JP3829013B2 - Light sensor for tilt detection - Google Patents

Light sensor for tilt detection Download PDF

Info

Publication number
JP3829013B2
JP3829013B2 JP11633898A JP11633898A JP3829013B2 JP 3829013 B2 JP3829013 B2 JP 3829013B2 JP 11633898 A JP11633898 A JP 11633898A JP 11633898 A JP11633898 A JP 11633898A JP 3829013 B2 JP3829013 B2 JP 3829013B2
Authority
JP
Japan
Prior art keywords
sphere
light
moving path
spherical
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11633898A
Other languages
Japanese (ja)
Other versions
JPH11304476A (en
Inventor
隆行 森本
伸孝 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP11633898A priority Critical patent/JP3829013B2/en
Publication of JPH11304476A publication Critical patent/JPH11304476A/en
Application granted granted Critical
Publication of JP3829013B2 publication Critical patent/JP3829013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子カメラ等の各種機器に搭載され、その機器の傾きを検出する傾き検出用光センサーに関するものである。
【0002】
【従来の技術】
従来の球体を用いた傾き検出用光センサー(以下、単に「光センサー」と称す。)としては、同出願人が提案した特願平9−163881号(平成9年6月20日出願)に記載のものがある。
【0003】
図8はこの光センサーを示す構成図であり、(a)は平面図であり、(b)は(a)のC−C′断面図であり、(c)は(a)のD−D′断面図である。
【0004】
以下、図8を用いて従来の光センサーの構成を説明する。従来の光センサーは、基体14と、蓋体15と、球体16とを有している。前記基体14は遮光性樹脂からなる断面視コの字形状からなり、このコの字部分の底面に、中央部に水平面13aを備え両端部に傾斜面13b,13cを備えた球体移動路13が設けられている。この傾斜面13b,13cは前記水平面13a側に向かって任意の角度の傾きを以て傾斜している。このような球体移動路13上に、例えばステンレス製の球体16を搭載し、この球体16が傾きにより飛び出さないようコの字部分の開口部を覆い被せるように、遮光性樹脂からなる蓋体15が装着されている。この蓋体15には係止片17が設けられており、装着時に弾性変形により広がり、作業上容易かつ確実に基体14の保持部18に係止されるようになっている。このため、人の手などで外さない限り衝撃等で容易に外れることはない。また、基体14には球体移動路13を挟んで両側に、リードフレーム19に搭載された発光チップ20を透光性樹脂にてモールドしてなる発光素子11とリードフレーム19に搭載された受光チップ21を透光性樹脂にてモールドしてなる受光素子12とを対向配置している。
【0005】
続いて、上述した光センサーの傾き検出の原理を説明する。上述した光センサーは、電子カメラ等の各種機器に搭載され、その傾斜方向を検出するものであるが、受光チップ21の2つの受光面21a,21bは傾斜時に球体16が位置する左右の傾斜面13b,13cに対応する位置にそれぞれ位置し、発光チップ20は2つの受光面21a,21bの間で対向しかつ非傾斜時に2つの受光面21a,21bへの光が前記水平面13aにある球体16により遮光されない位置にある。
【0006】
このため、光センサーおよびこれを搭載した機器(被検出体)の非傾斜状態では、球体16は自重により水平面13aに位置し、発光チップ20からの光は球体16により妨げられることなく受光チップ21の2つの受光面21a,21bに入射する。そして、2つの受光面21a,21bからの出力信号を受けて当該光センサーおよびこれを搭載した機器が非傾斜状態であることを判断する。
【0007】
一方、光センサーおよびこれを搭載した機器が傾斜面13bの角度を越えて左側へ傾斜した傾斜状態では、球体16は自重により点線で示す傾斜面13bの端部に移動し、発光チップ20からの光は傾斜方向に配置された受光面21aに入射せず、他方の受光面21bにのみ入射する。そして、受光面21bからの出力信号を受けて当該光センサーおよびこれを搭載した機器が左に傾斜状態であることを判断する。
【0008】
また、従来の他の光センサーとしては、図9に示すように、球体移動路13の球体移動方向に対して垂直方向の幅(球体移動路13の短手方向の幅)を球体16の幅に比較して大きく設定したものがある。なお、図9は、従来の他の光センサーの概略図であり、(a)は正面断面図であり、(b)は側面断面図である。
【0009】
【発明が解決しようとする課題】
しかしながら、上述した従来の光センサーでは、球体16の複数回の移動(度重なる移動)によって球体16および球体移動路13に静電気が帯電した場合、球体16表面および球体移動路13表面が凹凸を有しない球面および平面であるために帯電した静電気が放電しにくく、帯電したままの球体16と球体移動路13との間に静電気による力が働く。この静電気力は、球体16が自重により移動するのを妨げる方向に力が働く。
【0010】
この結果、従来の光センサーでは、例えば46度の角度で傾けたときに球体16が自重により移動するはずが、図10に示すように右に90度傾けても球体16が移動しない場合があり、最悪の場合、傾き検出用光センサーを180度に傾けても球が移動しない場合があった。
【0011】
この場合、光センサーを搭載した機器が傾いているにもかかわらず、光センサーの出力としては機器が傾いていないという出力となり、誤検出となる。また、この逆で、機器が傾いていないにもかかわらず、光センサーの出力としては機器が傾いているとの出力となり、誤検出となることもあった。
【0012】
また、図9(b)に示すように、球体16は、当該球体16が収納されている空間の凹凸を有しない壁面および上面に対しても接触可能な環境にあり、これらに接触することによっても帯電し、傾きの誤検出の要因となっていた。
【0013】
本発明は、上記課題に鑑み、複数回の球体移動を行っても、正確に傾き検出を行える傾き検出用光センサーの提供を目的とするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、光を発生する発光部と、前記発光部からの光を受光する受光部と、傾斜面を有する球体移動路が前記発光部と受光部との間に形成された基体と、前記基体に取り付けられた蓋体と、前記基体と前記蓋体との間に前記球体移動路に沿って移動可能に収納された球体とを備えた傾き検出用光センサーにおいて、前記球体表面が粗面とされ、前記球体移動路表面に凹部又は凸部が設けられたことを特徴とするものである。
【0015】
また、前記球体表面が粗面とされ、前記球体移動路表面の材質を前記球体の材質に比較して柔らかい材質とし、前記球体移動路表面に前記球体表面の凸部の衝突により形成された凹部を設けたことを特徴とするものである。
【0016】
さらにまた、前記球体移動路表面に凸部を設けた前記基体を、ガラス繊維を含有する樹脂にて成形し、該成形後の熱処理によって前記ガラス繊維を表面に析出させてなることを特徴とするものである。
【0017】
上記構成によれば、傾き検出用光センサーは、球体表面に凹部又は凸部を設けたので、前記球体の表面積が大きくなり、前記球体の複数回の移動により当該球体に帯電した静電気が放電し易くなる。この結果、前記球体に帯電する静電気量が減少し、前記球体と球体移動路との間に働く静電気力(静電気による引力)が軽減される。また、球体の球体移動路近傍に位置する部分の体積が小さくなるため、前記球体と球体移動路との間に働く静電気力が軽減される。
【0018】
また、球体移動路表面の材質を球体の材質に比較して柔らかい材質とし、前記球体移動路表面に前記球体表面の凸部の衝突により形成された凹部を設けたので、別途、前記球体移動路表面に凹部を形成する成形装置等を不要とすることができる。
【0019】
さらに、球体移動路表面に凹部又は凸部を設けたので、前記球体移動路の表面積が大きくなり、球体の複数回の移動により前記球体移動路に帯電した静電気が放電し易くなる。この結果、前記球体移動路に帯電する静電気量が減少し、前記球体と球体移動路との間に働く静電気力が軽減される。また、球体移動路の球体近傍に位置する部分の体積が小さくなるため、前記球体と球体移動路との間に働く静電気力が軽減される。
【0020】
さらにまた、前記球体移動路表面に凸部を設けた基体を、ガラス繊維を含有する樹脂にて成形してなるので、基体の成型金型の変更や凸部を設ける加工を行うことなく、基体の成形と同時に球体移動路表面に凸部を設けることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態にかかる傾き検出用光センサー(以下、単に「光センサー」と称す。)について、図面とともに説明する。
【0022】
図1は本発明の第1実施の形態にかかる光センサーを示す図であり、(a)は正面断面図であり、(b)は側面断面図である。
【0023】
本実施の形態にかかる光センサーは、供給された電気信号に応じて光を発生する発光部である発光素子1と、該発光素子1からの光を受光可能に当該発光素子1に対向して設けられた受光部である受光素子2と、前記発光素子1と受光素子2とを遮光性樹脂で封止することにより固定するとともに、中央部に水平面3aを有し両端部に傾斜面3b,3cを有する球体移動路3を前記発光素子1と受光素子2との間に備えた基体4と、該基体4に取り付けられた蓋体5と、前記球体移動路3に沿って移動可能に前記基体4と蓋体5との間で形成される密閉された空間に収納された球体6とを具備し、前記球体移動路3表面および球体6表面を粗面としてなる。
【0024】
具体的に説明すると、前記発光素子1は、リードフレーム上に搭載された発光チップ9が透光性樹脂にて封止され、当該発光素子1の発光面側が略台形状に形成されてなる。また前記受光素子2は、リードフレーム上に搭載された受光チップ10を透光性樹脂にて封止され、当該受光素子2の受光面側を略台形状に形成されてなる。
【0025】
また、前記発光素子1および受光素子2は、前記球体6の移動方向(球体移動路13の長手方向)に対して垂直方向で且つ前記球体移動路3を挟む位置で光学的に結合するようその発光面と受光面とが対向配置され、その発光面および受光面と両者のリードフレームの外部接続端子となる部分を除いて前記基体4を構成する遮光性樹脂にて封止され、前記発光面および受光面はその各面が露出する前記空間の壁面に対して略面一とされてなる。
【0026】
ここで、前記受光チップ10の2つの受光面は、傾斜時に球体6が位置する左右の傾斜面3b,3cに対応する位置にそれぞれ配置され、また、前記発光チップ9は該2つの受光面の間で対向しかつ非傾斜時に2つの受光面への光が水平面3aに位置する球体6により遮光されない位置に配置される。
【0027】
前記球体移動路3は、前記球体6の移動方向に並置された前記水平面3aと傾斜面3b,3cとを備えてなり、該水平面3aは前記球体6の移動方向の略中心に、前記傾斜面3b,3cは前記水平面3aを挟む位置にそれぞれ設けられてなる。そして、この傾斜面3b,3c表面および水平面3a表面を粗面としてなる。また、傾斜面3b,3cは、光センサーが搭載される基準面(または水平面)に対して一定の角度で傾斜するように形成されている。
【0028】
該球体移動路3表面を粗面とする方法としては、例えば、当該球体移動路3を構成する部分(本実施の形態では基体4全体)の材料(材質)としてガラス繊維を配合したPPS樹脂(ポリフェニレンサルファルド樹脂)を用い、このPPS樹脂の射出成形後に熱処理を行ってPPS樹脂の再結晶化によりガラス繊維を表面に析出することで粗面とすることができる。或いは、単純に表面をやすりで削ることで粗面とすることができる。
【0029】
また、球体移動路3を構成する部分を表面が粗面とされた球体6に比較して柔らかい材質とし、該粗面とされた球体6を基体4と蓋体5との間で形成される空間内に収納した後、この光センサー自身を振ることにより、粗面である球体6表面と球体移動路3とを衝突させて、球体移動路3表面を平面から粗面とすることも可能である。
【0030】
前記球体6は例えばベアリング用の鋼球からなり、その表面を例えばやすり等で削ることにより粗面としてなる。また、化学処理を施すことによってその表面を粗面にすることも可能である。
【0031】
該球体6又は球体移動路3表面の一例を図2に示す。図において、山と山の間隔X1及び山から谷への深さX2は、それぞれ1〜50μmとする。
【0032】
また、本実施の形態では、球体6が収納された空間の全ての面、すなわち4壁面(発光素子1の発光面および受光素子2の受光面を含む)および上面についても粗面としている。
【0033】
ここで、前記発光面および受光面については粗面とせず、平面とすることにより、光の乱反射を防止できる。
【0034】
そして、本実施の形態の光センサーは、傾斜面3b,3cの傾斜角度よりも小さく傾いたとき或いは全く傾いていないときには、球体6が自身の自重により球体移動路3の水平面3a上に移動し、発光チップ9からの光が前記球体6にて遮断されずに受光チップ10の2つの受光面にそれぞれ入射し、この各受光面からの出力信号を受けて光センサーおよび光センサーを搭載した機器が傾いていないことを検出する。
【0035】
また、傾斜面3bの傾斜角度よりも大きく左に傾いたときには、球体6が自身の自重により球体移動路3の傾斜面3b上に移動し、前記発光チップ9からの光を遮断する。これによって、受光チップ10の傾斜面3bに対応する位置に配置された受光面には発光チップ9からの光が入射せず、傾斜面3cに対応する位置に配置された受光面にのみ発光チップ9からの光が入射することになり、傾斜面3cに対応する位置に配置された受光面からの出力信号を受けて光センサーおよび光センサーを搭載した機器が左に傾いていることを検出する。
【0036】
さらに、傾斜面3cの傾斜角度よりも大きく右に傾いたときには、球体6が自身の自重により球体移動路3の傾斜面3c上に移動し、前記発光チップ9からの光を遮断する。これによって、受光チップ10の傾斜面3cに対応する位置に配置された受光面には発光チップ9からの光が入射せず、傾斜面3bに対応する位置に配置された受光面にのみ発光チップ9からの光が入射することになり、傾斜面3bに対応する位置に配置された受光面からの出力信号を受けて光センサーおよび光センサーを搭載した機器が右に傾いていることを検出する。
【0037】
このように、球体6は光センサーおよび光センサーを搭載した機器の傾きに応じて常に球体移動路3を移動するため、この球体6の複数回の移動(特に、度重なる移動)に伴って球体6および球体移動路3に静電気が帯電することになる。
【0038】
しかしながら、本実施の形態の光センサーは、前記球体移動路3の水平面3aおよび傾斜面3b,3c表面を粗面とすることで、前記水平面3aおよび傾斜面3b,3cの表面積を大きくし、前記球体6の複数回の移動により前記水平面3aおよび傾斜面3b,3cに帯電した静電気を放電し易くしている。また、球体6表面を粗面とすることによっても球体6に帯電した静電気を放電し易くしている。この結果、前記水平面3aおよび傾斜面3b,3c並びに球体6に帯電する静電気量が減少し、前記球体6と球体移動路3との間に働く静電気力が軽減される。
【0039】
さらに、表面を粗面にしない球体移動路および球体に比較して、球体移動路3および球体6の互いが近接する部分の体積が小さくなるため、前記球体6と球体移動路3との間に働く静電気力が軽減される。
【0040】
これらの静電気力の軽減により、前記球体6が静電気力によって前記球体移動路3に吸着されることを確実に防止できる。したがって、光センサーの傾きの有無を球体6の移動回数にかかわらず、正確に検出できる。
【0041】
なお、本実施の形態では、傾斜面3b,3cを対称状に設けているが、光センサーの使用目的や設計仕様に応じて単一な傾斜面や非対象の傾斜面で構成することも可能であり、また部分的または全体的に局面で構成することも可能であることはいうまでもない。
【0042】
また、球体移動路3表面および球体6表面の両表面を粗面としたが、前記球体移動路3表面および球体6表面の何れか一方を粗面とし、他方を非凹凸面(凹凸のない平面又は球面)としても良い。図3は、球体移動路4表面を平面とし球体6表面を粗面とした光センサーの要部断面図であり、図4は、球体移動路3表面を粗面とし球体6表面を凹凸のない球面とした光センサーの要部断面図である。
【0043】
さらに、上記の球体移動路3および球体6等の表面積を大きくする構成は、上記の粗面に限らず、凹部および凸部の少なくとも一方によって表面積を大きくする構成としても良い。
【0044】
図5は本発明の参考例にかかる光センサーを示す図である。図6は図5に示す光センサーの断面図であり(a)は図5のA−A′断面図であり、(b)は図5のB−B′断面図である。本参考例について上述した第1実施の形態と相違する点のみ説明する。
【0045】
参考例にかかる光センサーは、図1に示す光センサーの球体移動路3表面および球体6表面を粗面にする代わりに、球体移動路3の水平面3aおよび傾斜面3a,3bと、球体6を収納する空間を構成する球体移動方向に対して垂直の2壁面および上面との略中央に、球体6の移動方向に延びる溝7を設けてなる。
【0046】
前記溝7は例えば略コ字状からなり、その両端部によって、球体6を支持して球体移動路3と球体6との接触を線接触とするとともに、球体6が前記空間を構成する球体移動方向に対して平行の2壁面に対して接触することを防止するものであり、その深さは球体6が溝底面に接触しない程度の深さを有し、また幅は球体6が溝7上に乗った状態から容易に外れないだけの幅を有する。
【0047】
該構成により、前記球体6と球体移動路3との接触は球面と線となり、球体移動路3の球体6近傍に位置する部分の体積が小さくなり、前記球体6と球体移動路3との間に働く静電気力が軽減される。また、球体移動路3の表面積を大きくし、前記球体6の複数回の移動により前記球体移動路3に帯電した静電気を放電し易くしている。
【0048】
この結果、前記球体6と球体移動路3との間に働く静電気力が軽減され、前記球体6が静電気力によって前記球体移動路3に吸着されることを確実に防止でき、光センサーの傾きの有無を球体6の移動回数にかかわらず、正確に検出できる。
【0049】
また、溝7により、球体6が球体移動方向に対して平行の壁面に接触することがほとんどないため、従来のように該壁面接触による球体6の帯電を確実に防止できる。
【0050】
参考例では、球体6を収納する空間の球体移動方向に対して垂直の壁面および上面と球体移動路3との各表面に直接溝7を設けた構成としたが、図7に示すように、各表面に空間内に突出して球体移動方向に延び、互いが所定間隔を有して平行する2本の帯状の突起8を設けることによって、当該突起8,8の側面と各表面とからなる溝7aを設ける構成としてもよい。前記突起8の断面形状としては、例えば先端が尖り、根元側が太い形状とする。
【0051】
該構成によっても、前記溝7aにより前記球体6と球体移動路3(具体的には突起8,8)との接触が球面と線接触となるため、上述した溝7を設けた場合同様、光センサーの傾きの有無を球体6の移動回数にかかわらず、正確に検出できる。
【0052】
【発明の効果】
以上説明したように、本発明によれば、球体に帯電する静電気量を減少できるとともに球体の球体移動路近傍に位置する部分の体積を減少できる。これにより、球体と球体移動路との間に働く静電気力を軽減でき、該静電気力によって球体が球体移動路に吸着されることを確実に防止できる。よって、光センサーの傾きの有無を球体の移動回数にかかわらず、正確に検出できる。
【0053】
また、球体移動路表面に凹部を形成する成形装置等を不要とすることができ、製造工程および製造コストを低減できる。
【0054】
さらに、球体移動路に帯電する静電気量を減少できるとともに球体移動路の球体近傍に位置する部分の体積を減少できる。これにより、球体と球体移動路との間に働く静電気力を軽減でき、該静電気力によって球体が球体移動路に吸着されることを確実に防止できる。よって、光センサーの傾きの有無を球体の移動回数にかかわらず、正確に検出できる。
【0055】
さらにまた、基体の成型金型の変更や凸部を設ける加工を行うことなく、基体の成形と同時に球体移動路表面に凸部を設けることができ、製造工程および製造コストを低減できる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態にかかる傾き検出用センサーを示す断面図である。
【図2】球体または球体移動路表面の一例を示す断面図である。
【図3】球体移動路表面を平面とし、球体表面を凹凸面とした傾き検出用センサーを示す要部断面図である。
【図4】球体移動路表面を凹凸面とし、球体表面を非凹凸面とした傾き検出用センサーを示す要部断面図である。
【図5】本発明の参考例にかかる傾き検出用センサーを示す図である。
【図6】図5に示す光センサーの断面図である。
【図7】2本の帯状の突起から溝を設けてなる傾き検出用センサーを示す要部断面図である。
【図8】従来の傾き検出用センサーを示す図である。
【図9】従来の他の傾き検出用センサーを示す概略図である。
【図10】図9に示す傾き検出用センサーを右に90度傾けた状態を示す図である。
【符号の説明】
1 発光素子
2 受光素子
3 球体移動路
3a水平面
3b,3c傾斜面
4 基体
5 蓋体
6 球体
7,7a溝
8 突起
9 発光チップ
10受光チップ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tilt detection optical sensor that is mounted on various devices such as an electronic camera and detects the tilt of the device.
[0002]
[Prior art]
As a conventional optical sensor for detecting tilt using a sphere (hereinafter, simply referred to as “optical sensor”), Japanese Patent Application No. 9-163881 (filed on June 20, 1997) proposed by the same applicant is disclosed. There is a description.
[0003]
8A and 8B are configuration diagrams showing the optical sensor, in which FIG. 8A is a plan view, FIG. 8B is a cross-sectional view taken along the line CC ′ of FIG. 8A, and FIG. It is a cross-sectional view.
[0004]
Hereinafter, the configuration of a conventional photosensor will be described with reference to FIG. The conventional optical sensor has a base 14, a lid 15, and a sphere 16. The base 14 has a U-shaped cross-sectional view made of a light-shielding resin, and a spherical moving path 13 having a horizontal surface 13a at the center and inclined surfaces 13b and 13c at both ends on the bottom of the U-shaped portion. Is provided. The inclined surfaces 13b and 13c are inclined at an arbitrary angle toward the horizontal surface 13a. For example, a stainless steel sphere 16 is mounted on the sphere moving path 13, and a lid made of a light-shielding resin so as to cover the opening of the U-shaped portion so that the sphere 16 does not jump out due to an inclination. 15 is installed. The lid body 15 is provided with a locking piece 17 that spreads by elastic deformation when mounted, and is easily and reliably locked to the holding portion 18 of the base body 14 in operation. For this reason, it is not easily removed by impact or the like unless it is removed by a human hand. Further, a light emitting element 11 formed by molding a light emitting chip 20 mounted on a lead frame 19 with a translucent resin on both sides of the spherical body moving path 13 on the base 14 and a light receiving chip mounted on the lead frame 19. A light receiving element 12 formed by molding 21 with a translucent resin is disposed oppositely.
[0005]
Next, the principle of the above-described tilt detection of the optical sensor will be described. The above-described optical sensor is mounted on various devices such as an electronic camera and detects the inclination direction thereof. The two light receiving surfaces 21a and 21b of the light receiving chip 21 are the left and right inclined surfaces on which the sphere 16 is positioned when inclined. The light emitting chip 20 is located at a position corresponding to each of 13b and 13c, and the light emitting chip 20 faces between the two light receiving surfaces 21a and 21b, and the light to the two light receiving surfaces 21a and 21b is on the horizontal surface 13a when not inclined. It is in the position which is not shaded by.
[0006]
For this reason, in the non-tilt state of the optical sensor and the device (detected body) on which the optical sensor is mounted, the sphere 16 is positioned on the horizontal surface 13a by its own weight, and the light from the light emitting chip 20 is not blocked by the sphere 16 and the light receiving chip 21 Are incident on the two light receiving surfaces 21a and 21b. In response to the output signals from the two light receiving surfaces 21a and 21b, it is determined that the optical sensor and the device on which the optical sensor is mounted are in a non-tilted state.
[0007]
On the other hand, in the inclined state in which the optical sensor and the device on which the optical sensor and the device are mounted are inclined leftward beyond the angle of the inclined surface 13b, the sphere 16 moves to the end of the inclined surface 13b indicated by the dotted line due to its own weight. The light does not enter the light receiving surface 21a arranged in the tilt direction, but only enters the other light receiving surface 21b. Then, in response to an output signal from the light receiving surface 21b, it is determined that the photosensor and the device on which the photosensor is mounted are tilted to the left.
[0008]
Further, as another conventional optical sensor, as shown in FIG. 9, the width of the sphere moving path 13 in the direction perpendicular to the sphere moving direction (the width of the sphere moving path 13 in the short direction) is set to the width of the sphere 16. Some of them are set larger than 9A and 9B are schematic views of another conventional optical sensor, in which FIG. 9A is a front sectional view and FIG. 9B is a side sectional view.
[0009]
[Problems to be solved by the invention]
However, in the conventional optical sensor described above, when the sphere 16 and the sphere moving path 13 are charged with static electricity due to multiple movements (multiple movements) of the sphere 16, the surfaces of the sphere 16 and the sphere moving path 13 have irregularities. Because of the spherical surface and the flat surface, the charged static electricity is difficult to be discharged, and a force due to static electricity acts between the charged sphere 16 and the sphere moving path 13. This electrostatic force acts in a direction that prevents the sphere 16 from moving due to its own weight.
[0010]
As a result, in the conventional optical sensor, the sphere 16 should move due to its own weight when tilted at an angle of 46 degrees, for example, but the sphere 16 may not move even if tilted 90 degrees to the right as shown in FIG. In the worst case, the sphere may not move even when the tilt detection optical sensor is tilted 180 degrees.
[0011]
In this case, although the device equipped with the photosensor is tilted, the output of the photosensor is an output indicating that the device is not tilted, resulting in erroneous detection. On the other hand, even though the device is not tilted, the output of the optical sensor is an output indicating that the device is tilted, which may cause a false detection.
[0012]
Further, as shown in FIG. 9B, the sphere 16 is in an environment where the sphere 16 can be in contact with the wall surface and the upper surface of the space in which the sphere 16 is accommodated, and by contacting these, Was also charged, causing a false detection of tilt.
[0013]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical sensor for tilt detection that can accurately detect tilt even if the sphere is moved a plurality of times.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a light emitting part for generating light, a light receiving part for receiving light from the light emitting part, and a spherical moving path having an inclined surface are formed between the light emitting part and the light receiving part. In the inclination detecting optical sensor, comprising: a base body; a lid body attached to the base body; and a sphere body movably accommodated along the spherical body movement path between the base body and the lid body. The surface is a rough surface, and a concave portion or a convex portion is provided on the surface of the spherical moving path .
[0015]
Further, the spherical surface is a rough surface, the material of the spherical moving path surface is softer than the spherical material, and the concave formed by the collision of the convex part of the spherical surface with the spherical moving path surface Is provided.
[0016]
Furthermore, the base body provided with a convex portion on the surface of the spherical moving path is molded with a resin containing glass fiber, and the glass fiber is deposited on the surface by heat treatment after the molding. Is.
[0017]
According to the above configuration, since the inclination detecting optical sensor is provided with the concave portion or the convex portion on the surface of the sphere, the surface area of the sphere increases, and static electricity charged on the sphere is discharged by the movement of the sphere a plurality of times. It becomes easy. As a result, the amount of static electricity charged on the sphere is reduced, and the electrostatic force (attraction due to static electricity) acting between the sphere and the sphere moving path is reduced. Further, since the volume of the portion of the sphere located near the sphere moving path is reduced, the electrostatic force acting between the sphere and the sphere moving path is reduced.
[0018]
Further, since the material of the sphere moving path surface is softer than the material of the sphere, and the concave part formed by the collision of the convex part of the sphere surface is provided on the sphere moving path surface, the sphere moving path is separately provided. A molding apparatus or the like that forms a recess on the surface can be eliminated.
[0019]
Furthermore, since the concave or convex portions are provided on the surface of the sphere moving path, the surface area of the sphere moving path is increased, and the static electricity charged in the sphere moving path is easily discharged by moving the sphere a plurality of times. As a result, the amount of static electricity charged in the sphere moving path is reduced, and the electrostatic force acting between the sphere and the sphere moving path is reduced. Moreover, since the volume of the part located near the sphere of the sphere moving path is reduced, the electrostatic force acting between the sphere and the sphere moving path is reduced.
[0020]
Furthermore, since the base body provided with the convex portion on the surface of the spherical moving path is molded with a resin containing glass fiber, the base body can be processed without changing the molding die of the base body or processing for providing the convex portion. Convex portions can be provided on the surface of the spherical moving path simultaneously with the molding.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an inclination detecting optical sensor (hereinafter, simply referred to as “optical sensor”) according to an embodiment of the present invention will be described with reference to the drawings.
[0022]
1A and 1B are diagrams showing an optical sensor according to a first embodiment of the present invention, in which FIG. 1A is a front sectional view and FIG. 1B is a side sectional view.
[0023]
The optical sensor according to the present embodiment is opposed to the light emitting element 1 that is a light emitting unit that generates light according to a supplied electric signal, and the light emitting element 1 so as to be able to receive light from the light emitting element 1. The light receiving element 2, which is a light receiving section provided, and the light emitting element 1 and the light receiving element 2 are fixed by sealing with a light shielding resin, and a horizontal surface 3a is provided at the center, and inclined surfaces 3b, A base 4 provided between the light emitting element 1 and the light receiving element 2, a lid 5 attached to the base 4, and a movable body 3 movably along the spherical path 3. A sphere 6 accommodated in a sealed space formed between the base 4 and the lid 5 is provided, and the surface of the sphere moving path 3 and the surface of the sphere 6 are roughened.
[0024]
More specifically, the light emitting element 1 is formed by sealing a light emitting chip 9 mounted on a lead frame with a translucent resin and forming the light emitting surface side of the light emitting element 1 in a substantially trapezoidal shape. The light receiving element 2 is formed by sealing a light receiving chip 10 mounted on a lead frame with a translucent resin and forming the light receiving surface side of the light receiving element 2 in a substantially trapezoidal shape.
[0025]
The light emitting element 1 and the light receiving element 2 are optically coupled at a position perpendicular to the moving direction of the sphere 6 (longitudinal direction of the sphere moving path 13) and sandwiching the sphere moving path 3 therebetween. The light emitting surface and the light receiving surface are arranged to face each other, and the light emitting surface and the light receiving surface are sealed with a light-shielding resin constituting the base body 4 except for the portions that serve as external connection terminals of the lead frames. The light receiving surface is substantially flush with the wall surface of the space where each surface is exposed.
[0026]
Here, the two light receiving surfaces of the light receiving chip 10 are respectively arranged at positions corresponding to the left and right inclined surfaces 3b and 3c where the sphere 6 is located when inclined, and the light emitting chip 9 is formed of the two light receiving surfaces. The light beams to the two light receiving surfaces face each other and are not shielded by the sphere 6 located on the horizontal surface 3a when not inclined.
[0027]
The spherical body moving path 3 includes the horizontal surface 3a and the inclined surfaces 3b and 3c juxtaposed in the moving direction of the spherical body 6, and the horizontal surface 3a is located substantially at the center of the moving direction of the spherical body 6 and the inclined surface. 3b and 3c are provided at positions sandwiching the horizontal surface 3a. The surfaces of the inclined surfaces 3b and 3c and the surface of the horizontal surface 3a are rough surfaces. The inclined surfaces 3b and 3c are formed so as to be inclined at a constant angle with respect to a reference surface (or a horizontal surface) on which the optical sensor is mounted.
[0028]
As a method for making the surface of the spherical moving path 3 rough, for example, a PPS resin (glass material) blended as a material (material) of a portion constituting the spherical moving path 3 (the entire base 4 in the present embodiment) ( Polyphenylene sulfide resin), and heat treatment is performed after the injection molding of the PPS resin, and the glass fiber is precipitated on the surface by recrystallization of the PPS resin, so that the surface can be roughened. Alternatively, the surface can be roughened by simply scraping the surface with a file.
[0029]
Further, the portion constituting the spherical moving path 3 is made of a softer material than the spherical surface 6 having a rough surface, and the spherical surface 6 having the rough surface is formed between the base body 4 and the lid 5. After being housed in the space, the surface of the sphere moving path 3 can be changed from a flat surface to a rough surface by causing the surface of the sphere 6 and the sphere moving path 3 to collide with each other by shaking the optical sensor itself. is there.
[0030]
The spherical body 6 is made of, for example, a steel ball for bearings, and the surface thereof is roughened by shaving the surface with, for example, a file. It is also possible to roughen the surface by applying chemical treatment.
[0031]
An example of the surface of the sphere 6 or the sphere moving path 3 is shown in FIG. In the figure, the distance X 1 between the peaks and the peaks and the depth X 2 from the peaks to the valleys are 1 to 50 μm.
[0032]
In the present embodiment, all the surfaces of the space in which the sphere 6 is accommodated, that is, the four wall surfaces (including the light emitting surface of the light emitting element 1 and the light receiving surface of the light receiving element 2) and the upper surface are also roughened.
[0033]
Here, the light-emitting surface and the light-receiving surface are not rough surfaces, but can be made flat so that irregular reflection of light can be prevented.
[0034]
In the optical sensor according to the present embodiment, the sphere 6 moves onto the horizontal plane 3a of the sphere moving path 3 by its own weight when inclined less than the inclination angle of the inclined surfaces 3b and 3c or not inclined at all. The light from the light-emitting chip 9 is incident on the two light-receiving surfaces of the light-receiving chip 10 without being blocked by the sphere 6, and receives an output signal from each light-receiving surface and mounts the light sensor and the light sensor. Detect that is not tilted.
[0035]
Further, when the sphere 6 is tilted to the left larger than the tilt angle of the tilted surface 3b, the sphere 6 moves onto the tilted surface 3b of the sphere moving path 3 by its own weight and blocks the light from the light emitting chip 9. As a result, light from the light emitting chip 9 does not enter the light receiving surface disposed at the position corresponding to the inclined surface 3b of the light receiving chip 10, and the light emitting chip is disposed only on the light receiving surface disposed at the position corresponding to the inclined surface 3c. 9 is incident and receives an output signal from the light receiving surface arranged at a position corresponding to the inclined surface 3c, and detects that the light sensor and the device equipped with the light sensor are tilted to the left. .
[0036]
Further, when the sphere 6 is tilted to the right by a larger angle than the inclination angle of the inclined surface 3c, the sphere 6 moves on the inclined surface 3c of the sphere moving path 3 by its own weight, and blocks the light from the light emitting chip 9. As a result, light from the light emitting chip 9 is not incident on the light receiving surface disposed at the position corresponding to the inclined surface 3c of the light receiving chip 10, and the light emitting chip is disposed only on the light receiving surface disposed at the position corresponding to the inclined surface 3b. 9 detects that the light sensor and the device equipped with the light sensor are tilted to the right in response to the output signal from the light receiving surface arranged at the position corresponding to the inclined surface 3b. .
[0037]
Thus, since the sphere 6 always moves on the sphere moving path 3 in accordance with the inclination of the optical sensor and the device on which the optical sensor is mounted, the sphere 6 accompanies multiple movements (particularly, repeated movements) of the sphere 6. 6 and the sphere moving path 3 are charged with static electricity.
[0038]
However, the optical sensor of the present embodiment increases the surface area of the horizontal surface 3a and the inclined surfaces 3b and 3c by making the surface of the horizontal surface 3a and the inclined surfaces 3b and 3c of the spherical body moving path 3 rough. By moving the spherical body 6 a plurality of times, static electricity charged on the horizontal surface 3a and the inclined surfaces 3b and 3c is easily discharged. Further, by making the surface of the sphere 6 rough, the static electricity charged on the sphere 6 can be easily discharged. As a result, the amount of static electricity charged in the horizontal surface 3a, the inclined surfaces 3b and 3c and the sphere 6 is reduced, and the electrostatic force acting between the sphere 6 and the sphere moving path 3 is reduced.
[0039]
Furthermore, since the volume of the part where the spherical moving path 3 and the spherical body 6 are close to each other is smaller than that of the spherical moving path and the spherical body whose surface is not rough, the space between the spherical body 6 and the spherical moving path 3 is small. The working electrostatic force is reduced.
[0040]
By reducing these electrostatic forces, it is possible to reliably prevent the sphere 6 from being attracted to the sphere moving path 3 due to the electrostatic force. Therefore, the presence or absence of the tilt of the optical sensor can be accurately detected regardless of the number of movements of the sphere 6.
[0041]
In this embodiment, the inclined surfaces 3b and 3c are provided symmetrically. However, the inclined surfaces 3b and 3c may be configured by a single inclined surface or a non-target inclined surface according to the use purpose or design specification of the optical sensor. It is needless to say that the present invention can be partially or wholly configured in aspects.
[0042]
Further, both the surface of the sphere moving path 3 and the surface of the sphere 6 are rough surfaces, but either one of the surface of the sphere moving path 3 or the surface of the sphere 6 is a rough surface and the other is a non-concave surface (a flat surface having no unevenness). Or a spherical surface). FIG. 3 is a cross-sectional view of the main part of the optical sensor in which the surface of the sphere moving path 4 is a flat surface and the surface of the sphere 6 is a rough surface. FIG. It is principal part sectional drawing of the optical sensor made into the spherical surface.
[0043]
Furthermore, the configuration for increasing the surface area of the spherical body moving path 3 and the spherical body 6 is not limited to the rough surface, and the surface area may be increased by at least one of a concave portion and a convex portion.
[0044]
FIG. 5 is a view showing an optical sensor according to a reference example of the present invention. 6 is a cross-sectional view of the optical sensor shown in FIG. 5, (a) is a cross-sectional view taken along the line AA ′ of FIG. 5, and (b) is a cross-sectional view taken along the line BB ′ of FIG. Only the points of the present reference example that differ from the first embodiment described above will be described.
[0045]
The optical sensor according to this reference example has a horizontal surface 3a and inclined surfaces 3a and 3b of the spherical moving path 3 and a spherical body 6 instead of making the surface of the spherical moving path 3 and the spherical body 6 of the optical sensor shown in FIG. A groove 7 extending in the moving direction of the sphere 6 is provided in the approximate center between the two wall surfaces perpendicular to the moving direction of the sphere that constitutes the space for housing the sphere 6 and the upper surface.
[0046]
The groove 7 has, for example, a substantially U-shape, and supports the sphere 6 by both ends thereof so that the contact between the sphere moving path 3 and the sphere 6 is a line contact, and the sphere 6 constitutes the space. It prevents contact with two wall surfaces parallel to the direction. The depth of the sphere 6 is such that the sphere 6 does not contact the bottom surface of the groove, and the width of the sphere 6 is above the groove 7. The width is such that it cannot be easily removed from the state of riding.
[0047]
With this configuration, the contact between the sphere 6 and the sphere moving path 3 becomes a spherical surface and a line, and the volume of the portion of the sphere moving path 3 located in the vicinity of the sphere 6 is reduced. The electrostatic force that works on is reduced. In addition, the surface area of the sphere moving path 3 is increased so that the static electricity charged in the sphere moving path 3 can be easily discharged by moving the sphere 6 multiple times.
[0048]
As a result, the electrostatic force acting between the sphere 6 and the sphere moving path 3 is reduced, and the sphere 6 can be reliably prevented from being attracted to the sphere moving path 3 by the electrostatic force, and the inclination of the optical sensor can be reduced. Presence / absence can be accurately detected regardless of the number of movements of the sphere 6.
[0049]
Further, since the sphere 6 hardly contacts the wall surface parallel to the moving direction of the sphere due to the groove 7, the charging of the sphere 6 due to the wall surface contact can be reliably prevented as in the prior art.
[0050]
In this reference example , the groove 7 is provided directly on the wall surface and the upper surface of the space for housing the sphere 6 and the upper surface of the sphere 6 and the surface of the sphere moving path 3, but as shown in FIG. By providing two strip-like projections 8 that protrude into the space and extend in the direction of movement of the sphere on each surface and are parallel to each other with a predetermined distance, the side surfaces of the projections 8 and 8 and the respective surfaces are formed. It is good also as a structure which provides the groove | channel 7a. The cross-sectional shape of the protrusion 8 is, for example, a shape with a sharp tip and a thick base.
[0051]
Even in this configuration, the contact between the sphere 6 and the sphere moving path 3 (specifically, the protrusions 8 and 8) is linear contact with the spherical surface by the groove 7a. Whether or not the sensor is tilted can be accurately detected regardless of the number of movements of the sphere 6.
[0052]
【The invention's effect】
As described above, according to the present invention, the amount of static electricity charged to the sphere can be reduced, and the volume of the portion of the sphere located near the sphere moving path can be reduced. As a result, the electrostatic force acting between the sphere and the sphere moving path can be reduced, and the sphere can be reliably prevented from being attracted to the sphere moving path by the electrostatic force. Therefore, the presence or absence of the tilt of the optical sensor can be accurately detected regardless of the number of times the sphere has moved.
[0053]
Further, it is possible to eliminate the need for a molding device or the like that forms a recess on the surface of the spherical moving path, and the manufacturing process and manufacturing cost can be reduced.
[0054]
Furthermore, the amount of static electricity charged in the sphere moving path can be reduced, and the volume of the portion of the sphere moving path located near the sphere can be reduced. As a result, the electrostatic force acting between the sphere and the sphere moving path can be reduced, and the sphere can be reliably prevented from being attracted to the sphere moving path by the electrostatic force. Therefore, the presence or absence of the tilt of the optical sensor can be accurately detected regardless of the number of movements of the sphere.
[0055]
Furthermore, a convex part can be provided on the surface of the spherical body movement path simultaneously with the molding of the base body without changing the molding die of the base body and the process of providing the convex part, and the manufacturing process and manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a tilt detection sensor according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of a sphere or a sphere moving path surface.
FIG. 3 is a cross-sectional view of a main part showing a tilt detection sensor having a spherical moving surface surface as a flat surface and a spherical surface as an uneven surface.
FIG. 4 is a cross-sectional view of a principal part showing a tilt detection sensor having a spherical moving surface as an uneven surface and a spherical surface as a non-concave surface.
FIG. 5 is a diagram showing a tilt detection sensor according to a reference example of the present invention.
6 is a cross-sectional view of the photosensor shown in FIG.
FIG. 7 is a cross-sectional view of a main part showing a tilt detection sensor in which a groove is provided from two strip-shaped protrusions.
FIG. 8 is a diagram showing a conventional tilt detection sensor.
FIG. 9 is a schematic view showing another conventional tilt detection sensor.
10 is a diagram illustrating a state in which the tilt detection sensor illustrated in FIG. 9 is tilted 90 degrees to the right.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light receiving element 3 Spherical body moving path 3a Horizontal surface 3b, 3c inclined surface 4 Base | substrate 5 Lid body 6 Spherical body 7, 7a groove | channel 8 Projection 9 Light emitting chip 10 Light receiving chip

Claims (4)

光を発生する発光部と、前記発光部からの光を受光する受光部と、傾斜面を有する球体移動路が前記発光部と受光部との間に形成された基体と、前記基体に取り付けられた蓋体と、前記基体と前記蓋体との間に前記球体移動路に沿って移動可能に収納された球体とを備えた傾き検出用光センサーにおいて、前記球体表面が粗面とされ、前記球体移動路表面に凹部又は凸部が設けられたことを特徴とする傾き検出用光センサー。A light-emitting unit that generates light, a light-receiving unit that receives light from the light-emitting unit, a base having a spherical moving path formed between the light-emitting unit and the light-receiving unit, and a base that is attached to the base and a lid, the skew detection light sensor with a sphere that is movably accommodated along the spherical movement path between the lid and the base, the spherical surface is a rough surface, the An optical sensor for tilt detection, characterized in that a concave or convex portion is provided on the surface of a spherical moving path. 前記球体移動路表面に凸部を設けた前記基体は、ガラス繊維を含有する樹脂にて成形し、該成形後の熱処理によって前記ガラス繊維を表面に析出させてなることを特徴とする請求項1記載の傾き検出用光センサー。  The base body provided with a convex portion on the surface of the spherical moving path is formed of a resin containing glass fiber, and the glass fiber is deposited on the surface by heat treatment after the forming. The optical sensor for inclination detection as described. 光を発生する発光部と、前記発光部からの光を受光する受光部と、傾斜面を有する球体移動路が前記発光部と受光部との間に形成された基体と、前記基体に取り付けられた蓋体と、前記基体と前記蓋体との間に前記球体移動路に沿って移動可能に収納された球体とを備えた傾き検出用光センサーにおいて、前記球体表面が粗面とされ、前記球体移動路表面の材質を前記球体の材質に比較して柔らかい材質とし、前記球体移動路表面に前記球体表面の凸部の衝突により形成された凹部を設けたことを特徴とする傾き検出用光センサー。A light-emitting unit that generates light, a light-receiving unit that receives light from the light-emitting unit, a base having a spherical moving path formed between the light-emitting unit and the light-receiving unit, and a base that is attached to the base and a lid, the skew detection light sensor with a sphere that is movably accommodated along the spherical movement path between the lid and the base, the spherical surface is a rough surface, the The surface of the sphere moving path is made of a softer material than the material of the sphere, and the concave surface formed by the collision of the convex portion of the sphere surface is provided on the surface of the sphere moving path. sensor. 前記球体を収納する空間のうち、発光部の発光面および受光部の受光面を除く全ての面が粗面とされたことを特徴とする請求項1〜3のいずれかに記載の傾き検出用光センサー。  The inclination detecting device according to any one of claims 1 to 3, wherein, in the space for housing the sphere, all surfaces except the light emitting surface of the light emitting unit and the light receiving surface of the light receiving unit are roughened. Light sensor.
JP11633898A 1998-04-27 1998-04-27 Light sensor for tilt detection Expired - Fee Related JP3829013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11633898A JP3829013B2 (en) 1998-04-27 1998-04-27 Light sensor for tilt detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11633898A JP3829013B2 (en) 1998-04-27 1998-04-27 Light sensor for tilt detection

Publications (2)

Publication Number Publication Date
JPH11304476A JPH11304476A (en) 1999-11-05
JP3829013B2 true JP3829013B2 (en) 2006-10-04

Family

ID=14684489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11633898A Expired - Fee Related JP3829013B2 (en) 1998-04-27 1998-04-27 Light sensor for tilt detection

Country Status (1)

Country Link
JP (1) JP3829013B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049708B2 (en) * 2007-09-10 2012-10-17 ローム株式会社 Tilt sensor
JP5165459B2 (en) * 2008-05-23 2013-03-21 ローム株式会社 Tilt sensor
JP5264631B2 (en) * 2008-09-26 2013-08-14 本田技研工業株式会社 Tilt sensor structure for vehicles
JP5199824B2 (en) * 2008-10-24 2013-05-15 ローム株式会社 Tilt sensor and manufacturing method thereof
CN108061541A (en) * 2017-12-07 2018-05-22 南阳理工学院 A kind of civil engineering level meter

Also Published As

Publication number Publication date
JPH11304476A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
KR910005594B1 (en) Touch sensitive device
EP0348182A3 (en) Uneven-surface data detection apparatus
CA1286032C (en) Optical scanning and recording apparatus for fingerprints
KR101019815B1 (en) Inclination sensor
JP5468053B2 (en) Optical distance measuring device and electronic device equipped with the same
CN1673943B (en) Contaminant-resistant optical mouse and cradle
KR100399635B1 (en) Optical mouse
JP3725843B2 (en) Reflective sensor
JP3829013B2 (en) Light sensor for tilt detection
KR20100007984A (en) Infrared ray detector
EP0809786B1 (en) Inclination detecting optical sensor and a process for producing the same
JPH11120324A (en) Two-dimensional pattern recognition sensor
US7791735B2 (en) Pointing device
EP3130988B1 (en) Display device and electronic device having drainage structure
JP3459337B2 (en) Tilt detection optical sensor
KR20010014453A (en) Device for detecting plate-shaped member
JPH0210055B2 (en)
JPH1048241A (en) Acceleration sensor
CN103713156A (en) Optical type accelerometer
JP3538269B2 (en) Tilt detection sensor
JP2851925B2 (en) Reflective optical sensor
JP4372581B2 (en) Optical tilt sensor
JP2532730Y2 (en) Distance sensor
JP5049708B2 (en) Tilt sensor
JP2004309470A (en) Optical inclination sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees