き力Hが接着部に加わる。係る引き裂き力Hに対する接着強度は前述したように低いため、接着剤18がその上端部から剥離し始め、且つ接着部の全体に伝播して破断に至る、という問題がある。
即ち、形材10a,10bのように引き裂き力Hが作用し易い断面形状ではなく、互いに雄・雌嵌合する凹断面形状及び凸断面形状の接合部であって、当該形材の他の部分よりも剛性の高い断面形状とすることが必要となる。
【0032】
図2(A)は、係る接合部21a,21bを左右両端に有する押出形材20,20を接合したパネル20aを示す。図2(A)は、各形材20の押出方向と直交する方向で切断した断面示す。形材20は、前記同様のアルミニウム合金からなり、断面が扁平で略矩形の中空部22を内設すると共に、右端の端面23の中央に凸部24を有する凸断面形状の雄型接合部21aと、左端の端面にて上下一対の凸条27間に凹部26を有する凹断面形状の凹雌型接合部21bとを有する。
図2(A)のように、接合部21a,21bの端面23と凸条27が当接すると共に、凸部24と凹部26とが雄・雌嵌合する。
【0033】
これらの表面全体には、図2(a)に示すように、予め平均厚さ5μmの陽極酸化皮膜層2と、平均厚さ10μmの電着塗膜層4が被覆されている。隣接する形材20,20における接合部21a,21bを予めアセトンで脱脂した後、図2(A)に示すように、前記接着剤8と同様の2液性エポキシ系接着剤28を何れかの接合部に塗布した後、他方の形材20を図示のように端面23と凸条27が当接し、且つ凸部24と凹部26とを雄雌嵌合させて接着する。
尚、接合部21a,21bにおける各部の板厚は、中間部分の板厚よりも2〜5倍程度の厚さとし、接合部21a,21bを中間部分よりも剛性の高い断面形状としている。
【0034】
図2(A)において、接着剤28は、下記数式7で算出されるその断面全体に渉る長さ(Σx)において、形材20,20を左右に離間させる引張力Wを受ける。
即ち、前記数式5のように、接着部の全長さ(Σx)に引張剪断強度(τ)を乗じた値(τ×Σx)が引張力(W)以上であれば、前述したように接着部の単位長さ当たりの引張強さは引張剪断強さより大きいため、所要の引張力(W)以上の接着強度が得られる。
【0035】
【数7】
Σx=2×(x1)+2×(x2)+x3
【0036】
また、前記数式6のように、形材20,20の中間部の厚み(t=t/2×2)と形材20,20自体の0.2%耐力(σ0.2)との積が、上記接着部の全長さ(Σx)とその引張剪断耐力(τ)との積(τ×Σx)以上であれば、所要の接合強度を確実に得ることができる。しかも、形材20,20が接着される接合部21a,21bは、中空部22を内設する他の部分よりも板厚を厚くしているので、剛性の高い断面形状を有し且つ互いに雄・雌嵌合することにより引き裂き力Hや引き剥がし力が作用しない。従って、少なくとも前記数式6にて算出される値(τ×Σx)を保持するように、予め設計することにより、安定した接合強度を有するパネルを得ることが可能となる。
【0037】
ここで、上記パネル20aの製造方法を説明する。図2(B)に示すように、先ず形材20を図示しない押出機を用いて押出成形する。形材20の断面は、予め前記数式5,6の条件を満たすように設計され、その中空部22内の中央には中空部22を2分割するウェブ25が必要に応じて一体に付設されている。
次に、係る形材20をパネル20aに応じた長さに切断した後、陽極酸化処理を施す。予め表面を脱脂した形材20,20を図示しない電極に支持して処理槽内の処理液中に浸漬し、図3(A)に示すように、公知の方法により陽極酸化皮膜層2を形材20の表面に生成する。係る被膜層2は、5〜20μm程度の厚みとする。処理槽から取り出した係る形材20は、酸化皮膜層2表面の多数のポアが完全な封孔状態にならないように、80℃程度の湯により湯洗する。
更に、上記形材20を別の電極に支持して図示しない電着処理槽内のアクリル系樹脂塗料の電着液中に浸漬し、公知の方法により電着(電気永動)塗装を行う。
この結果、図3(B)に示すように、形材20の皮膜層2の表面全体にアクリル系樹脂からなり約10μm程度の厚みを有する電着塗膜層4が被覆される。最後に、形材20を約160〜190℃で約30分間加熱して焼き付け処理を施し、上記塗膜層4を硬化し安定させる。尚、陽極酸化皮膜層2及び電着塗膜層4は、連続した表面処理ラインで処理される。
【0038】
そして、以上のように酸化皮膜層2と電着塗膜層4とを有する複数の形材20,20をアセトンで脱脂した後、互いに接合部21a,21bが対向するように隣接し、接合部21a,21bの何れかに接着剤28を塗布する。接着剤28は、エポキシ系又はアクリル系樹脂からなる2液性の常温硬化型の接着剤である。
隣接する形材20,20の接合部21a,21bを接着剤28を介して雄・雌嵌合して接合した状態で、形材20,20を、適宜の押さえ治具によって接着剤28の厚みが適正になるように固定する。係る固定した状態で2,3日程度に渉り保持し、上記接着剤28を硬化処理しその接着力を安定化させる。これにより、図2(A)に示したように、複数の形材20を接着剤28により接合した前記パネル20aを得ることができる。
【0039】
図4(A)は、異なる形態の押出形材30を示す。この形材30も前記同様のアルミニウム合金からなり、断面が扁平で略矩形の中空部32を内設すると共に、右端の端面33の中央に断面台形の凸部34を有する雄型接合部31と、左端の端面に断面略台形で上下対称の凸条37,37と、この間に位置する断面台形の凹部36を有する雌型接合部35とを有する。図示のように、接合部31,35の凸部34と凹部36とが雄・雌嵌合可能とされている。尚、これらの表面全体には、図4(a)に示すように、平均厚さ5μmの陽極酸化皮膜層2と、平均厚さ10μmの電着塗膜層4とが前述した方法により予め被覆されている。また、接合部31,35における各部の板厚は、中間部分よりも厚肉とし剛性を高い断面形状としている。
【0040】
図4(B)に形材30,30を接合して得られるパネル30aの断面を示す。隣接する形材30,30における接合部31,35を予めアセトンで脱脂した後、図4(B)に示すように、前記接着剤8と同様の2液性エポキシ系接着剤38を何れかの接合部に塗布し、他方の形材30を図示のように端面33と凸条37が当接し、且つ凸部34と凹部36とが雄雌嵌合させて接着し且つ硬化処理する。これにより、複数の形材30を接着剤38により接合した前記パネル30aを得ることができる。尚、接着部の全長さΣxは、図4(B)に示す2つのx2、1つのx3、及び2つのx4の合計値により算出される。
【0041】
図5(A)は、異なる形態の押出形材40の接合部41,45の断面を示す。
形材40も前記同様のアルミニウム合金からなり、図5(A)に示すように、断面が略矩形の中空部40aを内蔵する。形材40の右端には、端面中央に断面三角形状の凹溝43と、その上下に平行に突出する断面三角形状の凸条42,42を有し、且つ外側面との間に段部44とを有する接合部41が設けられている。
また、形材40の左端には、端面中央に断面三角形状の凸条46と、その上下の断面三角形状で互いに平行な凹溝47,47と、これらの上下に連設する屈曲部48を介して外側面と平行に突出する一対のフランジ49,49を有する接合部45が設けられている。図5(a)に示すように、形材40の表面には、前記同様に陽極酸化皮膜層2と電着塗膜層4とが予め被覆されている。
【0042】
複数の形材40における接合部41,45を脱脂した後、図5(A)に示すように、接合部41に前記同様の接着剤Sを塗布する。次いで、図5(B)に示すように、形材40,40の接合部41,45を接合する。即ち、凹溝43内に凸条46を、各凹溝47内に各凸条42をそれぞれ嵌合すると共に、段部44にフランジ49を位置させている。しかも、接合部41,45間は、図5(B)中のK部分において形材40,40が当接することにより、適正な間隔で接着剤Sを介して左右の形材40,40を接合している。これより、複数の形材40からなるパネルを形成することが可能となる。
尚、図5(B)に示すように、接合部41,45間において、凹溝43の底部と凸条46の先端の間、各凹溝47の底部と凸条42の先端の間、及び各凸条42と屈曲部48との間には、所要断面積の隙間Fが位置し、余分となった接着剤Sを受け入れる。また、図5(B)に示すように、接合部41,45間における接着剤Sの全長さは、前記数式5,6におけるΣxとして用いられる。但し、図5(B)中の隙間Fの部分では、接着剤Sの厚みが適正値よりも大きくなるため、係る隙間F部分を除いて上記長さΣxが計算される。
【0043】
図6(A)は、前記押出形材40の全体の断面を例示する。即ち、形材40は両端に接合部41,45を有すると共に、これらの間に互いに平行でカーブした一対の湾曲片40b,40cと、これらに挟まれた扁平な中空部40aを有すると共に、図6(a)に示すように、その表面には陽極酸化皮膜層2と電着塗膜層4を有している。図6(B)に示すように、隣接する形材40,40の接合部41,45を順次接合していく。その結果、図4(C)に示すように、複数の形材40を接合したパネル40dを形成することができる。このパネル40dは、図示のように、全体が連続するカーブの湾曲面を形成するので、駅前や商店街において歩行者を雨水から保護するシェルター等の屋根ユニットとして活用することができる。
【0044】
本発明は以上において説明した各形態に限定されるものではない。
図2乃至図6で示した形材20,30,40は、接合部21a,21b等の断面形状を中間部分のそれよりも剛性の高いものとしたが、例えば、図7(A)に示す押出形材50を用いることにより、前記図1(B)で示した接着面に対する面外方向の引き裂き力Hが作用しないパネル50aを得ることができる。
形材50は、図7(A)に示すように、前記同様のアルミニウム合金からなり、断面が扁平な矩形の中空部51を有し、図示の右端には、厚肉の端壁53から突設した薄肉で平行な一対の凸条54,54からなる接合部52を有する。また、左端においては端壁58,58間の中央の凸部57の上下に位置する凹溝56,56からなる接合部55を有する。一対の凹溝56からなる接合部55は、形材50の中間部分よりも厚肉とされている。図7(a)に示すように、形材50はその表面に陽極酸化皮膜層2と電着塗膜層4を予め被覆している。
【0045】
図7(A)に示すように、前記同様に接合部52,55間を接着剤59により接合しパネル50aを得る。そして、各凸条54は最も薄肉であり、且つ形材50の他の部分よりも剛性の低い断面形状であるため、図7(A)中に示す矢印方向の引き裂き力Hや引き剥がし力は作用しなくなる。
即ち、本発明のパネルを形成する押出形材は、接合部で接着した際に、引き裂き力H等が作用しにくくするため、接合部の断面形状を他の部分より剛性を有する凹・凸断面形状とするか、或いは一方の形材を引き裂き力H等が作用する前にその形材の本体が変形する柔軟な断面形状を用いることができる。
【0046】
また、図6(A)で例示した接合部41,45の間における湾曲片40b,40cに替えて、互いに平行で断面略ヘ字形に屈曲した一対の屈曲片を有する押出形材を用い、且つ隣設する形材の屈曲片が連続したジグザク形状を呈するように、接着剤Sを介して接合した断面がジグザク形状を呈するパネルを形成することもできる。或いは、棟部分となる中央に上記断面略ヘ字形に屈曲した一対の屈曲片を有する押出形材を用い、その両側に接合部41,45間に直線の側片を有する形材を複数接着剤Sを介して接合することにより、断面全体が略ヘ字形を呈する屋根用のパネルを形成することも可能である。勿論、接合部41,45間には、任意の断面形状の側片を配置することができ、且つその一部を中空部40aのない一方の側にのみ側片が位置する形材にすることも可能である。
【0047】
【実施例】
ここで、本発明の具体的な実施例を図7(B)のパネル60により説明する。
図7(B)に示すように、パネル60を形成する押出形材61は、アルミニウム合金(JIS:A6063)からなりT5熱処理が施されている。この形材61は、断面扁平で矩形の中空部62と、その右端にて端壁65とその中央に細長い凸条64を有する凸断面形状の雄型接合部63と、左端にて端壁67とその中央に細長い凹溝68を有する凹断面の形状の雌型接合部66とを有する。図7(B)において、形材61の左右方向の全幅は270mm、垂直方向の厚みTは25mm、中間部の板厚tは2.5mm、各接合部63,66の板厚は6mm、凸条64及び凹溝68の各傾斜面の左右方向における長さLは20mmである。更に形材61の0.2%耐力は145N/mm2、引張強さは実測値で190N/mm2である。
【0048】
上記形材61を押出成形した後、硫酸陽極酸化処理により平均膜厚7μmの陽極酸化皮膜層2を生成し、且つ約80℃の湯で湯洗した。係る未封孔状態の皮膜層2を有する形材61に対し、アクリル系熱硬化樹脂による電着塗装を施し、平均膜厚10μmの電着塗膜層4を上記皮膜層2の上に被覆した後、約160℃〜190℃で30分間加熱する焼き付け処理を行い上記塗膜層4を硬化させた。
上記皮膜層2と塗膜層4を有する形材61を、図7(B)に示す押出方向(紙面奥行き方向)に沿って50mmの長さで10個切断した。各形材61の接合部63,66をアセトンで脱脂した後、2液性エポキシ系接着剤(長瀬チバ社の商品名:アラルダイト(樹脂:Aw106、硬化剤:HV953U))69を塗布し、図7(B)に示すように、一対ずつの形材61を接合部63,66で雄・雌接合して接着した。尚、上記接着剤69の平均厚さは100μmであった。得られた5組の試験片を7日間保持した。
【0049】
5組の試験片に付き、図7(B)にて接着された形材61,61が互いに離間する左右方向に沿って引っ張る引張試験を行った。その結果、各組の試験片は接着部分で破断し、平均の破断強度は39200N(784N/mm)であった。尚、各形材61は、接合部63,66を除いた中間部分で伸び変形を生じていた。
ところで、各試験片における接着部の全長Σxは、図7(B)で示す接着剤69の3つの垂直部x2,x2,x3(5mm×3)と、一対の傾斜部x4(20.6mm×2)の和である。これを前記数式5に基づき剪断強度(τ)との積を求めると、下記数式8の右端に示す値が算出された。
【0050】
【数8】
τ×Σx=12.7N/mm2×((5mm×3)+(20.6mm×2))=714N/mm
【0051】
一方、形材61自体の図7(B)で示す紙面奥行き方向に沿った長さ1mm当たりの耐力限界は725N/mmで、破断限界強度は950N/mmである。
また、数式8によって算出された剪断耐力(τ)と接着部の全長Σxとの積の値(714N/mm)よりも、試験片により測定した実際の強度(784N/mm)が高くなった。これは数式8では引張剪断強度により強度を算出しているが、係る引張剪断強度よりも引張強度の方が大きいため、その増加分が加味されたことによるものと考えられる。従って、引張剪断強度(τ)を用いる上記数式8により算出される値は、形材61,61を接着して得られるパネル60における接着強度を設計する場合に、その安全性を十分に保証し得ることが確認された。
【0052】
【発明の効果】
以上において説明した本発明のパネルによれば、接着剤が電着塗膜層の間に介在し且つ両形材が強固に接着され、無地のアルミニウム表面同士の接着の場合と略同等の接着強度が得られるので、複数の押出形材を接着剤のみにより、強固に接合したパネルを形成することが可能となる。しかも、各形材は陽極酸化皮膜層及び電着塗膜層がその表面に被覆されているので、耐食性と外観光沢性の双方が高いパネルを得ることができる。且つ、アルミニウム材に通常用いられる表面処理をそのまま活用することもできる。
また、請求項2乃至4のパネルによれば、引き裂き力や引き剥がし力に対して、強力に抵抗し得る接合部かこれらが作用しにくい接合部を有するので、接着剤による安定した接合を得ることができる。
更に、請求項5,6のパネルによれば、所要の引張り強度や接着剤にて接合される接合部に対し、必要な接着強度や断面形状を有する押出形材を用いることが容易にでき、安定した接着強度を有するパネルとすることができる。
【0053】
一方、本発明のパネルの製造方法によれば、押出形材間に塗布される接着剤が陽極酸化処理や電着塗装の影響を受けず、無地のアルミニウム表面同士の接着の場合と略同等の接着強度が得られるので、複数の押出形材を接着剤のみにより、強固に接合したパネルを確実に製造することができる。しかも、耐食性と外観光沢性が得られると共に、接着剤が従来のように陽極酸化処理液や電着塗装の溶剤に接触して劣化しないので、所要の接着強度を確実に得られる。加えて、アルミニウム材に通常用いられる表面処理設備・工程をそのまま活用することができる。
また、請求項10の製造方法によれば、電着塗膜層が封孔されていない陽極酸化皮膜層に強固に密着するので、接合した押出形材間に引張剪断力が働いても、上記皮膜層と塗膜層との間での破断を確実に防止することができる。
【図面の簡単な説明】
【図1】 (A)は本発明のパネルを得るため板片により行った引張試験の状態を示す概略図、(B)は押出形材間の接合部における接着剤の作用等を示す概略図。
【図2】 (A)は本発明のパネルを示す部分断面図、(a)は(A)中の一点鎖線部分aの拡大図、(B)はこのパネルを形成する押出形材の断面図。
【図3】 (A)は図2(B)の形材の表面に形材の表面に陽極酸化処理を施した状態を示す部分断面図、(B)は電着塗装を施した状態を示す部分断面図。
【図4】 (A)は異なる押出形材の部分断面図、(a)は(A)中の一点鎖線部分aの拡大図、(B)は(A)の形材同士を接合して得たパネルを示す概略断面図。
【図5】 (A)は異なる形態の押出形材の各接合部を示す部分断面図、(a)は(A)中の一点鎖線部分aを示す拡大図、(B)は係る接合部を接着剤により接合した状態を示す部分断面図。
【図6】 (A)は図5の接合部を両端に有する押出形材の断面図、(a)は(A)中の一点鎖線部分aを示す拡大図、(B)は上記形材同士の接合状態を示す部分断面図、(C)は係る形材を複数枚接合して形成したパネルの断面図。
【図7】 (A)は更に異なる形態の押出形材同士を接合したパネルの部分断面図、(a)は(A)中の一点鎖線部分aを示す拡大図、(B)は本発明の実施例の押出形材とこれを接合したパネルを示す部分断面図。
【符号の説明】
2………………………………………………………………………陽極酸化皮膜層
4………………………………………………………………………電着塗膜層
18,28,38,S,59,69………………………………………接着剤
10a,10b,20,30,40,50,61………………………押出形材
20a,30a,40d,50a,60………………………………パネル
21a,21b,31,35,41,45,52,55,63,66…接合部
H………………………………………………………………………引き裂き力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a panel formed by joining a plurality of extruded shapes made of an aluminum alloy and having a flat cross section, and a method for manufacturing such a panel.
[0002]
[Prior art]
Shelters for rain protection such as arcades, walking paths, and bus stops in shopping streets include steel structures covered with roof plates, and aluminum plates extruded with aluminum plates that are fitted with resin plates. It has been adopted. However, they require rooftops and resin plates to be attached to the framework of steel frames and profiles, so they require a large number of members and man-hours, and because they are designed and constructed for each subject of the shelter, it takes a long time and cost from design to completion. There is a problem of need.
[0003]
On the other hand, the extruded shape of aluminum alloy can be freely designed in cross section, so it is possible to design and construct a shelter of any size by joining multiple extruded shapes with flat cross sections. is there. However, even in this case, for example, a joint between adjacent extruded profiles is bolted by male-female fitting, and silicon caulking is filled along the joints of both profiles for rain. Since a lot of labor is required, man-hours and costs have not been sufficiently reduced.
[0004]
By the way, various studies have been made so far to join extruded shapes of aluminum alloys with an adhesive. For example, in the patent application of Japanese Patent Application No. 10-21398, the inventors previously disclosed a joining structure and a usage form of a panel for joining extruded shapes of aluminum alloy with an adhesive. According to this, in the longitudinal direction along the extrusion direction of the extruded shape, a long panel can be easily obtained, but on the other hand, since the dimension along the width direction is limited, the adhesive is used between the shapes. It is understood that a panel having a large area can be obtained by using it for the joint portion.
[0005]
In addition, the Sumitomo Light Metal Technical Report (April 1986, pages 69-73) has a research report on the bonding of aluminum materials under the title “Aluminum Bonding Ground Treatment”. This discloses the knowledge about the properties of the porous surface produced by the anodization (alumite) treatment and the relationship between the base treatment and the adhesive strength.
Furthermore, a similar matter is also published in the Aluminum Handbook (1994.7.25) published by the Japan Light Metal Association. For example, it is disclosed that an aluminum cloth is exposed with sandpaper or the like and bonded after a ground treatment with trichlene.
These technologies are mainly aimed at increasing the adhesive strength of aluminum materials, and by using the porous surface of the alumite layer for adhesion, the adhesive strength is achieved by the anchor effect of the adhesive on the porous part. It was about getting.
[0006]
By the way, when a panel is formed by aligning a plurality of extruded shapes made of an aluminum alloy to form a panel, the following two methods (1) and (2) can be considered.
(1) Extruding the shape with an extruder → Adhesion process → Anodizing process → Electrodeposition coating process
(2) Extruding the shape with an extruder → Anodizing process → Adhesion process → Electrodeposition coating process
In the methods (1) and (2), the adhesive deteriorates due to the immersion of the shape material in the anodizing bath and the solvent during electrodeposition coating. Therefore, when manufacturing panels, it becomes difficult to operate with surface treatment equipment. It has the problem that cases arise. Further, in the method (2), there is a problem that the manufacturing process becomes complicated as a whole because an adhesion process is included in the middle of the anodizing treatment process and the electrodeposition coating process performed continuously on the surface treatment line. . In general, an extruded shape is often used after being anodized and electrodeposited. This is to provide a glossy appearance and make it difficult for dirt to adhere to the surface.
[0007]
[Problems to be Solved by the Invention]
The present invention solves the problems in the prior art as described above, and provides a panel capable of strongly and surely joining a plurality of aluminum alloy extruded shapes with an adhesive, and a manufacturing method for obtaining such a panel. This is the issue.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted intensive research and investigations, and as a result, the adhesive strength between extruded shapes of aluminum alloys whose surfaces are coated with an anodized film layer and an electrodeposition film layer, This was obtained by finding the knowledge that the profile of the plain aluminum surface is only slightly lower than that of the shape members on the surface.
That is, the panel of the present invention is formed by joining a plurality of extruded shapes made of an aluminum alloy and having a flat cross section, and an anodized film layer is formed on the outer surface including the surfaces of the joint portions facing each other. Is formed, and the electrodeposition coating layer is coated thereon, and the electrodeposited coating layers are bonded together with an adhesive, whereby the above-mentioned shapes are bonded to each other. .
[0009]
According to this, since the adhesive is interposed between the electrodeposition coating layers and the two shape members are firmly bonded to each other, substantially the same adhesive strength as that in the case of bonding the plain aluminum surfaces can be obtained. Therefore, it is possible to form a strongly bonded panel only with the adhesive. In addition, since each shape has an anodized film layer formed on the surface and an electrodeposition coating layer is further coated thereon, a panel having high performance in both corrosion resistance and appearance gloss is obtained. be able to.
[0010]
Moreover, the panel which each has a concave cross-sectional shape and a convex cross-sectional shape which fit each other so that each joint part which the said shape members oppose with each other so that tearing force or peeling force may not act with respect to the said adhesive agent is also contained.
In general, the tearing force and tearing force are significantly smaller than the tensile strength and tensile shearing force among the breaking strengths of the bonded portion by the adhesive. However, according to the panel, even if a pair of extruded extruded members are subjected to a tensile load in a direction away from each other, a tearing force or a peeling force does not act on the joint where the adhesive is located. There is no breakage at the joint. Rather, depending on the case, it is possible to ensure that the joint has a high strength to such an extent that breakage occurs in the middle of any extruded profile, and it is possible to ensure safety as a panel structure. .
Note that the tearing force is the case where the plate materials are bonded together, and the external force that pulls each plate material in the out-of-plane direction of the bonding surface with respect to the bonding surface, the peeling force is bonded repeatedly. This is an external force that peels one plate member between the two plate members in the direction out of the bonding surface.
[0011]
Further, each of the joint portions facing each other has a cross-sectional shape having rigidity higher than that of other portions of the shape member, so that the tearing force or the peeling force acts on the joint portion. Also included is a panel that makes it harder to do.
According to this, since the adhesive is applied along the tensile shear surface in the direction of separating the extruded profiles to be joined, for example, as a joint having a male / female fitting-type cross section having high rigidity, the tearing force is applied. Or it becomes possible to set it as the panel which has big adhesive strength without peeling force acting.
On the other hand, when any one of the joined sections has a cross-sectional shape having rigidity lower than that of the other part of the profile, the tearing or peeling force is applied to the joint. Panels made difficult to work are also included.
According to this, before the tensile shearing force acts, one of the bonded members is deformed at an intermediate portion other than the joining portion, so that the tearing force or the peeling force acts on the joining portion (adhesive). Can be avoided.
[0012]
Moreover, the panel by which the junction part joined by the said adhesive agent satisfy | fills following Numerical formula 3 with respect to the tensile strength W calculated | required by the panel is also contained.
[0013]
[Equation 3]
τ × Σx ≧ W
[0014]
According to this, it is possible to easily form a panel having a bonded portion having an adhesive strength higher than the tensile strength that separates the joined shapes from each other, and to make a safe panel. In Equation 3, τ is the tensile shear strength (N / mm at the joint between the profiles).2), Σx is the total value (mm) of the length of the bonded portion in the cross section of the bonded portion, and W is the tensile strength per unit length required for the direction in which the bonded shapes are separated from each other (N / mm).
[0015]
Furthermore, the panel by which the junction part joined by the said adhesive satisfy | fills following Numerical formula 4 with respect to the cross-sectional shape of each said joined shape member is also contained.
[0016]
[Expression 4]
σ0.2× t ≧ τ × Σx
[0017]
According to this, even if a pair of extruded profiles to be joined receive a tensile load in a direction away from each other, it is possible to easily and reliably obtain a panel that is not easily broken at the joint where the adhesive is located.
In Equation 4, σ0.2Is the 0.2% proof stress of the profile itself (N / mm2), T is the minimum value (mm) of the total thickness values in the cross section perpendicular to the spacing direction of the shapes excluding the joint, and τ is the tensile shear strength (N / mm2), Σx represents the total value (mm) of the length of the bonded portion in the cross section of the bonded portion.
[0018]
In addition, a panel is also included in which the electrodeposition coating layer is obtained by coating the shape material with the anodized coating layer and washing with hot water, and then electrodepositing an acrylic resin and baking. Thereby, since the electrodeposition coating layer is formed on the anodic oxide coating layer in the unsealed state, the coating layer can be firmly coated. Therefore, a panel in which the tensile shear strength and the like of the adhesive for joining the shape members is the same as that in the case of the aluminum substrate can be obtained.
In addition, a panel in which the adhesive is a two-component room-temperature curable adhesive made of an epoxy resin or an acrylic resin is also included. According to this, it becomes possible to reliably give the above-described tensile strength between the joint portions of the extruded profiles joined by the adhesive.
[0019]
On the other hand, the method for producing a panel of the present invention is a method for producing a panel formed by joining a plurality of extruded shapes made of an aluminum alloy and having a flat cross section, and an anodized film layer is formed on the surface of the shaped material. The anodizing step to be generated, the electrodeposition coating step for coating the surface of the anodized film layer in the above shape with the electrodeposition coating layer, and the electrodeposition coating layers on the surface of the joint portion facing each other And an adhesive step in which the adhesive is cured after the adhesive is applied and the profiles are brought into close contact with each other.
According to this, the adhesive applied between the adjacent extruded profiles is not affected by anodizing treatment or electrodeposition coating, and a shear strength, etc., substantially equal to that in the case of bonding between plain aluminum surfaces can be obtained. Therefore, it is possible to reliably manufacture a panel in which a plurality of extruded shapes are firmly joined only by an adhesive. In addition, excellent corrosion resistance and appearance gloss can be obtained, and the adhesive does not deteriorate when it comes into contact with the anodizing solution or electrodeposition solvent as in the past, so the required adhesive strength can be obtained reliably. It becomes.
[0020]
In addition, the electrodeposition coating process includes a panel manufacturing method that is performed after the anodized film layer generated by the anodizing treatment process is washed with hot water.
According to this, since the electrodeposition coating layer is firmly adhered to the unsealed anodic oxide coating layer, even if a tensile shear force acts between the joined extruded shapes, the coating layer and the coating layer Can be reliably prevented. Accordingly, high tensile shear strength can be provided between the extruded profiles in the panel.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 (A) shows the state of a tensile test performed to obtain the panel of the present invention.
First, a pair of plate pieces (length 100 mm × width 25 mm × plate thickness 1.5 mm) 1a and 1b are prepared from an aluminum alloy (A6063-T5) based on JIS K6850 “Tensile shear bond strength test method for adhesive”. did. As shown in FIG. 1 (A), a two-component epoxy adhesive (trade name: Araldite (resin: Aw106, curing agent: HV953U) of Nagase Ciba) on the adhesive surface 6 having a length of 12.5 mm in the left-right direction. 8 was applied to adhere the plate pieces 1a and 1b.
The plate pieces 1a and 1b are preliminarily coated with an anodic oxidation (sulfuric acid) film layer 2 having an average thickness of 5 μm and an electrodeposition coating film layer 4 made of an acrylic resin and having an average thickness of 10 μm. The electrodeposition coating layer 4 is coated in an unsealed state where the coating layer 2 is formed and washed with hot water, and is baked at 180 ° C. for 30 minutes.
[0022]
Further, the adhesive surfaces 6 and 6 of the plate pieces 1a and 1b of the invention example to which the adhesive 8 is applied are degreased with acetone, and then the thickness of the adhesive 8 is made constant between the adhesive surfaces 6 and 6. Therefore, a pair of steel wires having a wire diameter of 0.1 mm was inserted in parallel and the adhesive 8 was applied. The curing condition of the adhesive 8 was maintained at room temperature for 3 days.
On the other hand, the plate piece of Comparative Example 1 having the same material and size as the plate pieces 1a and 1b has an aluminum base on the surface without the coating layer 2 or coating layer 4, and is preliminarily made of 240 mesh sandpaper. After the adhesive surface 6 was finish-polished, the adhesive 8 was applied and adhered under the same conditions as described above. Further, the plate piece of Comparative Example 2 having the same material and size as the plate pieces 1a and 1b is similar to the above in the unsealed state in which only the oxide film layer 2 is coated on the surface and washed with hot water. The adhesive 8 was applied and adhered under the conditions.
Based on the tensile shear strength test method for adhesive (JIS K6850-1994) for each of the five pieces of the invention example and each of the plate pieces (1a, 1b) of Comparative Examples 1 and 2, the arrows in FIG. Along the direction, the tensile speed was 2 mm / min. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0003829234
[0024]
The results in Table 1 were tensile shear strengths in the order of “Comparative Example 2> Comparative Example 1> Invention Example”, but were substantially equivalent. That is, it has been found that, although the adhesive strength according to the invention example does not obtain the maximum strength, a panel having a practical adhesive strength can be obtained by using a predetermined adhesive area.
In addition, various adhesive strengths according to the method of applying the tensile force on the bonding surface were measured using test pieces that were bonded using the same plate pieces as in the inventive examples and bonded under the same method and conditions.
The results are shown in Table 2. In addition, the tensile strength in Table 2 used the square bar tensile test piece based on "The tensile strength test method of an adhesive / JISK6849-1994". The tensile shear strength was obtained by the test method shown in Table 1 above. Both tests were performed on 5 sets of specimens.
[0025]
[Table 2]
Figure 0003829234
[0026]
The results in Table 2 were found to be “tensile strength> tensile shear strength”. Although the tear strength results are not shown in Table 2, it is about 10% of the tensile shear strength, and it is already known that the tear strength can be torn or peeled off with a considerably small external force.
FIG. 1 (B) shows a state where a pair of extruded shape members 10a and 10b made of an aluminum alloy (A6063-T5) are bonded on the basis of the test results. The shape members 10a and 10b have a flat hollow rectangular portion 12 with a flat cross section, and have an adhesive surface composed of large and small vertical end surfaces 14 and 16 and a horizontal surface 15 between them, and have an average thickness over the entire surface. An anodized film layer 2 having a thickness of 5 μm and an electrodeposition coating film 4 having an average thickness of 10 μm are coated.
As shown in FIG. 1 (B), a two-component epoxy adhesive 18 similar to the adhesive 8 is applied to the adhesive surfaces (14, 15, 16) previously degreased with acetone in any of the shapes 10. Similarly, the other degreased member 10 is bonded point-symmetrically as shown.
[0027]
By the way, in FIG. 1 (B), among the adhesive 18 that is fixed and cured in a substantially Z-shaped cross section, the tensile shear strength that substantially resists the tensile force separating the members 10a and 10b from each other is between the horizontal planes 15. Obtained by the sandwiched horizontal portion 18a. As shown in Table 2, the tensile strength (W) is larger than the tensile shear strength (τ) at the bonded portion. In other words, when an adhesive strength equivalent to the tensile shear strength is obtained by the adhesive 18 with respect to the required tensile strength, a tensile strength higher than that is always obtained. Strength will be obtained.
Accordingly, in FIG. 1B, the total value (Σx (mm)) of the length of the illustrated horizontal portion 18a and the length of the pair of vertical portions 18b of the adhesive 18 and the joint portion of the profile members 10a and 10b. Tensile shear strength (τ (N / mm2)), As shown in Formula 5, the tensile strength per unit length (W (N / mm)) along the depth direction in FIG. It will be understood that there will be no problem.
[0028]
[Equation 5]
τ × Σx ≧ W
[0029]
Further, in FIG. 1 (B), the total thickness (t (mm)) of the cross section in the middle part of the shape members 10a and 10b and the 0.2% proof stress (σ of the shape members 10a and 10b themselves.0.2(N / mm2))), The tensile shear strength (τ (N / mm2)) And the total value (Σx (mm)) of the lengths of the horizontal portions 18a and the vertical portions 18b, it can be understood that the adhesive strength is more sufficient if the value is equal to or greater than the product.
[0030]
[Formula 6]
σ0.2× t ≧ τ × Σx
[0031]
On the other hand, as shown in FIG. 1B, when the thickness of the bonding portion E1 of the left shape 10a is thin, the bonding portion E1 is deformed by the tensile force W applied to the intermediate portion E0 of the shape 10a. Then, a tearing force H in the direction of the arrow is applied to the bonded portion. Since the adhesive strength with respect to the tearing force H is low as described above, there is a problem that the adhesive 18 starts to peel off from the upper end portion thereof and propagates to the entire adhesive portion to break.
That is, it is not a cross-sectional shape in which the tearing force H is likely to act like the shape members 10a and 10b, but a joint portion having a concave cross-sectional shape and a convex cross-sectional shape that are fitted with each other, and the other part of the shape member It is necessary to have a cross-sectional shape with higher rigidity.
[0032]
FIG. 2 (A) shows a panel 20a in which extruded shape members 20, 20 having such joint portions 21a, 21b at both left and right ends are joined. FIG. 2A shows a cross section cut in a direction orthogonal to the extrusion direction of each profile 20. The profile 20 is made of the same aluminum alloy as described above, and has a hollow section 22 having a flat cross section and a substantially rectangular shape, and a male joint 21a having a convex cross section having a convex section 24 at the center of the right end face 23. And a concave female joint portion 21b having a concave cross-sectional shape having a concave portion 26 between a pair of upper and lower convex ridges 27 on the left end face.
As shown in FIG. 2 (A), the end surfaces 23 of the joint portions 21a and 21b and the projections 27 come into contact with each other, and the projections 24 and the recesses 26 are fitted into a male and a female.
[0033]
As shown in FIG. 2A, the entire surface is preliminarily coated with an anodic oxide coating layer 2 having an average thickness of 5 μm and an electrodeposition coating layer 4 having an average thickness of 10 μm. After degreasing the joints 21a and 21b in the adjacent shape members 20 and 20 with acetone in advance, as shown in FIG. 2 (A), a two-component epoxy adhesive 28 similar to the adhesive 8 is applied to either After the application to the joint portion, the other shape member 20 is bonded with the end face 23 and the projection 27 contacting each other as shown in the figure, and the projection 24 and the recess 26 are fitted to each other.
In addition, the plate | board thickness of each part in junction part 21a, 21b is made into thickness about 2 to 5 times the plate | board thickness of an intermediate part, and makes junction part 21a, 21b cross-sectional shape higher in rigidity than an intermediate part.
[0034]
In FIG. 2A, the adhesive 28 receives a tensile force W that separates the shape members 20 and 20 left and right in the length (Σx) that extends over the entire cross section calculated by the following mathematical formula 7.
That is, if the value (τ × Σx) obtained by multiplying the total length (Σx) of the bonded portion by the tensile shear strength (τ) is equal to or greater than the tensile force (W) as shown in Equation 5, the bonded portion as described above. Since the tensile strength per unit length is greater than the tensile shear strength, an adhesive strength greater than the required tensile force (W) can be obtained.
[0035]
[Expression 7]
Σx = 2 × (x1) + 2 × (x2) + XThree
[0036]
In addition, as shown in Equation 6, the thickness (t = t / 2 × 2) of the middle part of the shape members 20 and 20 and the 0.2% proof stress (σ0.2) Is equal to or greater than the product (τ × Σx) of the total length (Σx) of the bonded portion and its tensile shear strength (τ), the required bonding strength can be reliably obtained. In addition, since the joint portions 21a and 21b to which the shape members 20 and 20 are bonded are thicker than other portions in which the hollow portion 22 is provided, the joint portions 21a and 21b have a highly rigid cross-sectional shape and are mutually male.・ Tearing force H and peeling force do not act by fitting female. Therefore, it is possible to obtain a panel having a stable bonding strength by designing in advance so as to retain at least the value (τ × Σx) calculated by Equation 6.
[0037]
Here, a method for manufacturing the panel 20a will be described. As shown in FIG. 2B, the shape member 20 is first extruded using an extruder (not shown). The cross section of the shape member 20 is designed in advance so as to satisfy the conditions of Equations 5 and 6, and a web 25 that divides the hollow portion 22 into two is integrally attached to the center of the hollow portion 22 as necessary. Yes.
Next, after cutting the shape member 20 into a length corresponding to the panel 20a, anodizing treatment is performed. The shape members 20 and 20 whose surfaces have been degreased in advance are supported by an electrode (not shown) and immersed in a treatment liquid in a treatment tank, and an anodized film layer 2 is formed by a known method as shown in FIG. It is generated on the surface of the material 20. The coating layer 2 has a thickness of about 5 to 20 μm. The shaped member 20 taken out from the treatment tank is washed with hot water of about 80 ° C. so that a large number of pores on the surface of the oxide film layer 2 are not completely sealed.
Further, the shape member 20 is supported on another electrode and immersed in an electrodeposition liquid of an acrylic resin paint in an electrodeposition treatment tank (not shown), and electrodeposition (electropermanent) coating is performed by a known method.
As a result, as shown in FIG. 3B, the entire surface of the coating layer 2 of the profile 20 is coated with the electrodeposition coating layer 4 made of acrylic resin and having a thickness of about 10 μm. Finally, the shape member 20 is heated at about 160 to 190 ° C. for about 30 minutes to be baked to cure and stabilize the coating layer 4. The anodic oxide coating layer 2 and the electrodeposition coating layer 4 are processed by a continuous surface treatment line.
[0038]
And after degreasing the shape materials 20 and 20 which have the oxide film layer 2 and the electrodeposition coating film layer 4 with acetone as mentioned above, it adjoins so that junction part 21a, 21b may mutually oppose, Adhesive 28 is applied to either 21a or 21b. The adhesive 28 is a two-component room temperature curable adhesive made of an epoxy or acrylic resin.
In a state where the joint portions 21a and 21b of the adjacent shape members 20 and 20 are male-female-fitted and joined via the adhesive 28, the shape members 20 and 20 are bonded to the thickness of the adhesive 28 by an appropriate pressing jig. Fix so that is appropriate. In such a fixed state, the adhesive 28 is held for about 2 to 3 days, and the adhesive 28 is cured to stabilize its adhesive force. Thereby, as shown in FIG. 2A, the panel 20a in which a plurality of shapes 20 are joined by the adhesive 28 can be obtained.
[0039]
FIG. 4A shows an extruded profile 30 of a different form. This profile 30 is also made of the same aluminum alloy as described above, and has a male section 31 having a flat section and a substantially rectangular hollow section 32, and a convex section 34 having a trapezoidal section in the center of the end face 33 at the right end. The left end face has protrusions 37, 37 that are substantially trapezoidal in cross section and symmetrical in the vertical direction, and a female joint portion 35 having a trapezoidal concave section 36 located therebetween. As shown in the drawing, the convex portions 34 and the concave portions 36 of the joint portions 31 and 35 can be fitted into a male and a female. In addition, as shown in FIG. 4 (a), the entire surface is previously coated with the anodic oxide coating layer 2 having an average thickness of 5 μm and the electrodeposition coating layer 4 having an average thickness of 10 μm by the method described above. Has been. In addition, the plate thickness of each part in the joint portions 31 and 35 is thicker than the intermediate portion, and has a cross-sectional shape with high rigidity.
[0040]
FIG. 4B shows a cross section of a panel 30a obtained by joining the shape members 30,30. After degreasing the joints 31 and 35 in the adjacent shape members 30 and 30 with acetone in advance, as shown in FIG. 4 (B), a two-component epoxy adhesive 38 similar to the adhesive 8 is applied to any one of them. The other profile 30 is applied to the joint, and the end face 33 and the projection 37 are brought into contact with each other as shown in the figure, and the projection 34 and the recess 36 are fitted into a male and female to be bonded and hardened. Thereby, the said panel 30a which joined the some shape material 30 with the adhesive agent 38 can be obtained. Note that the total length Σx of the bonded portion is the two x shown in FIG.2One xThree, And two xFourIt is calculated by the total value of
[0041]
FIG. 5A shows a cross section of the joint portions 41 and 45 of the extruded shape member 40 having a different form.
The shape member 40 is also made of the same aluminum alloy as described above, and includes a hollow portion 40a having a substantially rectangular cross section as shown in FIG. At the right end of the shape member 40, there is a groove 43 having a triangular cross section at the center of the end surface, and convex ridges 42, 42 protruding in parallel with the upper and lower sides thereof, and a step 44 between the outer surface. Are provided.
Further, at the left end of the shape member 40, a ridge 46 having a triangular cross section at the center of the end face, concave grooves 47, 47 parallel to each other in the upper and lower cross section of the cross section, and a bent portion 48 connected to the upper and lower sides thereof. A joint portion 45 having a pair of flanges 49 and 49 protruding in parallel with the outer surface is provided. As shown in FIG. 5A, the surface of the shape member 40 is previously coated with the anodic oxide coating layer 2 and the electrodeposition coating layer 4 in the same manner as described above.
[0042]
After degreasing the joint portions 41 and 45 in the plurality of shape members 40, the same adhesive S as described above is applied to the joint portion 41 as shown in FIG. Next, as shown in FIG. 5B, the joint portions 41 and 45 of the shape members 40 and 40 are joined. That is, the ridge 46 is fitted in the groove 43, the ridge 42 is fitted in each groove 47, and the flange 49 is positioned on the step 44. In addition, between the joint portions 41 and 45, the shape members 40 and 40 come into contact with each other at a portion K in FIG. 5B, so that the left and right shape members 40 and 40 are joined with the adhesive S at an appropriate interval. is doing. As a result, it is possible to form a panel composed of a plurality of shape members 40.
5B, between the joints 41 and 45, between the bottom of the groove 43 and the tip of the ridge 46, between the bottom of each groove 47 and the tip of the ridge 42, and A gap F having a required cross-sectional area is located between each protrusion 42 and the bent portion 48, and the excess adhesive S is received. Further, as shown in FIG. 5B, the total length of the adhesive S between the joint portions 41 and 45 is used as Σx in the equations 5 and 6. However, since the thickness of the adhesive S is larger than the appropriate value in the gap F in FIG. 5B, the length Σx is calculated excluding the gap F.
[0043]
FIG. 6A illustrates the entire cross section of the extruded profile 40. That is, the shape member 40 has joint portions 41 and 45 at both ends, a pair of curved pieces 40b and 40c that are curved in parallel with each other, and a flat hollow portion 40a sandwiched between them. As shown to 6 (a), it has the anodic oxide film layer 2 and the electrodeposition coating film layer 4 on the surface. As shown in FIG. 6B, the joint portions 41 and 45 of the adjacent shape members 40 and 40 are sequentially joined. As a result, as shown in FIG. 4C, a panel 40d in which a plurality of shape members 40 are joined can be formed. As shown in the figure, the panel 40d forms a curved surface with a continuous curve, and can be used as a roof unit such as a shelter for protecting pedestrians from rainwater in front of a station or in a shopping street.
[0044]
The present invention is not limited to the embodiments described above.
In the shape members 20, 30, and 40 shown in FIGS. 2 to 6, the cross-sectional shapes of the joint portions 21a and 21b and the like are higher in rigidity than that of the intermediate portion. For example, as shown in FIG. By using the extruded shape member 50, the panel 50a in which the tearing force H in the out-of-plane direction with respect to the bonding surface shown in FIG.
As shown in FIG. 7A, the shape member 50 is made of the same aluminum alloy as described above, and has a rectangular hollow portion 51 with a flat cross section, and protrudes from a thick end wall 53 at the right end in the figure. It has the joint part 52 which consists of a pair of thin and parallel ridges 54 and 54 provided. Further, at the left end, there is a joint portion 55 composed of concave grooves 56 and 56 positioned above and below the central convex portion 57 between the end walls 58 and 58. The joint portion 55 composed of the pair of concave grooves 56 is thicker than the intermediate portion of the shape member 50. As shown in FIG. 7 (a), the shape member 50 is preliminarily coated with an anodic oxide coating layer 2 and an electrodeposition coating layer 4 on its surface.
[0045]
As shown in FIG. 7A, a panel 50a is obtained by joining the joints 52 and 55 with an adhesive 59 in the same manner as described above. Since each ridge 54 is the thinnest and has a cross-sectional shape having a lower rigidity than the other portions of the shape member 50, the tearing force H and the peeling force in the direction of the arrow shown in FIG. No longer works.
In other words, the extruded shape forming the panel of the present invention has a concave / convex cross section having a rigid cross-sectional shape than the other parts in order to make it difficult for the tearing force H or the like to act when bonded at the joint. It is possible to use a flexible cross-sectional shape in which the main body of the shape is deformed before the tearing force H or the like acts on one shape.
[0046]
Further, instead of the curved pieces 40b and 40c between the joint portions 41 and 45 illustrated in FIG. 6A, an extruded shape member having a pair of bent pieces that are parallel to each other and bent into a substantially H-shaped cross section, and It is also possible to form a panel in which the cross section joined through the adhesive S exhibits a zigzag shape so that the adjacent bent pieces of the shape members have a continuous zigzag shape. Alternatively, an extruded shape member having a pair of bent pieces bent in the above-mentioned substantially H-shaped cross section at the center serving as a ridge portion, and a plurality of shape members having straight side pieces between the joint portions 41 and 45 on both sides thereof are used. By joining via S, it is also possible to form a roof panel whose entire cross section has a substantially square shape. Of course, a side piece having an arbitrary cross-sectional shape can be disposed between the joint portions 41 and 45, and a part of the side piece is formed into a shape in which the side piece is located only on one side without the hollow portion 40a. Is also possible.
[0047]
【Example】
Here, a specific embodiment of the present invention will be described with reference to the panel 60 of FIG.
As shown in FIG. 7B, the extruded shape member 61 forming the panel 60 is made of an aluminum alloy (JIS: A6063) and subjected to T5 heat treatment. This shape member 61 has a flat hollow rectangular portion 62, a male joint portion 63 having a convex cross-sectional shape having an end wall 65 at its right end and an elongated ridge 64 at its center, and an end wall 67 at its left end. And a female joint portion 66 having a concave cross-sectional shape having an elongated concave groove 68 at the center thereof. In FIG. 7B, the overall width of the shape member 61 is 270 mm, the thickness T in the vertical direction is 25 mm, the thickness t of the intermediate portion is 2.5 mm, the thickness of each joint 63, 66 is 6 mm, and convex. The length L in the left-right direction of each inclined surface of the strip 64 and the concave groove 68 is 20 mm. Furthermore, the 0.2% proof stress of the shape member 61 is 145 N / mm.2The tensile strength is 190 N / mm as measured.2It is.
[0048]
After the above-described shape member 61 was extrusion-molded, an anodized film layer 2 having an average film thickness of 7 μm was generated by sulfuric acid anodizing treatment, and washed with hot water at about 80 ° C. The shape member 61 having the unsealed film layer 2 was subjected to electrodeposition coating with an acrylic thermosetting resin, and the electrodeposition coating layer 4 having an average film thickness of 10 μm was coated on the film layer 2. Then, the said coating layer 4 was hardened by performing the baking process which heats at about 160 to 190 degreeC for 30 minutes.
Ten sections 61 having the coating layer 2 and the coating layer 4 were cut at a length of 50 mm along the extrusion direction (the depth direction on the paper surface) shown in FIG. After degreasing the joints 63 and 66 of each shape member 61 with acetone, a two-component epoxy adhesive (trade name of Nagase Ciba: Araldite (resin: Aw106, curing agent: HV953U)) 69 is applied, and FIG. As shown in FIG. 7 (B), a pair of shape members 61 were joined by male and female joints at joints 63 and 66. The average thickness of the adhesive 69 was 100 μm. The obtained 5 sets of test pieces were held for 7 days.
[0049]
A tensile test was performed in which the shape members 61 and 61 adhered in FIG. 7B were pulled along the left and right directions apart from each other on the five sets of test pieces. As a result, each set of test pieces was broken at the bonded portion, and the average breaking strength was 39200 N (784 N / mm). In addition, each shape member 61 produced elongation deformation at an intermediate portion excluding the joint portions 63 and 66.
By the way, the total length Σx of the adhesive portion in each test piece is the three vertical portions x of the adhesive 69 shown in FIG.2, x2, xThree(5mm × 3) and a pair of inclined parts xFourIt is the sum of (20.6 mm × 2). When the product of this and the shear strength (τ) was obtained based on the above Equation 5, the value shown at the right end of the following Equation 8 was calculated.
[0050]
[Equation 8]
τ × Σx = 12.7N / mm2× ((5 mm × 3) + (20.6 mm × 2)) = 714 N / mm
[0051]
On the other hand, the yield strength limit per 1 mm in length along the paper surface depth direction shown in FIG. 7B of the shape member 61 itself is 725 N / mm, and the breaking limit strength is 950 N / mm.
In addition, the actual strength (784 N / mm) measured with the test piece was higher than the product value (714 N / mm) of the shear strength (τ) calculated by Expression 8 and the total length Σx of the bonded portion. This is because the strength is calculated by the tensile shear strength in Formula 8, but the tensile strength is larger than the tensile shear strength, and it is considered that the increase is taken into account. Therefore, the value calculated by Equation 8 using the tensile shear strength (τ) sufficiently guarantees the safety when designing the adhesive strength in the panel 60 obtained by adhering the shape members 61 and 61. Confirmed to get.
[0052]
【The invention's effect】
According to the panel of the present invention described above, the adhesive is interposed between the electrodeposition coating layers, and both shapes are firmly bonded, and the adhesive strength is substantially equal to the case of bonding between plain aluminum surfaces. Therefore, it is possible to form a panel in which a plurality of extruded shape members are firmly joined only by an adhesive. In addition, since each of the shapes is coated with the anodic oxide coating layer and the electrodeposition coating layer, a panel having both high corrosion resistance and appearance gloss can be obtained. And the surface treatment normally used for an aluminum material can also be utilized as it is.
Moreover, according to the panel of Claims 2 thru | or 4, since it has the junction part which can resist strongly with respect to tearing force or peeling force, or these junction parts cannot act easily, the stable joining by an adhesive agent is obtained. be able to.
Furthermore, according to the panels of claims 5 and 6, it is possible to easily use an extruded profile having a required adhesive strength and cross-sectional shape for a joint portion to be joined with a required tensile strength or adhesive. It can be set as the panel which has the stable adhesive strength.
[0053]
On the other hand, according to the method for producing a panel of the present invention, the adhesive applied between the extruded shapes is not affected by anodizing treatment or electrodeposition coating, and is substantially equivalent to the case of bonding between plain aluminum surfaces. Since the adhesive strength can be obtained, it is possible to reliably manufacture a panel in which a plurality of extruded shapes are firmly joined only with an adhesive. In addition, corrosion resistance and appearance gloss can be obtained, and since the adhesive does not deteriorate upon contact with the anodizing solution or the electrodeposition coating solvent as in the prior art, the required adhesive strength can be reliably obtained. In addition, the surface treatment facilities and processes normally used for aluminum materials can be utilized as they are.
Further, according to the manufacturing method of claim 10, since the electrodeposition coating layer adheres firmly to the unsealed anodic oxide coating layer, even if a tensile shear force acts between the joined extruded shapes, Breakage between the coating layer and the coating layer can be reliably prevented.
[Brief description of the drawings]
FIG. 1A is a schematic diagram showing a state of a tensile test performed with a plate piece to obtain a panel of the present invention, and FIG. 1B is a schematic diagram showing an action of an adhesive and the like at a joint between extruded profiles. .
2A is a partial cross-sectional view showing a panel of the present invention, FIG. 2A is an enlarged view of an alternate long and short dash line portion a in FIG. 2A, and FIG. 2B is a cross-sectional view of an extruded profile forming this panel; .
3A is a partial cross-sectional view showing a state in which the surface of the shape member in FIG. 2B is subjected to anodizing treatment, and FIG. 3B shows a state in which electrodeposition coating is applied. FIG.
4A is a partial cross-sectional view of different extruded shapes, FIG. 4A is an enlarged view of a dashed line portion a in FIG. 4A, and FIG. 4B is obtained by joining the shapes of (A) together. FIG.
5A is a partial cross-sectional view showing joints of extruded shapes having different forms, FIG. 5A is an enlarged view showing an alternate long and short dash line part a in FIG. 5A, and FIG. The fragmentary sectional view which shows the state joined by the adhesive agent.
6A is a cross-sectional view of an extruded profile having the joint portion of FIG. 5 at both ends, FIG. 6A is an enlarged view showing an alternate long and short dash line portion a in FIG. 5A, and FIG. The fragmentary sectional view which shows the joining state of (C), (C) is sectional drawing of the panel formed by joining a plurality of the shape materials concerned.
7A is a partial cross-sectional view of a panel in which extruded shapes having different forms are joined to each other, FIG. 7A is an enlarged view showing an alternate long and short dash line portion a in FIG. 7A, and FIG. The fragmentary sectional view which shows the extruded shape material of an Example, and the panel which joined this.
[Explanation of symbols]
2 ………………………………………………………………………… Anodized film layer
4 ……………………………………………………………………… Electrodeposition coating layer
18,28,38, S, 59,69 ……………………………………… Adhesive
10a, 10b, 20, 30, 40, 50, 61 ……………………… Extruded profile
20a, 30a, 40d, 50a, 60 ……………………………… Panel
21a, 21b, 31, 35, 41, 45, 52, 55, 63, 66 ... junction
H ……………………………………………………………………… Tear force

Claims (10)

アルミニウム合金からなり偏平な断面を有する複数の押出形材を接合して形成され、
上記形材同士の対向する各接合部の表面を含む外表面に陽極酸化皮膜層が生成されると共に、その上に電着塗膜層が被覆され、この電着塗膜間が接着剤で接着されることにより、上記形材同士が接合されている、ことを特徴とするパネル。
Formed by joining a plurality of extruded shapes made of aluminum alloy and having a flat cross section,
An anodized film layer is formed on the outer surface including the surface of each joint portion facing each other, and an electrodeposition coating layer is coated thereon, and the electrodeposition coating layer is bonded with an adhesive. By doing so, the above-mentioned shape members are joined to each other.
前記形材同士の対向する各接合部が、前記接着剤に対して引き裂き力又は引き剥がし力の作用しないように互いに嵌合する凹断面形状及び凸断面形状である、ことを特徴とする請求項1に記載のパネル。The respective joint portions facing each other between the shape members have a concave cross-sectional shape and a convex cross-sectional shape that are fitted to each other so that a tearing force or a peeling force does not act on the adhesive. The panel according to 1. 前記形材同士の対向する各接合部が、当該形材における他の部分の断面形状よりも剛性の高い断面形状をそれぞれ有することにより、上記接合部に前記引き裂き力又は引き剥がし力を作用しにくくしてなる、
ことを特徴とする請求項1又は2に記載のパネル。
Each of the joint portions facing each other has a cross-sectional shape having rigidity higher than that of other portions of the shape member, so that the tearing force or the peeling force hardly acts on the joint portion. Become
The panel according to claim 1 or 2, characterized in that
前記接合される形材の何れか一方の接合部が、当該形材における他の部分の断面形状よりも剛性の低い断面形状を有することにより、上記接合部に前記引き裂き力又は引き剥がし力を作用しにくくしてなる、
ことを特徴とする請求項1又は2に記載のパネル。
Any one of the joined parts has a cross-sectional shape having rigidity lower than that of the other part of the shape, so that the tearing force or the peeling force acts on the joint part. Made difficult
The panel according to claim 1 or 2, characterized in that
前記接着剤により接合される接合部が、パネルに求められる引張り強度Wに対し、下記数式1を満たすものである、
ことを特徴とする請求項1乃至4の何れかに記載のパネル。
【数1】
τ×Σx≧W
ここで、τは形材同士の接合部における引張剪断強度(N/mm2)、Σxは接合部の断面における接着部の長さの合計値(mm)、Wは接合された形材同士が互いに離間する方向に対して要求される単位長さ当たりの引張強度(N/mm)を示す。
The joint joined by the adhesive satisfies the following formula 1 with respect to the tensile strength W required for the panel.
The panel according to claim 1, wherein:
[Expression 1]
τ × Σx ≧ W
Here, τ is the tensile shear strength (N / mm 2 ) at the joint between the profiles, Σx is the total length (mm) of the bonded portion in the cross section of the joint, and W is the shape between the joined profiles. The tensile strength (N / mm) per unit length required for the directions away from each other is shown.
前記接着剤により接合される接合部が、前記接合された各形材の断面形状に対し、下記数式2を満たすものである、
ことを特徴とする請求項1乃至5の何れかに記載のパネル。
【数2】
σ0.2×t≧τ×Σx
ここで、σ0.2は形材自体の0.2%耐力(N/mm2)、tは形材同士の離間方向と直交する断面における厚みの各合計値のうちでの最小値(mm)、τは形材同士の接合部における引張剪断強度(N/mm2)、Σxは接合部の断面における接着部の長さの合計値(mm)を示す。
The joint joined by the adhesive satisfies the following mathematical formula 2 with respect to the cross-sectional shape of each joined shape.
The panel according to any one of claims 1 to 5, wherein
[Expression 2]
σ 0.2 × t ≧ τ × Σx
Here, σ 0.2 is the 0.2% proof stress (N / mm 2 ) of the profile itself, t is the minimum value (mm) of the total values of the thicknesses in the cross section perpendicular to the separation direction of the profiles, τ represents the tensile shear strength (N / mm 2 ) at the joint between the shape members, and Σx represents the total value (mm) of the length of the bonded portion in the cross section of the joint.
前記電着塗膜層が、前記形材に陽極酸化皮膜層を生成し且つ湯洗された後、アクリル系樹脂を電着塗装して焼き付け処理されたものである、
ことを特徴とする請求項1乃至6の何れかに記載のパネル。
The electrodeposition coating layer is an anodized coating layer formed on the shape and washed with hot water, and then electrodeposited with an acrylic resin and baked.
A panel according to any one of claims 1 to 6, wherein
前記接着剤が、エポキシ系又はアクリル系樹脂からなる2液性の常温硬化型接着剤である、
ことを特徴とする請求項1乃至7の何れかに記載のパネル。
The adhesive is a two-component room temperature curable adhesive made of an epoxy or acrylic resin,
The panel according to any one of claims 1 to 7, characterized in that
アルミニウム合金からなり偏平な断面を有する複数の押出形材を接合して形成するパネルの製造方法であって、
上記形材の表面に陽極酸化皮膜層を生成する陽極酸化処理工程と、
上記形材の陽極酸化皮膜層の表面に電着塗膜層を被覆する電着塗装工程と、
上記形材同士の対向する接合部の表面における電着塗膜同士の間に接着剤を塗布し、形材同士を密着させた後に上記接着剤を硬化させる接着工程と、を含む、
ことを特徴とするパネルの製造方法。
A method of manufacturing a panel formed by joining a plurality of extruded shapes made of an aluminum alloy and having a flat cross section,
An anodizing treatment step for generating an anodized film layer on the surface of the shape material;
An electrodeposition coating process for coating the surface of the anodized film layer of the above-mentioned shape material with an electrodeposition coating layer;
An adhesive step between the electrodeposition coating films on the surfaces of the joints facing each other, and an adhesive step for curing the adhesive after the shapes are brought into close contact with each other.
A method for producing a panel, characterized by the above.
前記電着塗装工程は、前記陽極酸化処理工程により生成された陽極酸化皮膜層を湯洗した後に行われる、
ことを特徴とする請求項9に記載のパネルの製造方法。
The electrodeposition coating step is performed after washing the anodized film layer generated by the anodizing treatment step with hot water,
The panel manufacturing method according to claim 9.
JP18448399A 1999-06-29 1999-06-29 Panel and manufacturing method thereof Expired - Fee Related JP3829234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18448399A JP3829234B2 (en) 1999-06-29 1999-06-29 Panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18448399A JP3829234B2 (en) 1999-06-29 1999-06-29 Panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001012009A JP2001012009A (en) 2001-01-16
JP3829234B2 true JP3829234B2 (en) 2006-10-04

Family

ID=16153975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18448399A Expired - Fee Related JP3829234B2 (en) 1999-06-29 1999-06-29 Panel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3829234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097256A (en) * 2004-09-28 2006-04-13 Sumikei-Nikkei Engineering Co Ltd Roof unit
KR102090994B1 (en) * 2019-08-08 2020-05-12 김성길 Warehouse-type building structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50101394D1 (en) * 2001-03-05 2004-03-04 Sika Schweiz Ag Zuerich Process for structural gluing on paint surfaces
JP5109609B2 (en) * 2006-11-15 2012-12-26 株式会社イトーキ Glass plate connection structure in panel system and panel body used therefor
DE102009023708A1 (en) * 2009-06-03 2010-12-16 Kgt Graphit Technologie Gmbh Positive and non-positive connection of special graphite parts to multi-part graphite components
KR101718394B1 (en) * 2016-01-18 2017-03-22 주식회사 다산피앤지 Light-weight panel frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097256A (en) * 2004-09-28 2006-04-13 Sumikei-Nikkei Engineering Co Ltd Roof unit
KR102090994B1 (en) * 2019-08-08 2020-05-12 김성길 Warehouse-type building structure

Also Published As

Publication number Publication date
JP2001012009A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP3829234B2 (en) Panel and manufacturing method thereof
US8110054B2 (en) Method for connection at least two pieces of sheet material, particularly at least two metal sheets for a lightweight structure as well a joining and lightweight structure
TW200932621A (en) Crank for bicycle and method for manufacturing the same
JP2007046646A (en) Method for joining metal members
US20040194409A1 (en) Apparatus and method for an embedded connector attached to a base panel
JP6689033B2 (en) Aluminum / thermoplastic composite
CA1279842C (en) Method of fabricating structures from aluminium sheet and structures comprising aluminium components
CN213143731U (en) Honeycomb board and floor block and wall panel provided with same
US9555596B2 (en) Honeycomb structure
CN211200908U (en) Cutting plate of aluminum alloy section
JP3798088B2 (en) Laminated sheet for panel reinforcement
CN218025912U (en) High temperature resistant electronic adhesive tape
JP2628572B2 (en) Outer corner member and construction method
JP6997974B2 (en) Auto parts
JPWO2008047669A1 (en) Glass with molding
RU2220849C2 (en) Method for manufacture of configured panel
JP2004316095A (en) Joint joiner and joint structure using the same
KR200200669Y1 (en) Connecting Structures of Aircraft Parts
JP2001317129A (en) Connecting structure for panel
JP2020147960A (en) Waterproof material for sash mounting frame
JPS6236909Y2 (en)
JP5391741B2 (en) Method for manufacturing metal plate with coating film having bonding allowance
JP2008290094A (en) Method for producing structure, the structure, and extruded shape material thereof
JPS636354Y2 (en)
JP3248460B2 (en) Concrete wall reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees