JP3826811B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3826811B2
JP3826811B2 JP2002038119A JP2002038119A JP3826811B2 JP 3826811 B2 JP3826811 B2 JP 3826811B2 JP 2002038119 A JP2002038119 A JP 2002038119A JP 2002038119 A JP2002038119 A JP 2002038119A JP 3826811 B2 JP3826811 B2 JP 3826811B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor element
reinforcing member
semiconductor device
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038119A
Other languages
Japanese (ja)
Other versions
JP2003243568A (en
Inventor
忠彦 境
満 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002038119A priority Critical patent/JP3826811B2/en
Publication of JP2003243568A publication Critical patent/JP2003243568A/en
Application granted granted Critical
Publication of JP3826811B2 publication Critical patent/JP3826811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の電極形成面の裏面に接着材により補強部材を接合して成る半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
電子機器の基板などに実装される半導体装置は、ウェハ状態で回路パターン形成が行われた半導体素子にリードフレームのピンや金属バンプなどを接続するとともに樹脂などで封止するパッケージング工程を経て製造されている。最近の電子機器の小型化に伴って半導体装置の小型化も進み、中でも半導体素子を薄くする取り組みが活発に行われている。
【0003】
薄化された半導体素子は外力に対する強度が弱くハンドリング時のダメージを受けやすいことから、従来より薄化された半導体素子を用いた半導体装置は、半導体素子に補強部材を貼着することによって補強される。この補強部材の貼着は、半導体素子のバンプ形成面の反対側に、補強部材を接着材を用いて圧着することにより行われる。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の補強部材の圧着工程においては、半導体素子のバンプ形成面の反対面と接着材の接合界面との間に空気が残留することに起因して、半導体素子の平坦度の不良や半導体装置の実装時の不具合が生じやすい。すなわち、半導体素子を補強部材に貼着する際には、接合界面に空気を巻き込みやすく、巻き込まれた空気は部分的にボイドを形成する。
【0005】
そして補強部材を半導体素子に押圧して接合する圧着工程においては、ボイドが存在する部分の半導体ウェハはボイド内の空気圧力によって部分的に変形することから、押圧状態を解除した後にボイド部分が他の部分と同一平面とはならず、平坦度の不良が生じる。またこのように接着界面に空気を内蔵したまま半導体装置が基板に実装されリフローに送られると、加熱によってボイド内の気体が膨張して破裂を生じる不具合が発生する場合がある。
【0006】
そこで本発明は、補強部材を接合する圧着工程において接合界面にボイドが形成されることがなく、ボイドに起因する平坦度の不良や実装不具合を防止することができる半導体装置の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1記載の半導体装置の製造方法は、半導体素子の外部接続用の電極上にバンプが形成されたバンプ形成面の裏面に伸縮する材質の樹脂接着材を介して補強部材を接合して成る半導体装置を製造する半導体装置の製造方法であって、複数の半導体素子の前記電極上にバンプが形成された半導体ウェハを半導体素子毎に分離する半導体素子分離工程と、半導体素子分離工程後に前記半導体素子の裏面に伸縮する材質の樹脂接着材を介して補強部材を圧着する補強部材圧着工程とを含み、前記半導体素子分離工程において、前記バンプ形成面にシートが貼着された状態で半導体ウェハを研磨して薄化した後に、半導体ウェハを切断することにより半導体素子毎に分離する
【0010】
本発明によれば、複数の半導体素子の電極上にバンプが形成された半導体ウェハを半導体素子ごとに分離した後に、半導体素子の裏面に樹脂接着材を介して補強部材を圧着することにより、圧着工程において接合界面にボイドが形成されることがなく、ボイドに起因する平坦度の不良や実装後の不具合を防止することができる。
【0011】
【発明の実施の形態】
次の本発明の実施の形態を図面を参照して説明する。図1、図2、図3、図5は本発明の一実施の形態の半導体装置の製造方法の工程説明図、図4は本発明の一実施の形態の半導体装置の実装方法の工程説明図である。
【0012】
まず図1、図2、図3を参照して、半導体装置の製造方法について説明する。この半導体装置の製造方法は、半導体素子の外部接続用の電極上にバンプが形成されたバンプ形成面の裏面に低弾性係数の樹脂接着材を介して補強部材を接合して成る半導体装置を製造するものである。
【0013】
図1(a)において、1は複数の半導体素子が形成された半導体ウェハである。半導体ウェハ1の上面の外部接続用の電極(図示省略)上には、バンプ2が形成されている。図1(b)に示すように半導体ウェハ1のバンプ形成面の反対面にはダイシングシート3が貼着される。そしてダイシングシート3が貼着された状態で半導体ウェハ1のダイシングが行われ、各半導体素子1aの境界には半導体ウェハ1の厚みを部分的に切断する切断溝1bが形成される。
【0014】
次いでこの状態で半導体ウェハ1はダイシングシート3とともに反転され、バンプ形成面が下向きの姿勢となる。そして半導体ウェハ1の各半導体素子1aのバンプ形成面には、図1(c)に示すように薄化工程での補強用の保護シート4が貼着される。ここで保護シート4の表面には粘着樹脂層4aが形成されており、各半導体素子1aのバンプ形成面を粘着樹脂層4aに対して押圧することにより、図1(d)に示すようにバンプ2が粘着樹脂層4a内に埋入するとともに、半導体素子1aの表面は粘着樹脂層4aの表面に密着する。そしてこの後、図1(e)に示すように半導体ウェハ1からダイシングシート3が剥離される。
【0015】
次にダイシングシート3の剥離後の半導体ウェハ1は研磨工程に送られる。図2(a)に示すように、研磨ツール5によって半導体ウェハ1のバンプ形成面の反対側を機械研磨する。これにより、バンプ形成面の反対側からダイシング工程における切断残りの厚み分が除去され、半導体ウェハ1は約50μmの厚さまで薄化されるとともに、各半導体素子1a毎に分離される(半導体素子分離工程)。
【0016】
次いで、プラズマエッチング処理によるストレス層除去が行われる。ここでは図2(b)に示すように、保護シート4で補強され機械研磨された半導体ウェハ1は、プラズマ処理装置6の処理室7内に設けられた載置部8上に載置される。そして処理室7内でプラズマを発生させることにより、前工程の機械研磨において研磨加工面に生じたマイクロクラックを含むストレス層をプラズマエッチングにより除去する。これにより、薄化された半導体ウェハ1の強度が向上する。なお、ストレス層の除去方法としては、プラズマエッチング以外にポリッシング工法による処理や、薬液を用いたケミカルエッチングでも良い。またストレス層を除去する工程は省略しても良い。
【0017】
この後、図2(c)に示すように、個片に分離され薄化された半導体素子1aのバンプ形成面の反対面(裏面)に接着材10を介して補強部材11を接合する。補強部材11は、樹脂やセラミックあるいは金属などの材質を板状に形成した補強部材である。また接着材10は低弾性係数の樹脂接着材であり、エラストマーなど接合状態における弾性係数が小さく、小さな外力で容易に伸縮する材質が用いられる。
【0018】
この補強部材11は、各半導体素子1a毎に切り分けられて半導体装置を形成した状態で、半導体装置のハンドリング用の保持部として機能すると共に、半導体素子1aを外力や衝撃から保護する補強部材としての役割をも有するものである。このため補強部材11は、半導体素子1aの曲げ剛性よりも大きな曲げ剛性を有する充分な厚さとなっている。
【0019】
補強部材接合の後、図2(d)に示すように、各半導体素子1aのバンプ形成面から保護シート4が剥離される。次いで補強部材11に接合された状態の半導体素子1aは補強部材圧着工程に送られる。図3(a)に示すように、個片の半導体素子1aが接合された補強部材11を圧着ヘッド12に保持させ、バンプ形成面を耐熱シート14が装着された熱圧着ステージ13の押圧面に対して所定の荷重で押圧する。これにより、半導体素子1aの裏面には、補強部材11が接着材10を介して接合される。
【0020】
この補強部材圧着工程において、半導体素子1aの裏面と接着材10との接合界面には空気を巻き込みやすく、図3(c)に示すように残留した空気がボイド10aを形成しやすい。このような場合にあっても、半導体素子1a相互の間にはダイシングによって切断溝1bが予め形成されていることから、熱圧着の過程において接合界面に残留したボイド10aは切断溝1bを介して大部分が排出され、熱圧着完了後に接合界面に残留するボイドはきわめて少ない。したがって、圧着ヘッド12による押圧状態を解除した後に、ボイドの存在によって生じる平坦度の不良発生がきわめて少ない。
【0021】
次いで、熱圧着後の半導体素子1aは個片分離工程に送られ個片の半導体装置に分割される。ここでは、図3(d)に示すように補強部材11を、各半導体素子1a毎に切断して個片の補強部材11aに分離する。このとき、図1(b)に示すダイシング工程における半導体素子1aのダイシング幅b1よりも狭いダイシング幅b2で、補強部材11を分離する。
【0022】
これにより、個片の半導体装置15が完成する。この半導体装置15は、外部接続用のバンプ2が形成された半導体素子1aと、この半導体素子1aのバンプ形成面の反対面に接着材10により接合された補強部材11aとを備えた構成となっている。そして補強部材11aのサイズB2は半導体素子1aのサイズB1よりも大きく、その外周端は半導体素子1aの外周端よりも外側に突出して、半導体装置15を側方からハンドリングする際にも半導体素子1aが保護されるような形状となっている。
【0023】
この半導体装置15の製造過程において、半導体ウェハ1にバンプ2を形成した状態で補強部材11を接合することにより、半導体ウェハ1が樹脂層で拘束された状態でバンプ形成を行う場合に発生する破損を防止することができ、加工歩留まりを向上させることができる。
【0024】
この半導体装置15の実装について図4を参照して説明する。図4(a)に示すように、半導体装置15は補強部材11aの上面を実装ヘッド16によって吸着して保持され、実装ヘッド16を移動させることにより、基板17の上方に位置する。そして半導体装置15のバンプ2を基板17の電極17aに位置合わせした状態で実装ヘッド16を下降させ、図4(b)に示すように半導体素子1aのバンプ2を電極17aに上に着地させる。
【0025】
その後基板17を加熱することにより、バンプ2を電極17aに半田接合する。すなわち、半導体装置15を基板17へ搭載する際のハンドリングにおいて、実装ヘッド16によって、補強部材11aを保持する。バンプ2の電極17aとの接合は、半田接合以外にバンプ2と電極17aを圧接させた状態で樹脂によって半導体装置15と基板17を接着する方法、あるいはバンプ2と電極17aとの金属間接合による方法、あるいは導電性樹脂接着材による接合方法を用いてもよい。この実装過程においては、接着材10と半導体素子1aとの接合界面にボイドの残留がきわめて少ないことから、加熱によってボイド内の気体が膨張して破裂を生じる不具合がほとんど発生しない。
【0026】
この半導体装置15を基板17に実装して成る実装構造は、半導体装置15の電極であるバンプ2を基板17の電極17aに接合することにより半導体装置15が基板17に固定される形態となっている。図4(c)に示すように、実装後に基板17に何らかの外力により、撓み変形が発生した場合には、半導体素子1aは薄くて撓みやすいくしかも接着材10は低弾性係数の変形しやすい材質を用いていることから、基板17の撓み変形に対して半導体素子1aと接着材10の接着層のみが追従して変形する。
【0027】
これにより、実装後にアンダーフィル樹脂を充填するなどの補強処理を必要とすることなく接合部の応力が緩和され、単に半導体素子1aと補強部材11aとを接着材10により接合するという簡易な形態のパッケージ構造で、実装後の信頼性の確保が実現される。
【0028】
なお上記実施の形態では、半導体素子分離工程において、半導体ウェハ1の厚みを部分的に切断した後に切断残りの厚み分を研磨除去することにより半導体ウェハ1を個片の半導体素子1aに分離するようにしているが、図5に説明するような方法を用いてもよい。すなわち、図5(a)に示すように、半導体ウェハ1のバンプ形成面を表面に粘着樹脂層4aが形成された保護シート4に貼着する。そしてこの状態で、バンプ形成面の反対面を研磨ツール5によって機械研磨することにより、半導体ウェハ1を薄化する。この後、研磨後の半導体ウェハ1は、図2(b)に示す方法と同様にしてストレス除去が行われる。なお、ストレス層の除去は、前述の実施の形態と同様に省略しても良い。
【0029】
薄化後の半導体ウェハ1のバンプ形成面の反対面は、図5(c)に示すようにダイシングシート3に貼着され、その後保護シート4がバンプ形成面から剥離される。この後、半導体ウェハ1はダイシング工程に送られ、ここで研磨における残りの厚み分を完全に切断する切断溝1b’が形成される。これにより、半導体ウェハ1は個片の半導体素子1aに分離される。
【0030】
その後、半導体素子1aをダイシングシートから剥離して補強部材11の接着材10に貼り付け、以下、図3(a)〜(d)に示す工程と同じ手順で半導体装置15を得る。
【0031】
【発明の効果】
本発明によれば、複数の半導体素子の電極上にバンプが形成された半導体ウェハを半導体素子ごとに分離した後に、半導体素子の裏面に樹脂接着材を介して補強部材を圧着するようにしたので、圧着工程において接合界面にボイドが形成されることがなく、ボイドに起因する平坦度の不良や実装後の不具合を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の半導体装置の製造方法の工程説明図
【図2】本発明の一実施の形態の半導体装置の製造方法の工程説明図
【図3】本発明の一実施の形態の半導体装置の製造方法の工程説明図
【図4】本発明の一実施の形態の半導体装置の実装方法の工程説明図
【図5】本発明の一実施の形態の半導体装置の製造方法の工程説明図
【符号の説明】
1 半導体ウェハ
1a 半導体素子
1b 切断溝
2 バンプ
4 保護シート
4a 粘着樹脂層
10 接着材
11、11a 補強部材
15 半導体装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device in which a reinforcing member is bonded to the back surface of an electrode forming surface of a semiconductor element with an adhesive.
[0002]
[Prior art]
A semiconductor device mounted on a substrate of an electronic device is manufactured through a packaging process in which a lead frame pin or a metal bump is connected to a semiconductor element on which a circuit pattern is formed in a wafer state and sealed with a resin or the like. Has been. Along with the recent miniaturization of electronic devices, the miniaturization of semiconductor devices is also progressing, and in particular, efforts to make semiconductor elements thinner are being actively carried out.
[0003]
Since a thinned semiconductor element is weak against external force and easily damaged during handling, a semiconductor device using a semiconductor element thinner than the conventional one is reinforced by attaching a reinforcing member to the semiconductor element. The The reinforcement member is attached by pressure-bonding the reinforcement member to the opposite side of the bump formation surface of the semiconductor element using an adhesive.
[0004]
[Problems to be solved by the invention]
However, in the above-described crimping step of the reinforcing member, the flatness of the semiconductor element or the semiconductor is caused by air remaining between the surface opposite to the bump forming surface of the semiconductor element and the bonding interface of the adhesive. Problems are likely to occur when mounting the device. That is, when the semiconductor element is attached to the reinforcing member, air is easily caught in the bonding interface, and the entrained air partially forms a void.
[0005]
In the crimping process in which the reinforcing member is pressed and joined to the semiconductor element, the semiconductor wafer in the part where the void exists is partially deformed by the air pressure in the void. This is not the same plane as this part, resulting in poor flatness. Further, when the semiconductor device is mounted on the substrate and sent to the reflow with air contained in the bonding interface in this way, there is a case where a gas in the void expands due to heating and causes a rupture.
[0006]
Accordingly, the present invention provides a method for manufacturing a semiconductor device in which voids are not formed at the bonding interface in the crimping process for bonding reinforcing members, and defects in flatness and mounting defects caused by the voids can be prevented. For the purpose.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for manufacturing a semiconductor device, comprising: bonding a reinforcing member via a resin adhesive material that expands and contracts on a back surface of a bump forming surface in which a bump is formed on an electrode for external connection of a semiconductor element. A semiconductor device manufacturing method for manufacturing a semiconductor device, wherein a semiconductor wafer having a bump formed on the electrodes of a plurality of semiconductor elements is separated for each semiconductor element, and the semiconductor is separated after the semiconductor element separation process. look including a reinforcing member bonding step of pressure bonding the reinforcing member through the material of the resin adhesive to stretch the back surface of the element, in the semiconductor device isolation process, a semiconductor wafer in a state in which the seat on the bump formation surface is adhered After polishing and thinning, the semiconductor wafer is cut to separate each semiconductor element .
[0010]
According to the present invention, a semiconductor wafer having bumps formed on electrodes of a plurality of semiconductor elements is separated for each semiconductor element, and then a reinforcing member is crimped to the back surface of the semiconductor element via a resin adhesive. In the process, voids are not formed at the bonding interface, and defects in flatness and defects after mounting due to the voids can be prevented.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1, 2, 3, and 5 are process explanatory views of a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 4 is an explanatory view of a process of a semiconductor device mounting method according to an embodiment of the present invention. It is.
[0012]
First, a method of manufacturing a semiconductor device will be described with reference to FIGS. This semiconductor device manufacturing method manufactures a semiconductor device in which a reinforcing member is joined to a back surface of a bump forming surface on which bumps are formed on an external connection electrode of a semiconductor element via a low elastic modulus resin adhesive. To do.
[0013]
In FIG. 1A, reference numeral 1 denotes a semiconductor wafer on which a plurality of semiconductor elements are formed. Bumps 2 are formed on external connection electrodes (not shown) on the upper surface of the semiconductor wafer 1. As shown in FIG. 1B, a dicing sheet 3 is adhered to the surface opposite to the bump forming surface of the semiconductor wafer 1. Then, dicing of the semiconductor wafer 1 is performed with the dicing sheet 3 adhered, and a cutting groove 1b for partially cutting the thickness of the semiconductor wafer 1 is formed at the boundary of each semiconductor element 1a.
[0014]
Next, in this state, the semiconductor wafer 1 is inverted together with the dicing sheet 3 so that the bump forming surface is in a downward posture. And the protection sheet 4 for reinforcement in the thinning process is stuck on the bump forming surface of each semiconductor element 1a of the semiconductor wafer 1 as shown in FIG. Here, an adhesive resin layer 4a is formed on the surface of the protective sheet 4. By pressing the bump forming surface of each semiconductor element 1a against the adhesive resin layer 4a, bumps are formed as shown in FIG. 2 is embedded in the adhesive resin layer 4a, and the surface of the semiconductor element 1a is in close contact with the surface of the adhesive resin layer 4a. Thereafter, the dicing sheet 3 is peeled from the semiconductor wafer 1 as shown in FIG.
[0015]
Next, the semiconductor wafer 1 from which the dicing sheet 3 has been peeled is sent to a polishing process. As shown in FIG. 2A, the opposite side of the bump forming surface of the semiconductor wafer 1 is mechanically polished by the polishing tool 5. As a result, the remaining uncut thickness in the dicing process is removed from the opposite side of the bump forming surface, and the semiconductor wafer 1 is thinned to a thickness of about 50 μm and separated into each semiconductor element 1a (semiconductor element separation). Process).
[0016]
Next, the stress layer is removed by plasma etching. Here, as shown in FIG. 2B, the semiconductor wafer 1 reinforced by the protective sheet 4 and mechanically polished is placed on a placement portion 8 provided in a treatment chamber 7 of the plasma treatment apparatus 6. . Then, by generating plasma in the processing chamber 7, the stress layer including microcracks generated on the polished surface in the mechanical polishing in the previous process is removed by plasma etching. Thereby, the strength of the thinned semiconductor wafer 1 is improved. In addition to the plasma etching, the stress layer may be removed by a polishing method or chemical etching using a chemical solution. Further, the step of removing the stress layer may be omitted.
[0017]
Thereafter, as shown in FIG. 2C, the reinforcing member 11 is bonded to the opposite surface (back surface) of the bump forming surface of the semiconductor element 1 a separated and thinned through the adhesive 10. The reinforcing member 11 is a reinforcing member in which a material such as resin, ceramic, or metal is formed in a plate shape. The adhesive 10 is a resin adhesive having a low elastic modulus, and a material such as an elastomer that has a small elastic coefficient in a joined state and can easily expand and contract with a small external force is used.
[0018]
The reinforcing member 11 functions as a holding unit for handling the semiconductor device in a state in which the semiconductor device is formed by being cut for each semiconductor element 1a, and as a reinforcing member that protects the semiconductor element 1a from external force and impact. It also has a role. For this reason, the reinforcing member 11 has a sufficient thickness having a bending rigidity larger than that of the semiconductor element 1a.
[0019]
After reinforcement member joining, as shown in FIG.2 (d), the protection sheet 4 is peeled from the bump formation surface of each semiconductor element 1a. Next, the semiconductor element 1a bonded to the reinforcing member 11 is sent to the reinforcing member crimping step. As shown in FIG. 3 (a), the reinforcing member 11 to which the individual semiconductor elements 1a are bonded is held by the pressure-bonding head 12, and the bump forming surface is brought into contact with the pressing surface of the thermocompression-bonding stage 13 to which the heat-resistant sheet 14 is attached. Press against it with a predetermined load. As a result, the reinforcing member 11 is bonded to the back surface of the semiconductor element 1 a via the adhesive material 10.
[0020]
In this reinforcing member crimping step, air is likely to be caught in the bonding interface between the back surface of the semiconductor element 1a and the adhesive 10, and the remaining air is likely to form the void 10a as shown in FIG. Even in such a case, since the cut groove 1b is formed in advance between the semiconductor elements 1a by dicing, the void 10a remaining at the bonding interface in the process of thermocompression bonding passes through the cut groove 1b. Most of the voids are discharged, and there are very few voids remaining at the joint interface after completion of thermocompression bonding. Therefore, after the pressing state by the crimping head 12 is released, the occurrence of a flatness defect caused by the presence of voids is extremely small.
[0021]
Next, the semiconductor element 1a after the thermocompression bonding is sent to the individual piece separation step and divided into individual semiconductor devices. Here, as shown in FIG. 3D, the reinforcing member 11 is cut for each semiconductor element 1a and separated into individual reinforcing members 11a. At this time, the reinforcing member 11 is separated with a dicing width b2 that is narrower than the dicing width b1 of the semiconductor element 1a in the dicing step shown in FIG.
[0022]
Thereby, the individual semiconductor device 15 is completed. The semiconductor device 15 includes a semiconductor element 1a on which external connection bumps 2 are formed, and a reinforcing member 11a bonded to the opposite surface of the bump formation surface of the semiconductor element 1a with an adhesive material 10. ing. The size B2 of the reinforcing member 11a is larger than the size B1 of the semiconductor element 1a, and the outer peripheral end protrudes outward from the outer peripheral end of the semiconductor element 1a, so that the semiconductor element 1a is also handled when the semiconductor device 15 is handled from the side. The shape is such that is protected.
[0023]
In the manufacturing process of the semiconductor device 15, damage occurs when bumps are formed while the semiconductor wafer 1 is constrained by the resin layer by bonding the reinforcing member 11 with the bumps 2 formed on the semiconductor wafer 1. Can be prevented, and the processing yield can be improved.
[0024]
The mounting of the semiconductor device 15 will be described with reference to FIG. As shown in FIG. 4A, the semiconductor device 15 is held by adsorbing and holding the upper surface of the reinforcing member 11 a by the mounting head 16, and is moved above the substrate 17 by moving the mounting head 16. Then, the mounting head 16 is lowered with the bumps 2 of the semiconductor device 15 aligned with the electrodes 17a of the substrate 17, and the bumps 2 of the semiconductor element 1a are landed on the electrodes 17a as shown in FIG. 4B.
[0025]
Thereafter, by heating the substrate 17, the bumps 2 are soldered to the electrodes 17a. In other words, the reinforcing member 11 a is held by the mounting head 16 in handling when the semiconductor device 15 is mounted on the substrate 17. The bonding of the bump 2 to the electrode 17a is performed by a method of bonding the semiconductor device 15 and the substrate 17 with a resin in a state where the bump 2 and the electrode 17a are press-contacted in addition to solder bonding, or by metal-to-metal bonding between the bump 2 and the electrode 17a. Alternatively, a bonding method using a conductive resin adhesive may be used. In this mounting process, since there is very little void remaining at the bonding interface between the adhesive 10 and the semiconductor element 1a, there is almost no problem that the gas in the void expands due to heating and ruptures.
[0026]
The mounting structure formed by mounting the semiconductor device 15 on the substrate 17 is configured such that the semiconductor device 15 is fixed to the substrate 17 by bonding the bumps 2, which are electrodes of the semiconductor device 15, to the electrodes 17 a of the substrate 17. Yes. As shown in FIG. 4 (c), when the substrate 17 is bent and deformed by some external force after mounting, the semiconductor element 1a is thin and easily bent, and the adhesive 10 is a material that is easily deformed with a low elastic coefficient. Therefore, only the adhesive layer of the semiconductor element 1a and the adhesive 10 is deformed following the bending deformation of the substrate 17.
[0027]
As a result, the stress at the joint portion is relieved without requiring a reinforcement treatment such as filling with an underfill resin after mounting, and the semiconductor element 1a and the reinforcing member 11a are simply joined by the adhesive 10 in a simple form. The package structure ensures reliability after mounting.
[0028]
In the above embodiment, in the semiconductor element separation step, the semiconductor wafer 1 is separated into individual semiconductor elements 1a by partially cutting the thickness of the semiconductor wafer 1 and then polishing and removing the remaining thickness after cutting. However, a method as illustrated in FIG. 5 may be used. That is, as shown to Fig.5 (a), the bump formation surface of the semiconductor wafer 1 is affixed on the protection sheet 4 in which the adhesion resin layer 4a was formed in the surface. In this state, the semiconductor wafer 1 is thinned by mechanically polishing the surface opposite to the bump forming surface with the polishing tool 5. Thereafter, stress is removed from the polished semiconductor wafer 1 in the same manner as the method shown in FIG. Note that the removal of the stress layer may be omitted as in the above-described embodiment.
[0029]
The surface opposite to the bump forming surface of the semiconductor wafer 1 after thinning is attached to the dicing sheet 3 as shown in FIG. 5C, and then the protective sheet 4 is peeled off from the bump forming surface. Thereafter, the semiconductor wafer 1 is sent to a dicing process, where a cutting groove 1b ′ for completely cutting the remaining thickness in the polishing is formed. As a result, the semiconductor wafer 1 is separated into individual semiconductor elements 1a.
[0030]
Thereafter, the semiconductor element 1a is peeled off from the dicing sheet and attached to the adhesive 10 of the reinforcing member 11, and the semiconductor device 15 is obtained in the same procedure as the steps shown in FIGS. 3 (a) to 3 (d).
[0031]
【The invention's effect】
According to the present invention, after the semiconductor wafer having the bumps formed on the electrodes of the plurality of semiconductor elements is separated for each semiconductor element, the reinforcing member is pressure-bonded to the back surface of the semiconductor element via the resin adhesive. In the crimping process, voids are not formed at the bonding interface, and it is possible to prevent defects in flatness and defects after mounting due to the voids.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a semiconductor device manufacturing method according to an embodiment of the present invention. FIG. 2 is a process explanatory diagram of a semiconductor device manufacturing method according to an embodiment of the present invention. FIG. 4 is a process explanatory diagram of a semiconductor device mounting method according to an embodiment of the present invention. FIG. 5 is a process explanatory diagram of a semiconductor device manufacturing method according to an embodiment of the present invention. Process description of the method 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 1a Semiconductor element 1b Cutting groove 2 Bump 4 Protection sheet 4a Adhesive resin layer 10 Adhesive material 11 and 11a Reinforcing member 15 Semiconductor device

Claims (1)

半導体素子の外部接続用の電極上にバンプが形成されたバンプ形成面の裏面に伸縮する材質の樹脂接着材を介して補強部材を接合して成る半導体装置を製造する半導体装置の製造方法であって、複数の半導体素子の前記電極上にバンプが形成された半導体ウェハを半導体素子毎に分離する半導体素子分離工程と、半導体素子分離工程後に前記半導体素子の裏面に伸縮する材質の樹脂接着材を介して補強部材を圧着する補強部材圧着工程とを含み、前記半導体素子分離工程において、前記バンプ形成面にシートが貼着された状態で半導体ウェハを研磨して薄化した後に、半導体ウェハを切断することにより半導体素子毎に分離することを特徴とする半導体装置の製造方法。 A semiconductor device manufacturing method for manufacturing a semiconductor device in which a reinforcing member is bonded to a back surface of a bump forming surface on which bumps are formed on an electrode for external connection of a semiconductor element via a resin adhesive material that expands and contracts. A semiconductor element separation step for separating a semiconductor wafer having bumps formed on the electrodes of a plurality of semiconductor elements for each semiconductor element, and a resin adhesive made of a material that expands and contracts on the back surface of the semiconductor element after the semiconductor element separation step. A reinforcing member crimping step for crimping a reinforcing member through the semiconductor element , and in the semiconductor element separation step, the semiconductor wafer is polished and thinned in a state where a sheet is adhered to the bump forming surface, and then the semiconductor wafer is cut method of manufacturing a semi-conductor device you and separating each semiconductor element by.
JP2002038119A 2002-02-15 2002-02-15 Manufacturing method of semiconductor device Expired - Fee Related JP3826811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038119A JP3826811B2 (en) 2002-02-15 2002-02-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038119A JP3826811B2 (en) 2002-02-15 2002-02-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003243568A JP2003243568A (en) 2003-08-29
JP3826811B2 true JP3826811B2 (en) 2006-09-27

Family

ID=27779513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038119A Expired - Fee Related JP3826811B2 (en) 2002-02-15 2002-02-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3826811B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515171B2 (en) * 2004-06-30 2010-07-28 株式会社アルバック Vacuum processing method

Also Published As

Publication number Publication date
JP2003243568A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
KR100762208B1 (en) Semiconductor device and its manufacturing method and mounting method of semiconductor device
JP5652940B2 (en) Semiconductor chip attaching apparatus and semiconductor chip attaching method
US8394677B2 (en) Method of fabricating semiconductor device
JP2001313314A (en) Semiconductor device using bump, its manufacturing method, and method for forming bump
KR20010098592A (en) Semiconductor package and semiconductor package fabrication method
JP3832353B2 (en) Manufacturing method of semiconductor device
EP2075833A2 (en) Method of manufacturing semiconductor device
JP2007242684A (en) Laminated semiconductor device and laminating method of device
JP3826811B2 (en) Manufacturing method of semiconductor device
JP2002110736A (en) Semiconductor device and its manufacturing method
JP4057875B2 (en) Manufacturing method of semiconductor device
JP4427535B2 (en) Mounting method of semiconductor device
CN107851632A (en) The method being used for producing the semiconductor devices and corresponding device
JP2001148401A (en) Semiconductor device and method of manufacturing therefor
KR100642038B1 (en) Apparatus and method for providing mechanically pre-formed conductive leads
JP2009130271A (en) Semiconductor device and method of manufacturing the same
JP3649129B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4043720B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3580244B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3580240B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3654199B2 (en) Manufacturing method of semiconductor device
JP3858719B2 (en) Reinforcing materials for semiconductor devices
JP3826737B2 (en) Manufacturing method of semiconductor device
JP6379447B2 (en) IC chip mounting method
JP3646677B2 (en) Display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees