JP3826444B2 - Pulsed MAG welding wire - Google Patents
Pulsed MAG welding wire Download PDFInfo
- Publication number
- JP3826444B2 JP3826444B2 JP20119396A JP20119396A JP3826444B2 JP 3826444 B2 JP3826444 B2 JP 3826444B2 JP 20119396 A JP20119396 A JP 20119396A JP 20119396 A JP20119396 A JP 20119396A JP 3826444 B2 JP3826444 B2 JP 3826444B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- droplet
- appropriate
- spatter
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
Description
【0001】
【発明の属する技術分野】
この発明はパルスマグ溶接用ワイヤに関し、詳しくはスパッタ発生量が少なく、ビード形状が良好な溶接を行うことのできる溶接用ワイヤに関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ガスシールドアーク溶接は高能率の溶接が可能で自動化し易いことから、ロボットとの組合せで多く用いられている。
このガスシールドアーク溶接のうち、シールドガスとしてCO2にAr等の不活性ガスを混合したガスを用いるマグ溶接は、CO2ガスのみを用いた溶接に比べてスパッタの発生が少ない溶接が可能である。
しかしながらこのマグ溶接においても、溶接電流が低い場合にはスパッタの発生を十分に低く抑えることができない。
【0003】
一方、溶接電源としてパルス電源を用い、高電流と低電流とをパルス状に交互に流して行うパルスマグ溶接法が提案されており、このパルスマグ溶接法では、低い溶接電流の下でもスパッタを少なく抑えることができる。
【0004】
図2に示しているようにこのパルスマグ溶接においては、高電流−低電流1サイクルで確実に溶滴102の形成と移行、具体的には高電流時に溶滴102が形成され、また低電流時に溶滴102が母材104側に移行することが望ましく、このことが確保される限りはスパッタの発生は抑えられ、またビードの形状も良好となる。
但しこの場合において高電流時における溶滴102の形成,低電流時における溶滴102の移行が確実に行われるためには、高電流時のピーク保持時間Tpを適正なTpに設定し、維持することが必要である。
【0005】
しかしながらこのTpは溶接用ワイヤの成分その他の条件によって様々であり、而してそのTpが適正に設定,維持されていないと1パルス1溶滴移行が確保されず、高電流時に生成した溶滴102が低電流時になってもワイヤ100から離脱せずに次の高電流時まで成長を続け、その次の高電流時に又はその後に溶滴102が母材104側に移行してしまうといったことが起こり、この場合溶滴102の大きさが大きくなるために、溶滴102が母材104に接触してスパッタを生ぜしめ、そしてまたこれによりビード形状を悪化させてしまう問題を生じる。
【0006】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものである。
而して本願の発明は、パルスマグ溶接用ワイヤの組成を重量%でC:≦0.15%,Si:0.10〜0.60%,Mn:1.0〜2.0%,S:≦0.020%であり、更にNi,Cr,Zrの2種以上をそれぞれNi:0.01〜0.20%,Cr:0.01〜0.20%,Zr:0.001〜0.10%の範囲で且つ合計量が0.03〜0.30%となる範囲で含有し、残部実質的にFeから成る組成となしたことを特徴とする。
【0007】
【作用及び発明の効果】
上記のようにパルスマグ溶接においては、高電流時におけるTpが最適に設定されているか否かが溶接の良否を左右する要因となる。
而してその適正なTpの範囲が狭ければ溶接時の高電流時の保持時間をその適正なTpに合わせることが難しくなって溶接条件が最適条件からずれやすく、その結果スパッタの発生が多くなったりビード形状が悪くなったりする。
逆に適正なTpの範囲が広ければ溶接条件が多少ばらついても最適溶接条件に維持しやすく、ひいては溶接を良好に施すことが可能となる。
【0008】
図3はこれを具体的に示したもので、図中(イ)は適正なTpの範囲が狭い場合を、また(ロ)は適正なTpの範囲が広い場合をそれぞれ示している。
図示のように実際の溶接時のTpが適正なTpに対して僅かに異なるだけでスパッタの量が急激に多くなるのに対し、適正なTpの範囲が広い場合((ロ)の場合)には実際の溶接時のTpが適正なTpに対して多少異なっていたとしても、スパッタの量はそれほど多くはならないことが分かる。
【0009】
本発明者はこの高電流時におけるピーク保持時間Tpに着目し、溶接用ワイヤの成分研究を行う中で、C,Si,Mn,Sを上記範囲とした上でNi,Cr,Zrの2種以上を上記範囲で含有させた場合、適正なTpの範囲を広くとることができる知見を得、本発明を完成させた。
即ち本発明によれば、図3の概念図に示しているように高電流時におけるTpが多少変動しても1パルス1溶滴移行を確保しやすく、高電流−低電流1周期ごとに確実に溶滴をワイヤから母材側へ移行させることが可能となる。
【0010】
即ち本発明によれば溶接条件の設定が容易となり、スパッタの発生を良好に抑制することができるとともに、アーク長が長くなることによるアーク切れやハンピングビードの発生等を効果的に抑制し得てビード形状を良好となすことができる。
【0011】
次に本発明の溶接用ワイヤにおける各化学成分の限定理由を詳述する。
C:≦0.15%
Cは溶接金属の強度を高めるが、0.15%を超えるとワイヤへの加工性が劣化する。従って本発明ではCの上限を0.15%とする。
【0012】
Si:0.10〜0.60%
Siは0.10%より少ないと脱酸不足となって溶接金属中にピット,ブローホールといった欠陥が生じる。
また0.60%を超えると1パルス1溶滴となる適正なパルス条件においては溶滴が大きく成長し過ぎて大粒のスパッタが発生しやすい。従って本発明ではSiを0.10〜0.60%とする。
このSiのより望ましい量は0.20〜0.40%である。
【0013】
Mn:1.0〜2.0%
Mnは1.0%より少ないと1パルス1溶滴となる適正なパルス条件においては溶滴が大きく成長し過ぎて大粒のスパッタが発生しやすい。また2.0%より多いと溶接金属の強度が高まり、ワイヤへの加工性が劣化する。従って本発明においてMnは1.0〜2.0%とする。
このMnのより望ましい量は1.3〜1.5%である。
【0014】
S:≦0.020%
Sは0.020%を超えると溶滴の表面張力が低くなって溶滴が安定して球形に形成されず、スパッタが多くなる。従って本発明ではSを0.020%以下とする。
Sのより望ましい範囲は0.010%以下である。
【0015】
Ni:0.01〜0.20%
Cr:0.01〜0.20%
Zr:0.001〜0.10%
且つ2種以上の合計量で0.03〜0.30%
これら元素を上記範囲内で2種以上含有させ、またその際の合計量で0.03〜0.30%とすることで、スパッタの少ない適正なTpの範囲を広くすることができる。
但し過剰に添加するとスパッタが多発するようになる。また一方添加量が少ないと適正なTpの範囲を広くするための十分な効果が得られない。
そこで本発明ではこれらNi,Cr,Zrの含有量を上記範囲とする。
【0016】
【実施例】
次に本発明の実施例を以下に詳述する。
表1に示す各種組成の溶接用ワイヤを用い、以下の溶接条件でパルスマグ溶接を実施した。
<溶接条件>
母材 SPC 板厚3.2mm
シールドガス Ar+20%CO2
溶接法 下向きビードオンプレート溶接
チップ母材間距離 15mm
ピーク電流値 460A
ピーク電流保持時間 0.9,1.1,1.3,1.5,1.7ms
ワイヤ送給速度 7.0m/min
アーク電圧 23V
溶接速度 150cm/min
そして適正ピーク電流保持時間の測定を行い、またスパッタの発生量を測定した。結果が表1に併せて示してある。
尚、適正ピーク電流保持時間はスパッタ量が0.50g/min以下ないし最もスパッタ量が少ない時間で求めた。
また表中のスパッタ量の値は最も少ないスパッタ量値で示した。
【0017】
【表1】
【0018】
図1は表1におけるNO.5,NO.14,NO.23についてピーク電流保持時間とスパッタ量との関係を表したものであり、これら表1及び図1の結果から、本発明例に従う溶接用ワイヤの場合、適正ピーク電流保持時間の範囲が広く、溶接条件の設定が容易であること、またスパッタの発生量が少ないこと、特にSi,Mn,Sを望ましい範囲で含有するNO.1〜NO.5のものについては、より望ましい結果の得られることが分かる。
尚本発明例の溶接用ワイヤの場合ビード形状も良好であった。
【0019】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【図面の簡単な説明】
【図1】本発明の実施例において得られたピーク電流保持時間とスパッタ量との関係を表す図である。
【図2】パルスマグ溶接における溶滴の形成と溶滴の移行とを加えられた電流との関係において表した図である。
【図3】パルスマグ溶接における適正なピーク電流保持時間の範囲を広くすることの利点を説明する説明図である。
【符号の説明】
100 溶接用ワイヤ
102 溶滴
104 母材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse mag welding wire, and more particularly, to a welding wire that generates a small amount of spatter and can perform welding with a good bead shape.
[0002]
[Prior art and problems to be solved by the invention]
Gas shielded arc welding is often used in combination with robots because it enables highly efficient welding and is easy to automate.
Among these gas shielded arc weldings, MAG welding using a gas in which an inert gas such as Ar is mixed with CO 2 as the shielding gas can be welded with less spatter than the welding using only CO 2 gas. is there.
However, even in this MAG welding, when the welding current is low, the generation of spatter cannot be suppressed sufficiently low.
[0003]
On the other hand, a pulse mag welding method has been proposed in which a pulse power source is used as a welding power source and a high current and a low current are alternately flowed in a pulse shape. In this pulse mag welding method, spatter is suppressed even under a low welding current. be able to.
[0004]
As shown in FIG. 2, in this pulse mag welding, the
However, in this case, in order to ensure the formation of the
[0005]
However, this Tp varies depending on the components of the welding wire and other conditions. Therefore, if the Tp is not properly set and maintained, the transfer of one pulse per droplet cannot be secured, and the droplet generated at high currents. Even when the current 102 is at a low current, it does not leave the
[0006]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems.
Thus, in the present invention, the composition of the wire for pulsed MAG welding is C: ≦ 0.15%, Si: 0.10-0.60%, Mn: 1.0-2.0%, S: ≦ 0.020%, and two or more of Ni, Cr, and Zr are Ni: 0.01-0.20%, Cr: 0.01-0.20%, Zr: 0.001-0. It is contained in a range of 10% and a total amount of 0.03 to 0.30%, and the balance is substantially composed of Fe.
[0007]
[Operation and effect of the invention]
As described above, in pulse mag welding, whether or not Tp at a high current is optimally set is a factor that determines the quality of welding.
Thus, if the appropriate Tp range is narrow, it is difficult to match the holding time at the time of high current during welding to the appropriate Tp, and the welding conditions are likely to deviate from the optimum conditions, resulting in many spatters. Or the bead shape is worse.
On the other hand, if the appropriate Tp range is wide, it is easy to maintain optimum welding conditions even if the welding conditions vary somewhat, and as a result, welding can be performed satisfactorily.
[0008]
FIG. 3 specifically shows this. In FIG. 3, (a) shows a case where the appropriate Tp range is narrow, and (B) shows a case where the appropriate Tp range is wide.
As shown in the figure, when the Tp during actual welding is slightly different from the appropriate Tp, the amount of spatter increases rapidly, whereas the appropriate Tp range is wide (in the case of (b)). It can be seen that even if the actual welding Tp is slightly different from the appropriate Tp, the amount of spatter does not increase so much.
[0009]
The present inventor pays attention to the peak holding time Tp at the time of high current and studies the components of the welding wire. In the range of C, Si, Mn and S within the above range, two types of Ni, Cr and Zr are used. When the above was included in the said range, the knowledge which can take the range of appropriate Tp wide was acquired, and this invention was completed.
That is, according to the present invention, as shown in the conceptual diagram of FIG. 3, it is easy to ensure one pulse / one droplet transfer even if the Tp at a high current fluctuates slightly, and it is ensured every cycle of high current-low current. It is possible to transfer the droplet from the wire to the base material side.
[0010]
That is, according to the present invention, it is easy to set the welding conditions, the generation of spatter can be suppressed well, and the occurrence of arc breakage and humping bead due to an increase in arc length can be effectively suppressed. The bead shape can be improved.
[0011]
Next, the reasons for limiting each chemical component in the welding wire of the present invention will be described in detail.
C: ≦ 0.15%
C increases the strength of the weld metal, but if it exceeds 0.15%, the workability to the wire deteriorates. Therefore, in the present invention, the upper limit of C is set to 0.15%.
[0012]
Si: 0.10 to 0.60%
If Si is less than 0.10%, deoxidation is insufficient and defects such as pits and blowholes occur in the weld metal.
On the other hand, if the amount exceeds 0.60%, the droplets grow too large under the appropriate pulse condition in which one droplet is one droplet, and large spatter is likely to occur. Therefore, in the present invention, Si is made 0.10 to 0.60%.
A more desirable amount of Si is 0.20 to 0.40%.
[0013]
Mn: 1.0-2.0%
When Mn is less than 1.0%, the droplets grow excessively under appropriate pulse conditions where one pulse is one droplet and large spatter is likely to occur. On the other hand, when the content is more than 2.0%, the strength of the weld metal is increased and the workability to the wire is deteriorated. Therefore, in the present invention, Mn is set to 1.0 to 2.0%.
A more desirable amount of Mn is 1.3 to 1.5%.
[0014]
S: ≦ 0.020%
If S exceeds 0.020%, the surface tension of the droplets becomes low, the droplets are not stably formed into a spherical shape, and spatter increases. Therefore, in the present invention, S is made 0.020% or less.
A more desirable range of S is 0.010% or less.
[0015]
Ni: 0.01-0.20%
Cr: 0.01-0.20%
Zr: 0.001 to 0.10%
And 0.03-0.30% in the total amount of 2 or more types
By including two or more of these elements within the above range, and making the total amount at that time 0.03 to 0.30%, it is possible to widen the appropriate Tp range with less sputtering.
However, when it is added excessively, spatter frequently occurs. On the other hand, if the addition amount is small, a sufficient effect for widening the appropriate Tp range cannot be obtained.
Therefore, in the present invention, the contents of these Ni, Cr and Zr are within the above range.
[0016]
【Example】
Next, examples of the present invention will be described in detail below.
Using the welding wires having various compositions shown in Table 1, pulse mag welding was performed under the following welding conditions.
<Welding conditions>
Base material SPC Thickness 3.2mm
Shielding gas Ar + 20% CO 2
Welding method Downward bead-on-plate welding tip base metal distance 15mm
Peak current value 460A
Peak current holding time 0.9, 1.1, 1.3, 1.5, 1.7 ms
Wire feed speed 7.0m / min
Arc voltage 23V
Welding speed 150cm / min
Then, an appropriate peak current holding time was measured, and the amount of spatter generated was measured. The results are also shown in Table 1.
The appropriate peak current holding time was determined when the sputtering amount was 0.50 g / min or less or the time when the sputtering amount was the smallest.
The spatter value in the table is the smallest spatter value.
[0017]
[Table 1]
[0018]
1 shows the NO. 5, NO. 14, NO. 23 shows the relationship between the peak current holding time and the sputtering amount. From the results of Table 1 and FIG. 1, in the case of the welding wire according to the example of the present invention, the range of the appropriate peak current holding time is wide. The conditions are easy to set and the amount of spatter generated is small. In particular, NO. Containing Si, Mn and S in a desirable range. 1-NO. It can be seen that a more desirable result can be obtained for the five.
In the case of the welding wire of the example of the present invention, the bead shape was also good.
[0019]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in a mode in which various changes are made without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a peak current holding time and a sputtering amount obtained in an example of the present invention.
FIG. 2 is a diagram showing the relationship between droplet formation and droplet transfer in pulsed MAG welding and the applied current.
FIG. 3 is an explanatory diagram for explaining the advantage of widening the range of an appropriate peak current holding time in pulse mag welding.
[Explanation of symbols]
100
Claims (1)
C :≦0.15%
Si:0.10〜0.60%
Mn:1.0〜2.0%
S :≦0.020%
であり、更にNi,Cr,Zrの2種以上をそれぞれ
Ni:0.01〜0.20%
Cr:0.01〜0.20%
Zr:0.001〜0.10%
の範囲で且つ合計量が0.03〜0.30%となる範囲で含有し、残部実質的にFeから成ることを特徴とするパルスマグ溶接用ワイヤ。C by weight: ≦ 0.15%
Si: 0.10 to 0.60%
Mn: 1.0-2.0%
S: ≦ 0.020%
Further, two or more of Ni, Cr and Zr are each Ni: 0.01 to 0.20%
Cr: 0.01-0.20%
Zr: 0.001 to 0.10%
And a total amount of 0.03 to 0.30%, and the remainder is substantially made of Fe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20119396A JP3826444B2 (en) | 1996-07-10 | 1996-07-10 | Pulsed MAG welding wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20119396A JP3826444B2 (en) | 1996-07-10 | 1996-07-10 | Pulsed MAG welding wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1024389A JPH1024389A (en) | 1998-01-27 |
JP3826444B2 true JP3826444B2 (en) | 2006-09-27 |
Family
ID=16436896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20119396A Expired - Fee Related JP3826444B2 (en) | 1996-07-10 | 1996-07-10 | Pulsed MAG welding wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3826444B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104400194A (en) * | 2014-10-24 | 2015-03-11 | 山东省科学院新材料研究所 | Active welding method for dissimilar magnesium alloy plates |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5950992A (en) * | 1982-09-16 | 1984-03-24 | Daido Steel Co Ltd | Welding wire |
JPH0679780B2 (en) * | 1987-12-07 | 1994-10-12 | トヨタ自動車株式会社 | Arc welding method |
JPH06210490A (en) * | 1993-01-12 | 1994-08-02 | Sumitomo Metal Ind Ltd | Welding wire of zinc galvanized steel sheet and welding method |
JP3386224B2 (en) * | 1994-03-14 | 2003-03-17 | 株式会社神戸製鋼所 | Solid wire for pulse mag welding for high strength steel |
JP3523917B2 (en) * | 1994-09-29 | 2004-04-26 | 大同特殊鋼株式会社 | Gas shielded arc welding method |
JP2801161B2 (en) * | 1995-10-03 | 1998-09-21 | 株式会社神戸製鋼所 | Solid wire for pulse MAG welding |
JP3496084B2 (en) * | 1996-01-31 | 2004-02-09 | 日鐵住金溶接工業株式会社 | Gas shielded arc welding method for thin plate |
-
1996
- 1996-07-10 JP JP20119396A patent/JP3826444B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1024389A (en) | 1998-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11577345B2 (en) | Systems and methods for low-manganese welding alloys | |
KR102175028B1 (en) | Systems and methods for low-manganese welding alloys | |
US20060186103A1 (en) | Wire electrode with improved slag properties | |
MXPA05013178A (en) | Cored electrode for reducing diffusible hydrogen. | |
JP2005262319A (en) | Gas-metal arc welding method of ferrous alloy | |
US9102013B2 (en) | Flux-cored welding wire for carbon steel and process for arc welding | |
KR100355581B1 (en) | Flux cored wire for gas shield arc welding | |
EP1547722B1 (en) | Metal-base flux-cored wire for gas-shielded arc welding and gas-shielded arc welding method | |
JP3826444B2 (en) | Pulsed MAG welding wire | |
JPH07251292A (en) | Solid wire for mag and pulsed mag welding of high tensile steel | |
CA2955351C (en) | Systems and methods for low-manganese welding alloys | |
EP3666452A1 (en) | Improved crack-resistant wire electrode containing added sulfur source and magnesium oxide | |
JP2801161B2 (en) | Solid wire for pulse MAG welding | |
JPH03297570A (en) | Gas shielded arc welding method | |
JP2020116597A (en) | Three-electrode single-sided gas shielded arc welding method | |
JP6738628B2 (en) | Welding method, manufacturing method, and welding apparatus for light metal weldments | |
JP2001321985A (en) | Gas shielded arc welding wire for thin steel sheet and pulse mag welding method using the same | |
US12134147B2 (en) | Systems and methods for low-manganese welding alloys | |
JPS63183795A (en) | Flux cored wire for gas shielded arc welding | |
JPH079150A (en) | Gas shielded arc welding method for galvanized steel sheet and galvanized steel sheet product welded by the welding method | |
JPH07235B2 (en) | Pulse MAG welding method | |
JPH0239359B2 (en) | SERUFUSHIIRUDOAAKUYOSETSUYOFURATSUKUSUIRIWAIYA | |
JP2003320477A (en) | Titanium or titanium alloy mig welding wire having good arc stability, and mig welding method of titanium or titanium alloy by using the wire | |
JPH06269990A (en) | Seamless flux-containing wire for welding stainless steel | |
JP2001071175A (en) | Solid wire for gas shield arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060626 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100714 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110714 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120714 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130714 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |