JP3825577B2 - Battery temperature rise monitoring device - Google Patents

Battery temperature rise monitoring device Download PDF

Info

Publication number
JP3825577B2
JP3825577B2 JP07784799A JP7784799A JP3825577B2 JP 3825577 B2 JP3825577 B2 JP 3825577B2 JP 07784799 A JP07784799 A JP 07784799A JP 7784799 A JP7784799 A JP 7784799A JP 3825577 B2 JP3825577 B2 JP 3825577B2
Authority
JP
Japan
Prior art keywords
temperature rise
battery
series
charging
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07784799A
Other languages
Japanese (ja)
Other versions
JP2000277175A (en
Inventor
礼造 前田
忠佳 田中
克彦 新山
義典 松浦
俊之 能間
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07784799A priority Critical patent/JP3825577B2/en
Publication of JP2000277175A publication Critical patent/JP2000277175A/en
Application granted granted Critical
Publication of JP3825577B2 publication Critical patent/JP3825577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数本の単電池を直列若しくは並列に接続してなる組電池において、充放電時の各単電池の温度上昇を監視する方法及び装置に関するものである。
【0002】
【従来の技術】
従来、組電池を構成する複数本の単電池のそれぞれに正の温度係数を有する素子(PTC素子)を貼り付けると共に、これらのPTC素子を互いに直列に接続して、これらのPTC素子の全抵抗を測定することによって、充放電時の大きな昇温を検知する装置が提案されている(特開平10−270094号)。
該装置においては、何れかの単電池に所定値を越える大きな温度上昇が発生した場合、該単電池に貼り付けられたPTC素子の抵抗値が急激に増大し、これによって複数のPTC素子の全抵抗の測定値が増大するので、これをもって大きな温度上昇の発生を検出することが出来る。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の昇温検出装置によって何れかの単電池に大きな温度上昇が発生したことが検出出来たとしても、何れの単電池に大きな温度上昇が発生したかを特定することは出来ない。
例えば図6(a)に示す様に5本の単電池からなる組電池において、充放電サイクルが繰り返される過程で、電池特性のバラツキや放熱状態の相違が原因で図示の如く放電残容量(充電深度)にバラツキが発生することがある。この様に放電残容量にバラツキが発生している状態で充電を開始した場合、同図(b)に示す様に充電開始時の放電残容量が大きい電池(“電池1”及び“電池5”)が先ず満充電の状態となって、電池の温度が上昇し、この結果、該電池に貼り付けられたPTC素子の抵抗値が増大して、充電は終了される。
【0004】
ところが、図6(b)に示す如く、充電開始時に放電残容量が小さかった電池(“電池3”)は満充電に至らない状態で充電が終了されることになる。
従って、充放電サイクルが繰り返されることによって、特定の電池の放電残容量が徐々に増大し、組電池全体としての電池容量が減少することになる。
【0005】
そこで本発明の目的は、組電池を構成している複数本の単電池の何れかに大きな温度上昇が発生した場合に、該電池を特定し、必要に応じて該電池を充放電系統から切り離すことが出来る電池の温度上昇監視装置を提供することである。
【0006】
【課題を解決する為の手段】
本発明に係る電池の温度上昇監視装置は、複数本の単電池を直列若しくは並列に接続してなる組電池において、充放電時の各単電池の温度上昇を監視する装置であって、各単電池には、負の温度係数を有する素子(以下、NTC素子という)が取り付けられ、これらの素子は、2本の直列線路(41)(42)の間を連結する複数本の並列線路(51)(52)(53)(54)(55)中にそれぞれ介在して、互いに並列に接続され、一方の直列線路 (42) には、隣接する並列線路の間を伸びる各直列線路区間に、抵抗器が介在し、前記2本の直列線路(41)(42)は抵抗検出回路(7)に接続されている。
NTC素子としては、例えば臨界温度サーミスタ(CTR)を採用することが出来る。
【0007】
上記本発明の電池の温度上昇監視装置を用いた充放電の監視においては、抵抗検出回路(7)から各NTC素子へ電流が供給されて、その電流値に基づいて2本の直列線路(41)(42)間の抵抗値が検出される。但し、全ての単電池の温度が低い状態では、全てのNTC素子の抵抗値は非常に大きく、各NTC素子に流れる電流は微弱である。
ここで、ある1本の単電池に所定値を越える温度上昇が発生した場合、該単電池に貼り付けられたNTC素子の抵抗が急激に低下して、該NTC素子が介在している並列線路に多くの電流が流れ込むため、該並列線路よりも上流側の直列線路区間を流れる電流が増大する。
この結果、2本の直列線路(41)(42)間の抵抗値は、該並列線路よりも上流側の直列線路区間の抵抗値と、該並列線路よりも上流側の並列線路に介在するNTC素子の抵抗値とに応じて、概ね決定されることになる。
【0008】
即ち、大きな温度上昇が、抵抗検出回路(7)に近い、より上流側の電池で発生するほど、2本の直列線路(41)(42)間の抵抗値は小さくなり、逆に抵抗検出回路(7)から遠い、より下流側の電池で発生するほど、2本の直列線路(41)(42)間の抵抗値は大きくなる。
従って、両直列線路(41)(42)間の抵抗値、即ち並列接続された複数のNTC素子の両端抵抗を検出することによって、大きな温度上昇が発生している単電池を特定することが出来る。
【0009】
又、一方の直列線路(42)には、隣接する並列線路の間を伸びる各直列線路区間に、抵抗器が介在しているので、単電池の温度上昇によって、2本の直列線路(41)(42)間の抵抗値がより大きく変化することになる。
従って、所定値を越える温度上昇が発生している電池を、高い感度で検知することが出来る。
【0010】
又、具体的構成において、組電池に充電器(6)からの電力を供給するための充電線路(60)を具えると共に、該充電線路(60)から各単電池を個別に切り離すための切り離し回路を具えている。
該具体的構成によれば、大きな温度上昇が発生した電池から順に、充電線路(60)から切り離しつつ、充電を続行することによって、全ての単電池を満充電状態まで充電することが出来る。
【0011】
【発明の効果】
本発明に係る電池の温度上昇監視装置によれば、組電池を構成している複数本の単電池の何れかに大きな温度上昇が発生した場合に、該電池を特定し、必要に応じて該電池を充放電系統から切り離すことが出来る。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
図1に示す如く、リチウムイオン電池、ニッケル−水素電池、或いはニッケル−カドミウム電池などの二次電池からなる5本の単電池(11)(12)(13)(14)(15)を互いに直列に接続して、組電池(1)が構成されており、該組電池(1)には、充電線路(60)を介して充電器(6)が接続されている。該充電器(6)は、充電制御回路(8)によって動作が制御されている。
【0013】
本発明に係る電池の温度上昇監視装置は、上記組電池(1)の充電時の温度上昇を監視するものであって、各単電池(11)(12)(13)(14)(15)の表面には、NTC素子として、臨界温度サーミスタ(21)(22)(23)(24)(25)が貼り付けられ、これらのサーミスタは、2本の直列線路(41)(42)の間を連結する5本の並列線路(51)(52)(53)(54)(55)中にそれぞれ介在して、互いに並列に接続されている。
【0014】
2本の直列線路(41)(42)は、抵抗検出回路(7)に設けられた一対の抵抗検出端子A、Bに接続されており、両端子A、B間の抵抗値に基づいて温度上昇指示信号が作成され、充電制御回路(8)へ供給される。これに応じて充電制御回路(8)は充電器(6)へ充電中止指令を供給する。
【0015】
又、一方の直列線路(42)には、各並列線路(51)(52)(53)(54)(55)との連結点の間を伸びる各直列線路区間に、抵抗器(31)(32)(33)(34)(35)が介在している。
ここで、各臨界温度サーミスタ(21)(22)(23)(24)(25)の低温時(例えば70℃以下)の抵抗値Rl(L)〜R5(L)、及び高温時(例えば80℃以上)の抵抗値R1(H)〜R5(H)、並びに各抵抗器(31)(32)(33)(34)(35)の抵抗値R11〜R15との間には、下記数1の関係が成立している。
【0016】
【数1】
Rl(L)〜R5(L)>>R11〜R15>>R1(H)〜R5(H)
例えば、Rl(L)〜R5(L)を数千Ω、R11〜R15を数百Ω、R1(H)〜R5(H)を数十Ωに設定する。
【0017】
上記温度上昇監視装置においては、抵抗検出回路(7)によって2本の直列線路(41)(41)間に一定の電圧が印加され、直列線路(41)(42)を流れる電流の大きさに基づいて、直列線路(41)(42)間の抵抗値が検出される。
図3は上記温度上昇監視装置の抵抗値についての等価回路を表わしており、該等価回路から明らかな様に、ある1つの単電池の温度上昇によって該単電池に貼り付けられた臨界温度サーミスタの抵抗値(R1〜R5)が低下すると、該サーミスタと抵抗器の抵抗値R11〜R15との接続関係に応じて、これら複数の抵抗素子の複合抵抗値が変化することになる。
【0018】
図1に示す充電器(6)によって組電池(1)の充電を開始した後、何れの単電池(11)(12)(13)(14)(15)にも所定値を越える温度上昇が発生していない状態では、各臨界温度サーミスタ(21)(22)(23)(24)(25)の抵抗値は数千Ωと高く、直列線路(41)(42)間の抵抗値は、臨界温度サーミスタ(21)(22)(23)(24)(25)の並列抵抗値が支配的となって、1つの臨界温度サーミスタの抵抗値に略等しい値になる。
従って、各並列線路(51)(52)(53)(54)(55)を流れる電流は極めて微弱なものである。
【0019】
その後、ある1つの単電池、例えば第3番目の単電池(13)が満充電状態に達して、該単電池に所定値を越える大きな温度上昇が発生した場合は、該単電池に貼り付けられている臨界温度サーミスタ(23)の抵抗値R3が数千Ωから数十Ωへ急激に低下して、該臨界温度サーミスタ(23)が介在している並列線路(53)へ多くの電流が流れ込み、この電流は、該並列線路(53)よりも上流側の直列線路区間に介在する抵抗器(31)(32)(33)を流れることになる。
この結果、直列線路(41)(42)間の抵抗値は、これら3つの抵抗器(31)(32)(33)の直列抵抗値(R11+R12+R13)が支配的となって、温度上昇発生前の抵抗値よりも小さな値となる。
【0020】
ここで、大きな温度上昇の発生している単電池が抵抗検出回路(7)により近い上流側に位置している程、支配的となる抵抗器の数が減少する。又、大きな温度上昇の発生している単電池が抵抗検出回路(7)からより遠い下流側に位置している程、支配的となる抵抗器の数が増大する。
従って、抵抗検出回路(7)によって直列線路(41)(42)間の抵抗値を検出し、その抵抗値の大きさを判定することによって、何れの単電池(11)(12)(13)(14)(15)に大きな温度上昇が発生したかを検知することが出来る。
【0021】
図1に示す回路においては、大きな温度上昇の発生が検知されたとき、抵抗検出回路(7)から充電制御回路(8)へ温度上昇指示信号が供給され、この結果、充電制御回路(8)から充電器(6)へ充電中止指示信号が送出されて、充電器(6)の充電動作が中断される。
そして、大きな温度上昇の発生した電池を充電線路(60)から切り離した後、再度、充電を開始する。この様にして、全ての単電池(11)(12)(13)(14)(15)に対して満充電状態まで充電を施すのである。
【0022】
図4は、充電線路(60)から各単電池(11)(12)(13)(14)(15)を切り離すための切離し回路を装備したものである。尚、図4においては、各単電池(11)(12)(13)(14)(15)に貼り付けるべき臨界温度サーミスタ、直列線路、並列線路、及び抵抗器は図示省略している。
該回路においては、充電線路(60)に対して、各単電池(11)(12)(13)(14)(15)を迂回する5つのバイパス線路(66)(67)(68)(69)(70)が接続されると共に、各バイパス線路へ充電経路を切り換えるための5つの切換えスイッチ(61)(62)(63)(64)(65)が介在している。
尚、充電開始時には、全ての切換えスイッチ(61)(62)(63)(64)(65)をa端子に接続して、全単電池(11)(12)(13)(14)(15)を対象とする充電系統を形成する。
【0023】
上記温度上昇監視装置においては、抵抗検出回路(7)によって何れかの単電池(11)(12)(13)(14)(15)に大きな温度上昇が発生したことが検知されたとき、その旨を表わす温度上昇指示信号が充電制御回路(8)へ供給され、更に、大きな温度上昇の発生している単電池を表わす温度上昇電池表示信号が温度上昇電池表示器(9)へ供給されて、何れの単電池に大きな温度上昇が発生したかが表示される。
そこで、温度上昇電池表示器(9)の表示に応じて、大きな温度上昇が発生している単電池を充電線路(60)から切り離すべく、該単電池の入力側に位置する切換えスイッチをb端子へ切り換えて、残りの単電池に対して充電を続行するのである。
この結果、全ての単電池(11)(12)(13)(14)(15)に対して、満充電状態まで充電が施されることになる。
【0024】
図5は、上述の本発明に係る温度上昇監視装置を用いた充放電における電池容量の変化と、従来の昇温検知装置(特開平10−270094号)を用いた充放電における電池容量の変化を比較したものである。
尚、本発明の温度上昇監視装置においては、単電池として単1型ニッケル−カドミウム電池を用いて図1及び図4に示す組電池を構成し、NTC素子として2酸化バナジウムVOからなる臨界温度サーミスタを採用した。
【0025】
又、充電のために図4に示す充電系統を構成し、放電時には、充電器(6)に代えて電子負荷装置を接続し、定電流で放電を行なった。
充放電条件は次の通りである。
充電:20A、雰囲気温度60℃
放電:20A、終止電圧5V、雰囲気温度60℃
【0026】
本発明の温度上昇監視装置を用いた充電においては、上述の如く、温度上昇した単電池から順に充電系統から切り離し、全ての単電池に満充電状態まで充電を施した。
これに対し、従来の昇温検知装置を用いた充電においては、複数のPTC素子の直列抵抗値が急激に増大したときに充電を終了すること以外は、本発明と同様にして充電を行なった。
【0027】
図5から明らかな様に、本発明の温度上昇監視装置を用いた充電においては、充放電サイクル数の増大に拘わらず、略一定の電池容量が得られているのに対し、従来の昇温検知装置を用いた充電においては、充放電サイクル数の増大に伴って電池容量が低下しており、これは、前述の如く単電池毎の充電深度のバラツキによって組電池全体としての充電が不十分となるためのである。
【0028】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、図2に示す如く直列線路(42)に介在すべき抵抗器を省略することも可能である。この場合、抵抗検出回路(7)の感度を上げることによって、何れの単電池に温度上昇が生じたかを特定することが出来る。又、抵抗検出回路(7)の感度が低い場合であっても、組電池中の何れかの単電池に温度上昇が発生したことを検知することが可能であり、然も、温度上昇に伴って発生する電流を、リレーの切り離し、安全装置の作動などに利用することが出来る。
又、NTC素子としては、臨界温度サーミスタに限らず、周知の種々の素子を採用することが出来る。
【図面の簡単な説明】
【図1】本発明に係る温度上昇監視装置の構成を示すブロック図であるである。
【図2】本発明に係る温度上昇監視装置の他の構成を示すブロック図である。
【図3】図1に示す温度上昇監視装置の抵抗に関する等価回路を示す図である。
【図4】各単電池に系統切離し回路を装備した温度上昇監視装置の構成を示すブロック図である。
【図5】充放電サイクル数と電池容量の関係を示すグラフである。
【図6】従来の充電方法における放電残容量のバラツキに起因する電池容量の低下を説明するグラフである。
【符号の説明】
(1) 組電池
(11)〜(15) 単電池
(21)〜(25) 臨界温度サーミスタ
(31)〜(35) 抵抗器
(41)(42) 直列線路
(51)〜(55) 並列線路
(6) 充電器
(7) 抵抗検出回路
(8) 充電制御回路
(9) 温度上昇電池表示器
(60) 充電線路
(61)〜(65) 切換えスイッチ
(66)〜(70) バイパス線路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for monitoring a temperature rise of each unit cell during charge / discharge in an assembled battery formed by connecting a plurality of unit cells in series or in parallel.
[0002]
[Prior art]
Conventionally, an element (PTC element) having a positive temperature coefficient is attached to each of a plurality of single cells constituting an assembled battery, and these PTC elements are connected in series with each other, and the total resistance of these PTC elements is An apparatus for detecting a large temperature rise during charging / discharging by measuring is proposed (Japanese Patent Laid-Open No. 10-270094).
In this device, when a large temperature rise exceeding a predetermined value occurs in any single cell, the resistance value of the PTC element attached to the single cell increases rapidly, and all of the plurality of PTC elements are thereby Since the measured value of resistance increases, the occurrence of a large temperature rise can be detected with this.
[0003]
[Problems to be solved by the invention]
However, even if it can be detected that a large temperature rise has occurred in any single cell by the conventional temperature rise detection device, it cannot be specified which cell has a large temperature rise.
For example, as shown in FIG. 6 (a), in an assembled battery consisting of five single cells, the remaining charge capacity (charged) as shown in the figure due to variations in battery characteristics and differences in heat dissipation during the process of repeated charge / discharge cycles. Variations in depth may occur. When charging is started in the state where the remaining discharge capacity varies in this way, as shown in FIG. 5B, the batteries ("Battery 1" and "Battery 5") having a large remaining discharge capacity at the start of charging, as shown in FIG. ) Is first fully charged, and the temperature of the battery rises. As a result, the resistance value of the PTC element attached to the battery increases, and charging is terminated.
[0004]
However, as shown in FIG. 6B, the battery ("Battery 3") having a small remaining discharge capacity at the start of charging is terminated without being fully charged.
Therefore, when the charge / discharge cycle is repeated, the remaining discharge capacity of the specific battery gradually increases, and the battery capacity of the assembled battery as a whole decreases.
[0005]
Therefore, an object of the present invention is to specify a battery when a large temperature rise occurs in any of a plurality of unit cells constituting the assembled battery, and disconnect the battery from the charge / discharge system as necessary. It is an object of the present invention to provide a battery temperature rise monitoring device capable of performing the above.
[0006]
[Means for solving the problems]
The battery temperature rise monitoring device according to the present invention is a device for monitoring the temperature rise of each unit cell during charging / discharging in an assembled battery formed by connecting a plurality of unit cells in series or in parallel. An element having a negative temperature coefficient (hereinafter referred to as an NTC element) is attached to the battery, and these elements are connected to a plurality of parallel lines (51, 51) connecting two series lines (41) (42). ) (52) (53) (54) (55), respectively, and connected in parallel to each other, one series line (42) , in each series line section extending between adjacent parallel lines, A resistor is interposed, and the two series lines (41) and (42) are connected to a resistance detection circuit (7).
As the NTC element, for example, a critical temperature thermistor (CTR) can be adopted.
[0007]
In charge / discharge monitoring using the battery temperature rise monitoring device of the present invention, current is supplied from the resistance detection circuit (7) to each NTC element, and two series lines (41 ) (42) is detected. However, in the state where the temperature of all the single cells is low, the resistance value of all the NTC elements is very large, and the current flowing through each NTC element is weak.
Here, when a temperature rise exceeding a predetermined value occurs in one unit cell, the resistance of the NTC element attached to the unit cell rapidly decreases, and the parallel line in which the NTC element is interposed Therefore, a large amount of current flows through the series line section on the upstream side of the parallel line.
As a result, the resistance value between the two serial lines (41) and (42) is the resistance value of the series line section upstream of the parallel line and the NTC interposed in the parallel line upstream of the parallel line. It is generally determined according to the resistance value of the element.
[0008]
That is, as the temperature rises more in the upstream battery near the resistance detection circuit (7), the resistance value between the two series lines (41) and (42) becomes smaller. The resistance value between the two series lines (41) and (42) becomes larger as it is generated in the battery farther from (7) and further downstream.
Therefore, by detecting the resistance value between the two serial lines (41) and (42), that is, the resistances at both ends of a plurality of NTC elements connected in parallel, it is possible to identify a single cell in which a large temperature rise has occurred. .
[0009]
In addition, since one of the series lines (42) includes a resistor in each series line section extending between adjacent parallel lines, two series lines (41) are caused by the temperature rise of the unit cell. The resistance value between (42) changes more greatly.
Therefore, a battery in which a temperature rise exceeding a predetermined value has occurred can be detected with high sensitivity.
[0010]
Further, in a specific configuration, the battery pack includes a charging line (60) for supplying power from the charger (6) to the assembled battery, and disconnects the individual cells from the charging line (60) individually. It has a circuit.
According to this specific configuration, all the cells can be charged to a fully charged state by continuing charging while disconnecting from the charging line (60) in order from the battery in which a large temperature increase has occurred.
[0011]
【The invention's effect】
According to the battery temperature rise monitoring device of the present invention, when a large temperature rise occurs in any of the plurality of single cells constituting the assembled battery, the battery is specified, and if necessary, the battery The battery can be disconnected from the charge / discharge system.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 1, five single cells (11), (12), (13), (14), and (15) made of a secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery are connected in series. The assembled battery (1) is configured by being connected to the battery charger (6), and the charger (6) is connected to the assembled battery (1) via the charging line (60). The operation of the charger (6) is controlled by a charge control circuit (8).
[0013]
The battery temperature rise monitoring device according to the present invention monitors the temperature rise during charging of the assembled battery (1), and each cell (11) (12) (13) (14) (15) As the NTC element, critical temperature thermistors (21) (22) (23) (24) (25) are affixed to the surface of these, and these thermistors are connected between the two series lines (41) (42). Are connected to each other in parallel through five parallel lines (51), (52), (53), (54), and (55).
[0014]
The two series lines (41) and (42) are connected to a pair of resistance detection terminals A and B provided in the resistance detection circuit (7), and the temperature is determined based on the resistance value between the terminals A and B. A rising instruction signal is generated and supplied to the charge control circuit (8). In response to this, the charge control circuit (8) supplies a charge stop command to the charger (6).
[0015]
Also, one series line (42) has a resistor (31) (31) in each series line section extending between the connection points with each parallel line (51) (52) (53) (54) (55). 32) (33) (34) (35) intervene.
Here, each of the critical temperature thermistors (21), (22), (23), (24), and (25) has resistance values Rl (L) to R5 (L) at a low temperature (for example, 70 ° C. or less), and at a high temperature (for example, 80 Between the resistance values R1 (H) to R5 (H) of not less than [° C.] and the resistance values R11 to R15 of the resistors (31) (32) (33) (34) (35) The relationship is established.
[0016]
[Expression 1]
Rl (L) to R5 (L) >> R11 to R15 >> R1 (H) to R5 (H)
For example, Rl (L) to R5 (L) are set to several thousand Ω, R11 to R15 are set to several hundred Ω, and R1 (H) to R5 (H) are set to tens of Ω.
[0017]
In the above temperature rise monitoring device, a constant voltage is applied between the two series lines (41) and (41) by the resistance detection circuit (7), and the magnitude of the current flowing through the series lines (41) and (42) is increased. Based on this, the resistance value between the serial lines (41) and (42) is detected.
FIG. 3 shows an equivalent circuit for the resistance value of the temperature rise monitoring device. As is clear from the equivalent circuit, the critical temperature thermistor attached to the unit cell due to the temperature increase of one unit cell. When the resistance values (R1 to R5) are lowered, the combined resistance values of the plurality of resistance elements are changed in accordance with the connection relationship between the thermistor and the resistance values R11 to R15 of the resistors.
[0018]
After starting the charging of the battery pack (1) by the charger (6) shown in FIG. 1, the temperature rise exceeding a predetermined value is observed in any single battery (11) (12) (13) (14) (15). In the state where it does not occur, the resistance value of each critical temperature thermistor (21) (22) (23) (24) (25) is as high as several thousand Ω, and the resistance value between the series lines (41) (42) is The parallel resistance values of the critical temperature thermistors (21), (22), (23), (24), and (25) become dominant, and are approximately equal to the resistance value of one critical temperature thermistor.
Therefore, the current flowing through each parallel line (51) (52) (53) (54) (55) is extremely weak.
[0019]
After that, when a certain unit cell, for example, the third unit cell (13) reaches a fully charged state and a large temperature rise exceeding a predetermined value occurs in the unit cell, it is attached to the unit cell. The resistance value R3 of the critical temperature thermistor (23) suddenly decreases from several thousand Ω to several tens of Ω, and a large amount of current flows into the parallel line (53) in which the critical temperature thermistor (23) is interposed. This current flows through the resistors (31), (32) and (33) interposed in the series line section on the upstream side of the parallel line (53).
As a result, the resistance value between the series lines (41) and (42) is dominated by the series resistance values (R11 + R12 + R13) of these three resistors (31), (32), and (33), and before the temperature rise occurs. The value is smaller than the resistance value.
[0020]
Here, the number of the dominant resistors decreases as the unit cell in which a large temperature rise occurs is located on the upstream side closer to the resistance detection circuit (7). In addition, the number of dominant resistors increases as the unit cell in which a large temperature rise occurs is located further downstream from the resistance detection circuit (7).
Therefore, any single cell (11) (12) (13) is detected by detecting the resistance value between the serial lines (41) and (42) by the resistance detection circuit (7) and determining the magnitude of the resistance value. (14) It is possible to detect whether a large temperature rise has occurred in (15).
[0021]
In the circuit shown in FIG. 1, when the occurrence of a large temperature rise is detected, a temperature rise instruction signal is supplied from the resistance detection circuit (7) to the charge control circuit (8), and as a result, the charge control circuit (8). Is sent to the charger (6), and the charging operation of the charger (6) is interrupted.
Then, after the battery having a large temperature rise is disconnected from the charging line (60), charging is started again. In this way, all the cells (11), (12), (13), (14), and (15) are charged to the fully charged state.
[0022]
FIG. 4 is equipped with a disconnection circuit for disconnecting the individual cells (11) (12) (13) (14) (15) from the charging line (60). In FIG. 4, the critical temperature thermistor, the series line, the parallel line, and the resistor to be attached to each of the single cells (11), (12), (13), (14), and (15) are not shown.
In the circuit, five bypass lines (66), (67), (68), (69) bypassing each cell (11) (12) (13) (14) (15) with respect to the charging line (60). ) (70) are connected, and five changeover switches (61) (62) (63) (64) (65) for switching the charging path to each bypass line are interposed.
At the start of charging, all change-over switches (61) (62) (63) (64) (65) are connected to the a terminal, and all the cells (11) (12) (13) (14) (15 ) To form a charging system.
[0023]
In the above temperature rise monitoring device, when it is detected by the resistance detection circuit (7) that a large temperature rise has occurred in any of the single cells (11) (12) (13) (14) (15), A temperature increase instruction signal indicating the effect is supplied to the charge control circuit (8), and further, a temperature increase battery display signal indicating a single cell in which a large temperature increase has occurred is supplied to the temperature increase battery indicator (9). Which cell has a large temperature rise is displayed.
Therefore, in accordance with the display of the temperature rise battery indicator (9), a changeover switch located on the input side of the cell is connected to the b terminal in order to disconnect the cell having a large temperature rise from the charging line (60). To continue charging the remaining cells.
As a result, all the cells (11), (12), (13), (14), and (15) are charged to the fully charged state.
[0024]
FIG. 5 shows changes in battery capacity during charging / discharging using the above-described temperature rise monitoring device according to the present invention, and changes in battery capacity during charging / discharging using a conventional temperature rise detection device (Japanese Patent Laid-Open No. 10-270094). Is a comparison.
In the temperature rise monitoring device of the present invention, the assembled battery shown in FIGS. 1 and 4 is configured using a single type 1 nickel-cadmium battery as a single battery, and a critical temperature composed of vanadium dioxide VO 2 as an NTC element. A thermistor is used.
[0025]
Further, the charging system shown in FIG. 4 was configured for charging, and at the time of discharging, an electronic load device was connected instead of the charger (6), and discharging was performed at a constant current.
The charge / discharge conditions are as follows.
Charging: 20A, ambient temperature 60 ° C
Discharge: 20A, final voltage 5V, ambient temperature 60 ° C
[0026]
In the charging using the temperature rise monitoring device of the present invention, as described above, the single cells whose temperature has risen are sequentially disconnected from the charging system, and all the single cells are fully charged.
On the other hand, in the charge using the conventional temperature rising detection device, the charge was performed in the same manner as the present invention except that the charge was terminated when the series resistance values of the plurality of PTC elements increased rapidly. .
[0027]
As is apparent from FIG. 5, in charging using the temperature rise monitoring device of the present invention, a substantially constant battery capacity is obtained regardless of the increase in the number of charge / discharge cycles, whereas the conventional temperature rise In the charging using the detection device, the battery capacity decreases as the number of charge / discharge cycles increases, and this is not enough for the entire assembled battery due to the variation in the charging depth of each unit cell as described above. It is for becoming.
[0028]
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, as shown in FIG. 2, it is possible to omit a resistor to be interposed in the series line (42). In this case, by increasing the sensitivity of the resistance detection circuit (7), it is possible to specify which cell has risen in temperature. Further, even when the sensitivity of the resistance detection circuit (7) is low, it is possible to detect that a temperature rise has occurred in any single cell in the assembled battery. The generated current can be used for relay disconnection and safety device operation.
The NTC element is not limited to a critical temperature thermistor, and various known elements can be employed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a temperature rise monitoring apparatus according to the present invention.
FIG. 2 is a block diagram showing another configuration of the temperature rise monitoring apparatus according to the present invention.
FIG. 3 is a diagram showing an equivalent circuit relating to resistance of the temperature rise monitoring device shown in FIG. 1;
FIG. 4 is a block diagram showing a configuration of a temperature rise monitoring device in which each cell is equipped with a system disconnection circuit.
FIG. 5 is a graph showing the relationship between the number of charge / discharge cycles and the battery capacity.
FIG. 6 is a graph illustrating a decrease in battery capacity due to variation in remaining discharge capacity in a conventional charging method.
[Explanation of symbols]
(1) Battery pack
(11)-(15) Cell
(21)-(25) Critical temperature thermistor
(31)-(35) Resistor
(41) (42) Series line
(51)-(55) Parallel line
(6) Battery charger
(7) Resistance detection circuit
(8) Charge control circuit
(9) Temperature rise battery indicator
(60) Charging line
(61) to (65) selector switch
(66)-(70) Bypass line

Claims (3)

複数本の単電池を直列若しくは並列に接続してなる組電池において、充電時又は放電時の各単電池の温度上昇を監視する装置であって、各単電池には、負の温度係数を有する素子が取り付けられ、これらの素子は、2本の直列線路(41)(42)の間を連結する複数本の並列線路(51)(52)(53)(54)(55)中にそれぞれ介在して、互いに並列に接続され、一方の直列線路 (42) には、隣接する並列線路の間を伸びる各直列線路区間に、抵抗器が介在し、前記2本の直列線路(41)(42)は抵抗検出回路(7)に接続されて、両直列線路(41)(42)間の抵抗値を検出することによって、温度上昇が発生している単電池を特定することが可能である電池の温度上昇監視装置。In an assembled battery formed by connecting a plurality of single cells in series or in parallel, the device monitors the temperature rise of each single cell during charging or discharging, and each single cell has a negative temperature coefficient. Elements are attached, and these elements are respectively interposed in a plurality of parallel lines (51) (52) (53) (54) (55) connecting the two series lines (41) (42). to are connected in parallel with each other, the one of the series lines (42), in each of the series line segment extending between adjacent parallel lines, resistors interposed, said two series lines (41) (42 ) Is connected to the resistance detection circuit (7), and by detecting the resistance value between the two series lines (41) and (42), it is possible to identify the unit cell in which the temperature rise has occurred. Temperature rise monitoring device. 負の温度係数を有する素子は、臨界温度サーミスタである請求項1に記載の温度上昇監視装置。The temperature rise monitoring device according to claim 1, wherein the element having a negative temperature coefficient is a critical temperature thermistor. 組電池に充電器(6)からの電力を供給するための充電線路(60)を具えると共に、該充電線路(60)から各単電池を個別に切り離すための切り離し回路を具えている請求項1又は請求項2に記載の温度上昇監視装置。Together comprising charging line (60) for supplying power from the assembled battery to the charger (6), the claims and includes a disconnect circuit for disconnecting the respective cells individually from the charging line (60) The temperature rise monitoring apparatus according to claim 1 or 2 .
JP07784799A 1999-03-23 1999-03-23 Battery temperature rise monitoring device Expired - Fee Related JP3825577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07784799A JP3825577B2 (en) 1999-03-23 1999-03-23 Battery temperature rise monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07784799A JP3825577B2 (en) 1999-03-23 1999-03-23 Battery temperature rise monitoring device

Publications (2)

Publication Number Publication Date
JP2000277175A JP2000277175A (en) 2000-10-06
JP3825577B2 true JP3825577B2 (en) 2006-09-27

Family

ID=13645458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07784799A Expired - Fee Related JP3825577B2 (en) 1999-03-23 1999-03-23 Battery temperature rise monitoring device

Country Status (1)

Country Link
JP (1) JP3825577B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858986B2 (en) 2002-03-26 2006-12-20 日産自動車株式会社 Power supply
KR100599801B1 (en) * 2004-06-25 2006-07-12 삼성에스디아이 주식회사 Secondary battery and secondary battery module
DE102009045245A1 (en) * 2009-10-01 2011-04-07 Robert Bosch Gmbh Sensor device for detecting the maximum temperature of several battery cells and battery systems
KR101265933B1 (en) * 2010-04-28 2013-05-20 도요타지도샤가부시키가이샤 Battery temperature measuring apparatus and method, and manufacturing method of battery
WO2019054259A1 (en) * 2017-09-15 2019-03-21 パナソニックIpマネジメント株式会社 Control device, secondary battery system, and vehicle

Also Published As

Publication number Publication date
JP2000277175A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
US7514905B2 (en) Battery management system
CN101459267B (en) Battery pack
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
JPH07230829A (en) Battery charging device, battery pack, battery charging method, and battery evaluating device
CN104836271A (en) Battery management system and device
JP7223135B2 (en) BATTERY PACK STATE DIAGNOSIS DEVICE AND METHOD
JP4542675B2 (en) Voltage correction device for battery pack for electric vehicle
JP4129109B2 (en) Charge control apparatus and method
JP3669234B2 (en) Charge control device for battery pack
CN112104015B (en) Battery charging method and device, terminal equipment and storage medium
JP2001231178A (en) Controller for battery set, modular battery unit, modular battery and method for controlling battery set
JP2000223164A (en) Battery pack, and method and device for diagnosing capacity deterioration of same battery pack
JP4529246B2 (en) Abnormality detection device for battery pack
CN113994222A (en) Battery control device
JP3545367B2 (en) Battery pack voltage detector
CN211018294U (en) Charge control device, battery management system, and battery pack
JP3825577B2 (en) Battery temperature rise monitoring device
JP2021051888A (en) Abnormality detection device
CN213069108U (en) Battery pack residual capacity measuring circuit
JP4907113B2 (en) Secondary battery charging system device
JP3410923B2 (en) Battery pack charging method and charging device
JP7240893B2 (en) battery controller
JP2002170599A (en) Monitor, controller, and battery module
JP2002017049A (en) Charge/discharge system
JP2002075468A (en) Method and device of detecting secondary cell abnormality depending on temperature

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees