JP3826166B2 - Electrolytic cell with separation membrane anodized water - Google Patents

Electrolytic cell with separation membrane anodized water Download PDF

Info

Publication number
JP3826166B2
JP3826166B2 JP2001363440A JP2001363440A JP3826166B2 JP 3826166 B2 JP3826166 B2 JP 3826166B2 JP 2001363440 A JP2001363440 A JP 2001363440A JP 2001363440 A JP2001363440 A JP 2001363440A JP 3826166 B2 JP3826166 B2 JP 3826166B2
Authority
JP
Japan
Prior art keywords
liquid
cathode
electrolytic cell
water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001363440A
Other languages
Japanese (ja)
Other versions
JP2003126857A (en
Inventor
正喜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Corp
Original Assignee
Hokuetsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Corp filed Critical Hokuetsu Corp
Priority to JP2001363440A priority Critical patent/JP3826166B2/en
Publication of JP2003126857A publication Critical patent/JP2003126857A/en
Application granted granted Critical
Publication of JP3826166B2 publication Critical patent/JP3826166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電解質溶液を直流電流で電気分解し、陽極側に生成する電解液と陰極側に生成する電解液をそれぞれ別々に得る技術において、隔膜を用いない技術に関する。
【0002】
【従来の技術】
食塩や塩化カリウムなどを直流電流で電気分解し、殺菌力のあるいわゆる電解水を生成する技術は広く知られている。そのような技術には、電解槽の陰極と陽極の間に導電性の隔膜を置く隔膜式電解槽を使用する方法と隔膜を置かない無隔膜電解槽を使う方法がある。食塩を電解質として使用する場合、隔膜式電解槽を用いて電解すると陽極側からは酸性の次亜塩素酸溶液(以下「酸性電解水」と呼ぶ)が得られ、陰極側からは水酸化ナトリウムを主成分とするアルカリ性溶液(以下「アルカリ性電解水」と呼ぶ)が得られる。従って、陽極側から得られる溶液は強い殺菌効果を示し、陰極側から得られる溶液は洗浄効果を示す。一方、無隔膜電解槽を用いた場合は次亜塩素酸ナトリウム溶液(以下「電解次亜塩水」と呼ぶ)のみが得られる。殺菌力の点では、隔膜式電解槽の陽極側から得られる酸性電解水の方が、無隔膜電解槽で得られる電解次亜水より遥かに強い殺菌効果を示すことが知られている。従って、殺菌の目的で食塩等を原料として電解液を調製する場合、隔膜式の電解槽を用いる方が有利であり、いわゆる殺菌用電解水としては、隔膜式電解槽を用いて食塩溶液を電解する技術が主流となっている。
【0003】
【発明が解決しようとする課題】
強力な殺菌力を持つ酸性電解水や洗浄効果のあるアルカリ性電解水を得るのに用いられている隔膜式電解槽には、陽極側の溶液と陰極側の溶液が混合されるのを防ぐために、両者を隔てる隔膜を必要とする。しかし、この隔膜は伝導性ではあるが、電解時の電気抵抗の主因であり、その分電解電圧を高くする心要があり、電力の浪費の原因となっている。さらに、使用時間によって、膜表面にカルシウム等を主成分とするスケールが沈着しさらに電気抵抗を高くする。しかし、隔膜式電解槽のさらに重大な問題点は膜の消耗である。電解時間が増えるに従って、消耗しやがてもはや両側の溶液を分離することができなくなる。従って、一定の電解時間ごとに電解槽を分解し新しい隔膜に交換の手間が余分に必要となる。
【0004】
【課題を解決するための手段】
本発明者は、隔膜を使うことなく、陽極側と陰極側の液体を分離し別々に得るために、電解槽が、それぞれに電極を収容した2個の収容部が、電極の下端より低い位置に取り付けられた液絡部で結合され、それぞれの収容部に収容された液体が会合し、一方の収容部から他方の収容部へ液体を通して電気の導通が確保された構造をもつことにより、陰極側のアルカリ性電解水と陽極側の酸性電解水が混合されることなく生成され、分離して得られるような構成において、液絡部に、新たな液を供給できる給水部が配設され、さらに、それぞれの収容部に、液絡部の配設位置より上部に排出部が配設された構造とし、給水部から連続的に供給された液が、それぞれの収容部に分かれて流入し電解された後、収容部ごとに別々に配設された排出部から電解液が排出され、陰極電解水、陽極電解水が分離されて連続的に得られる構造を発明した。
また、それぞれの収容部に生成された電解液を容易に別々に取り出せるように、電解槽が、それぞれに電極を収容した2個の収容部が、電極の下端より低い位置に取り付けられた液絡部で結合され、それぞれの収容部に収容された液体が会合し、一方の収容部から他方の収容部へ液体を通して電気の導通が確保された構造をもつことにより、陰極側のアルカリ電解水と陽極側の酸性電解水が混合されることなく生成され、分離して得られるような構成において、液絡部に3方弁を取り付ける構造を構成することにより本発明を完成した。
【0005】
【発明の実施の形態】
次に試験例を示して本発明の作用形態を詳しく説明する。
(試験例1)
図面1に示した電解槽を用いて、飽和食塩水を電解した。3方弁14を、陽極室2と陰極室3が繋がり、排出口15を塞ぐ位置に合わせ、それぞれ50mlの容量を持つ陽極室及び陰極室に、飽和食塩水約100mlを注いだ。次に、直流電源6オムロン社製S82J−5524から陽極4、陰極5を通して24V、1Aの電流を印加し5分間電解した。電流を停止後、3方弁を、陽極室と排出口を繋ぐように合わせ、陽極液のみを採取し、続いて、陰極室と排出口を繋ぐように3方弁を操作し陰極水を採取した。それぞれの特性を測定した結果次の表のように酸性電解水とアルカリ性電解水が得られたことが確認された。

Figure 0003826166
(試験例2)
図面2に示した装置を用いて、連続的に酸性電解水およびアルカリ性電解水を生成する試験を行った。飽和食塩水タンク11から、定量ポンプ10ヘンミ社製YH1104A01で、飽和食塩水を30ml/分の流量で電解槽1に供給し、陽極室および陰極室にそれぞれ15ml/分で飽和食塩水が供給されるようにした。その間、直流電源6オムロン社製S82J−5524から、24V、1.2Aの電流を印加し、陽極水排出口7および陰極水排出口8から15ml/分でそれぞれ酸性電解液およびアルカリ性電解液を得た。電解液の特性値は次の通りであり、連続的に酸性電解水およびアルカリ性電解水が得られることが確認された。
Figure 0003826166
次に、実施例を示して本発明を具体的に説明するが、これは本発明の理解を容易にするのが目的であり、本発明を以下の実施例に限定する趣旨ではない。
(実施例1)
図面1の1に本発明のバッチ方式の無隔膜陰陽極水分離型電解槽の1例を示した。この例は各50ml溶の陽極室2と同じ容量の陽極室3を持ち、それぞれに陽極4、陰極5が設置され、両電極は直流電源6に結線されている。なお、陽極陰極は電源の極性を切り替えるだけで容易に転換できる。なお、陽極陰極は電源の極性を切り替えるだけで容易に転換できる。それぞれの電極の下方には、両極室を連絡する液絡部16があり、液絡部には3方弁14が設置されている。また、両極室の液体を排出するための排出口が3方弁から下方に設置されている。このように構成された電解槽の作動の形態は次の通りである。3方弁を陽極槽と陰極槽を繋ぎ、排出口を塞ぐように合わせておいて、電解質溶液を両極室に注ぐ。1定時間電解した後、3方弁を何れかの槽と排出口を繋ぐように合わせ、一方の電解液を採取した後、他方の槽と排出口を繋ぎ、もう一方の電解液を採取する。このように作動させることにより両極室の液が混合することなく電解を行い、両極室の電解質を別々に採取することを可能にする。
(実施例2)
図面2の17に本発明の連続生成方式の電解槽の例を示した。この例は各々50ml容の陽極室2と陰極室3持ち、それぞれに陽極4と陰極5が設置されれており、各極は直流電源6と結線されている。各電極の下方には液絡部16があり、陽極室と陰極室を繋いでいる。液絡部には給液部9があり、電解原液を供給できるようになっている。また、各極室の上部には各々排液口7および8が設けてあり、それぞれ酸性電解水およびアルカリ性電解水が別々に排出されるようになっている。この電解槽の作動は次の通りである。給液部から連続的に供給された電解原液は液絡部で両側に等量ずつ分かれて、それぞれ陽極室および陰極室に流入する。両極室で電解されて生成した酸性電解質とアルカリ性電解室はそれぞれ排出口7および8から連続的に排出される。
【0006】
【発明の効果】
本発明の効果は、食塩溶液などを電気分解して、強い殺菌効果のある酸性電解水と洗浄効果のあるアルカリ性電解水を得る電解装置において、陽極室と陰極室を隔てるための隔膜を不要となることである。従来から使用されている隔膜は電解槽の電気抵抗を高めたり、消耗により交換を必要とすること等でランニングコストを高める主因であるので、使用しなくてよいと、ランニングコストは低くなり、メンテナンスの手間も軽減される。さらに、メンテナンスフリーの電解槽も可能となり、利用目的に対する制限も少なくなる。
【図面の簡単な説明】
【図1】バッチ式の無隔膜陰陽極水分離型電解槽の断面と電源の接続
【図2】連続式の無隔膜陰陽極水離型電解槽と原液の供給システム、酸性電解水およびアルカリ性電解水の採取システム
【符号の説名】
1.バッチ式無隔膜陰陽極水分離型電解槽
2.陽極室(50ml)
3.陰極室(50m/l)
4.陽極
5.陰極
6.直流電源(24V)
7.排液口(陽極室)
8.排液口(陰極室)
9.給液部
10.定量ポンプ
11.飽和食塩水タンク
12.酸性電解水採取容器三法弁
13.アルカリ性電解水採取容器
14.三方弁
15.排出口
16.液絡部
17.連続式無隔膜陰陽極水分離型電解槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique in which an electrolyte solution is electrolyzed with a direct current to separately obtain an electrolyte solution generated on the anode side and an electrolyte solution generated on the cathode side, and does not use a diaphragm.
[0002]
[Prior art]
A technique for electrolyzing salt or potassium chloride with a direct current to generate so-called electrolyzed water having sterilizing power is widely known. Such techniques include a method using a diaphragm type electrolytic cell in which a conductive diaphragm is placed between a cathode and an anode of the electrolytic cell, and a method using a non-diaphragm electrolytic cell without a diaphragm. When using sodium chloride as the electrolyte, an electrolytic hypochlorite solution (hereinafter referred to as “acidic electrolyzed water”) is obtained from the anode side when electrolysis is performed using a diaphragm-type electrolytic cell, and sodium hydroxide is added from the cathode side. An alkaline solution having the main component (hereinafter referred to as “alkaline electrolyzed water”) is obtained. Therefore, the solution obtained from the anode side shows a strong sterilizing effect, and the solution obtained from the cathode side shows a cleaning effect. On the other hand, when a diaphragmless electrolytic cell is used, only a sodium hypochlorite solution (hereinafter referred to as “electrolytic hypochlorite”) is obtained. In terms of sterilizing power, it is known that acidic electrolyzed water obtained from the anode side of a diaphragm-type electrolytic cell exhibits a far stronger sterilizing effect than electrolytic hyponitrous acid obtained in a non-diaphragm electrolytic cell. Therefore, when preparing an electrolytic solution using salt or the like as a raw material for the purpose of sterilization, it is more advantageous to use a diaphragm-type electrolytic cell. As so-called sterilized electrolytic water, a salt-type electrolytic cell is used to electrolyze a salt solution. Technology is becoming mainstream.
[0003]
[Problems to be solved by the invention]
In order to prevent the anode side solution and the cathode side solution from being mixed in the diaphragm type electrolytic cell used to obtain acidic electrolyzed water having strong bactericidal power and alkaline electrolyzed water having a cleaning effect, A diaphragm that separates the two is required. However, although this diaphragm is conductive, it is a main cause of electrical resistance during electrolysis, and there is a need to increase the electrolysis voltage accordingly, which is a cause of wasting power. Furthermore, the scale mainly composed of calcium or the like is deposited on the film surface depending on the use time, and the electric resistance is further increased. However, a more serious problem of the diaphragm type electrolytic cell is the consumption of the membrane. As the electrolysis time increases, the solution on both sides can no longer be separated. Therefore, it is necessary to disassemble the electrolytic cell every certain electrolysis time and to replace the new diaphragm with an extra time.
[0004]
[Means for Solving the Problems]
In order to separate the liquid on the anode side and the cathode side separately without using a diaphragm, the inventor has two positions where the electrolytic cell has two electrodes, each containing an electrode, lower than the lower end of the electrode. By connecting the liquid junctions attached to each other, the liquids accommodated in the respective accommodating parts meet, and the electric conduction is ensured through the liquid from one accommodating part to the other accommodating part. In the configuration in which the alkaline electrolyzed water on the side and the acidic electrolyzed water on the anode side are generated without being mixed and obtained by separation, a water supply unit capable of supplying a new liquid is disposed in the liquid junction, Each of the storage units has a structure in which a discharge unit is disposed above the position where the liquid junction is disposed, and the liquid continuously supplied from the water supply unit flows into each of the storage units and is electrolyzed. After that, the discharge part arranged separately for each storage part Et electrolytic solution is discharged, the cathode electrolytic water, anode electrolytic water has invented a structure obtained continuously separated.
In addition, in order to be able to easily take out the electrolytic solution generated in each housing part separately, the electrolytic tank has a liquid junction in which two housing parts each housing an electrode are attached at a position lower than the lower end of the electrode. The liquid contained in each of the storage units is associated with each other, and has a structure in which electrical conduction is ensured through the liquid from one storage unit to the other storage unit. The present invention has been completed by constructing a structure in which the three-way valve is attached to the liquid junction in a configuration in which the acidic electrolyzed water on the anode side is generated without being mixed and obtained by separation .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, the operation mode of the present invention will be described in detail with reference to test examples.
(Test Example 1)
Saturated saline was electrolyzed using the electrolytic cell shown in FIG. The three-way valve 14 was adjusted to a position where the anode chamber 2 and the cathode chamber 3 were connected and the discharge port 15 was blocked, and about 100 ml of saturated saline was poured into the anode chamber and the cathode chamber each having a capacity of 50 ml. Next, a current of 24 V and 1 A was applied from the DC power source 6 S82J-5524 manufactured by OMRON Corporation through the anode 4 and the cathode 5 to perform electrolysis for 5 minutes. After stopping the current, adjust the three-way valve to connect the anode chamber and the discharge port, collect only the anolyte, and then operate the three-way valve to connect the cathode chamber and the discharge port to collect the cathode water. did. As a result of measuring each characteristic, it was confirmed that acidic electrolyzed water and alkaline electrolyzed water were obtained as shown in the following table.
Figure 0003826166
(Test Example 2)
Using the apparatus shown in FIG. 2, a test for continuously generating acidic electrolyzed water and alkaline electrolyzed water was conducted. Saturated saline is supplied from the saturated saline tank 11 to the electrolytic cell 1 at a flow rate of 30 ml / min using a metering pump 10 YH1104A01 manufactured by Henmi, and the saturated saline is supplied to the anode chamber and the cathode chamber at 15 ml / min, respectively. It was to so. In the meantime, a current of 24 V and 1.2 A was applied from DC power source 6 S82J-5524 manufactured by OMRON Corporation, and an acidic electrolyte solution and an alkaline electrolyte solution were obtained from the anode water outlet 7 and the cathode water outlet 8 at 15 ml / min, respectively. It was. The characteristic values of the electrolytic solution are as follows, and it was confirmed that acidic electrolyzed water and alkaline electrolyzed water can be obtained continuously.
Figure 0003826166
Next, the present invention will be specifically described with reference to examples. However, this is intended to facilitate understanding of the present invention, and is not intended to limit the present invention to the following examples.
Example 1
FIG. 1 shows an example of a batch-type diaphragm negative / anodic water separation electrolytic cell of the present invention. This example has an anode chamber 3 having the same capacity as the 50 ml-dissolved anode chamber 2, each having an anode 4 and a cathode 5, and both electrodes are connected to a DC power source 6. Note that the anode and cathode can be easily switched by simply switching the polarity of the power source. Note that the anode and cathode can be easily switched by simply switching the polarity of the power source. Below each electrode, there is a liquid junction 16 connecting the bipolar chambers, and a three-way valve 14 is installed in the liquid junction. Moreover, the discharge port for discharging | emitting the liquid of a bipolar chamber is installed below the three-way valve. The mode of operation of the electrolytic cell configured in this way is as follows. A three-way valve is connected to the anode tank and the cathode tank, and the discharge port is closed. The electrolyte solution is poured into the bipolar chamber. After electrolysis for one fixed time, adjust the three-way valve so that one of the tanks is connected to the discharge port, collect one electrolyte, connect the other tank to the discharge port, and collect the other electrolyte . By operating in this way, electrolysis can be performed without mixing the liquids in the bipolar chambers, and the electrolytes in the bipolar chambers can be collected separately.
(Example 2)
An example of the electrolytic cell of the continuous production system of the present invention is shown in 17 of FIG. This example has an anode chamber 2 and a cathode chamber 3 each having a capacity of 50 ml, and an anode 4 and a cathode 5 are installed in each of them, and each pole is connected to a DC power source 6. A liquid junction 16 is provided below each electrode, and connects the anode chamber and the cathode chamber. The liquid junction part has a liquid supply part 9 so that an electrolytic stock solution can be supplied. Further, drainage ports 7 and 8 are provided at the top of each electrode chamber, respectively, so that acidic electrolyzed water and alkaline electrolyzed water are separately discharged. The operation of this electrolytic cell is as follows. The electrolyte stock solution continuously supplied from the liquid supply part is divided into equal amounts on both sides at the liquid junction part and flows into the anode chamber and the cathode chamber, respectively. The acidic electrolyte and alkaline electrolytic chamber produced by electrolysis in the bipolar chambers are continuously discharged from the discharge ports 7 and 8, respectively.
[0006]
【The invention's effect】
The effect of the present invention is that electrolysis of a salt solution or the like to obtain acidic electrolyzed water having a strong sterilizing effect and alkaline electrolyzed water having a cleaning effect eliminates the need for a diaphragm for separating the anode chamber and the cathode chamber. It is to become. The diaphragm used in the past is the main cause of increasing the running cost by increasing the electric resistance of the electrolytic cell or requiring replacement due to wear, etc. The effort is reduced. Furthermore, a maintenance-free electrolytic cell is also possible, and restrictions on the purpose of use are reduced.
[Brief description of the drawings]
[Fig. 1] Cross section of batch type membrane anodized water separation electrolytic cell and connection of power source [Fig. 2] Continuous type membrane anodized water separation type electrolytic cell and stock solution supply system, acidic electrolyzed water and alkaline electrolysis Water sampling system [Code name]
1. 1. Batch-type non-membrane negative / anodic water separation electrolytic cell Anode chamber (50 ml)
3. Cathode chamber (50m / l)
4). Anode 5. Cathode 6. DC power supply (24V)
7). Drain port (anode chamber)
8). Drainage port (cathode chamber)
9. Liquid supply unit 10. 10. Metering pump Saturated saline tank 12. Acid electrolyzed water collection container three-way valve13. 13. alkaline electrolyzed water collection container Three-way valve15. Outlet 16. Liquid junction 17. Continuous non-membrane negative anodized water electrolytic cell

Claims (2)

それぞれに電極を収容した2個の収容部が、電極の下端より低い位置に取り付けられた液絡部で結合され、それぞれの収容部に収容された液体が会合し、一方の収容部から他方の収容部へ液体を通して電気の導通が確保された構造をもつことにより、陰極と陽極の電解液が分離されて生成される構成において、該液絡部に新たな液を供給できる給水部が設けられ、それぞれの該収容部に、該液絡部の設置位置より上部に排出部が取り付けられ、該給水部から連続的に供給された液が、それぞれの該収容部に分かれて流入し電解された後、該収容部ごとに別々に該排出部から電解液が排出され、陰極電解水、陽極電解水が分離されて連続的に得られる構造であることを特徴とする無隔膜陰陽極水分離型電解槽 Two accommodating portions each accommodating an electrode are joined by a liquid junction attached at a position lower than the lower end of the electrode, and the liquid accommodated in each accommodating portion is associated with each other from one accommodating portion to the other. In the configuration in which the electrolytic solution of the cathode and the anode is separated and generated by having a structure in which electrical conduction through the liquid is ensured through the container , a water supply unit that can supply new liquid to the liquid junction is provided. In each of the storage units, a discharge unit is attached above the installation position of the liquid junction, and the liquid continuously supplied from the water supply unit flows into each of the storage units and is electrolyzed. Thereafter, an electrolytic solution is discharged from the discharge unit separately for each storage unit, and the cathode electrolyzed water and the anodic electrolyzed water are separated and continuously obtained. Electrolytic cell それぞれに電極を収容した2個の収容部が、電極の下端より低い位置に取り付けられた液絡部で結合され、それぞれの該収容部に収容された液体が会合し、一方の該収容部から他方の該収容部へ液体を通して電気の導通が確保された構造をもつことにより、陰極と陽極の電解液が分離されて生成される構成において、該液絡部に液の導通を開閉できる3方弁を取り付け、該2個の収容部に収容された液体を別々に取り出せる構造であることを特徴とする無隔膜陰陽極水分離型電解槽Two accommodating portions each accommodating an electrode are joined by a liquid junction attached at a position lower than the lower end of the electrode, and the liquid accommodated in each accommodating portion is associated with each other from the one accommodating portion. Three-way structure capable of opening and closing the liquid junction at the liquid junction in a structure in which the cathode and anode electrolytes are separated by having a structure in which electrical conduction is ensured through the other container. A membrane anodized water separation type electrolyzer having a structure in which a valve is attached and liquids stored in the two storage parts can be taken out separately.
JP2001363440A 2001-10-24 2001-10-24 Electrolytic cell with separation membrane anodized water Expired - Fee Related JP3826166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363440A JP3826166B2 (en) 2001-10-24 2001-10-24 Electrolytic cell with separation membrane anodized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363440A JP3826166B2 (en) 2001-10-24 2001-10-24 Electrolytic cell with separation membrane anodized water

Publications (2)

Publication Number Publication Date
JP2003126857A JP2003126857A (en) 2003-05-07
JP3826166B2 true JP3826166B2 (en) 2006-09-27

Family

ID=19173778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363440A Expired - Fee Related JP3826166B2 (en) 2001-10-24 2001-10-24 Electrolytic cell with separation membrane anodized water

Country Status (1)

Country Link
JP (1) JP3826166B2 (en)

Also Published As

Publication number Publication date
JP2003126857A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
RU2716075C2 (en) Large volume water electrolysis system and method for use thereof
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
AU2005217634B2 (en) Gas drive electrolytic cell
JP2000246249A (en) Production of electrolytic water
RU2297981C1 (en) Device for the electrochemical treatment of the water and the water solutions
TW201813931A (en) Electrolyzed water generating device
KR101900001B1 (en) Device for producing and method for producing ionized water
GB2392441A (en) Electrolytic activation of fluids
JP3826166B2 (en) Electrolytic cell with separation membrane anodized water
WO2014007340A1 (en) Device for generating electrolytically treated water, and method for generating electrolytically treated water
JP3802580B2 (en) Electrolyzed water generator
KR101430380B1 (en) Cooling water circulation device
JP3804519B2 (en) Electrolyzed water generator
EP2872677B1 (en) Electrolytic cell with catholyte recycle
JP4363639B2 (en) Electrolytic ion water generator
JP2013017936A (en) Apparatus for producing electrolyzed water
JPS5992090A (en) Apparatus for preparation of alkali drinking water
JP3239264B2 (en) Multifunctional electrolyzed water generator
JPH09256180A (en) Water electrolyzer
JPH09225463A (en) Water electrolytic device
JP3411078B2 (en) Electrolyzed water production equipment
JP3677331B2 (en) Electrolyzed water generator
JPH0655174A (en) Electrolytic water producing apparatus
JPH11221566A (en) Production of electrolytic water
KR20070075624A (en) Electrolytic water generation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees