JP3825088B2 - Combined cycle power plant - Google Patents

Combined cycle power plant Download PDF

Info

Publication number
JP3825088B2
JP3825088B2 JP19459996A JP19459996A JP3825088B2 JP 3825088 B2 JP3825088 B2 JP 3825088B2 JP 19459996 A JP19459996 A JP 19459996A JP 19459996 A JP19459996 A JP 19459996A JP 3825088 B2 JP3825088 B2 JP 3825088B2
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
exhaust
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19459996A
Other languages
Japanese (ja)
Other versions
JPH1037710A (en
Inventor
修 若園
秀夫 木村
靖史 福泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19459996A priority Critical patent/JP3825088B2/en
Priority to PCT/JP1998/000258 priority patent/WO1999037889A1/en
Priority claimed from PCT/JP1998/000258 external-priority patent/WO1999037889A1/en
Publication of JPH1037710A publication Critical patent/JPH1037710A/en
Application granted granted Critical
Publication of JP3825088B2 publication Critical patent/JP3825088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【発明の属する技術分野】
本発明はガスタービンプラントと蒸気タービンプラントとを組み合わせたコンバインドサイクル発電プラントに関するものである。
【0002】
【従来の技術】
コンバインドサイクル発電プラントは、ガスタービンプラントと蒸気タービンプラントを組み合わせた発電システムであり、熱エネルギーの高温域をガスタービンで、また、低温域を蒸気タービンでそれぞれ分担して受持ち、熱エネルギーを有効に回収し、利用するようにしたものであり、近年特に脚光を浴びている発電システムである。
【0003】
このコンバインドサイクル発電プラントでは、効率向上のための一つのポイントを、高温域を何処まで高め得るか、と言う点に置いて研究開発が進められてきた。
【0004】
一方、高温域の形成には、タービン構造体の耐熱性の面から冷却システムを設けねばならず、この冷却システムにおける冷却媒体としては従来から空気が用いられて来た。
【0005】
しかし、冷却媒体として空気を用いる限り、例え高温域を達成し得たとしても、冷却に要した空気を自らの空気圧縮機で必要圧力迄昇圧するのに要した動力損失と、また、高温ガスの通過するタービン流路内に部品の冷却に使用した空気を最終的に混合させる事により平均ガス温度を低下させてガスの持つエネルギーを低下せしめる結果になることとの両方を考慮すると、熱効率のこれ以上の向上は期待できないところまで来ている。
【0006】
この問題点を解決し更に効率向上を図るべく、ガスタービンの冷却媒体として前記した空気に替えて、蒸気を採用するものが現れ、例えば、特開平5−163960号公報に示されるものが提案されるに至った。
【0007】
この特開平5−163960号公報のものを、その主要部を抜き出して、図2に示して説明すれば、次の様な構成となっている。
【0008】
ガスタービン13、空気圧縮機18、燃焼器19を主要構成とするガスタービンプラント11、同ガスタービンプラント11の排気ガスを加熱源として、高圧ドラム20、中圧ドラム21、低圧ドラム22を主要構成とする排熱回収ボイラ14、及び同排熱回収ボイラ14から蒸気を供給される高圧タービン15a、中圧タービン15b、低圧タービン15cを主要構成とする蒸気タービンプラント12によりコンバインドサイクル発電プラント10が構成されている。
【0009】
そして、ここに組入れられた冷却システムは、蒸気冷却システム50であり、前記排熱回収ボイラ14の中圧ドラム21を出た中圧蒸気を冷却蒸気として、蒸気供給経路51を経てガスタービン13の高温被冷却部に設けた蒸気冷却系統52に導き、この高温被冷却部を冷却することにより同冷却蒸気は加熱され、即ち熱エネルギーを与えられ、蒸気回収系統53を経て蒸気タービンプラント12の中圧タービン15bへ供給され、有効に回収されるものである。
【0010】
なお、蒸気系統60はバックアップ系統であり、バックアップ蒸気を排熱回収ボイラ14の高圧ドラム20から高圧蒸気ライン42を経て供給可能にしたもので、ガスタービン13の起動直後等に使用されるものである。
【0011】
【発明が解決しようとする課題】
前記したように従来のものは、冷却蒸気として中圧ドラム21を出た中圧蒸気を用いているものであるために、ガスタービンのタービン入口温度が更に上昇し、または、ガスタービンの高温被冷却部が拡張し、しかも同タービン部の被冷却部の範囲が動翼、静翼そして環状部と広がり、これら高温被冷却部の熱負荷が増える程に前記中圧蒸気では、排熱回収ボイラーでの蒸気の発生量の限界からガスタービンの高温被冷却部での冷却能力が不足し、初期の目的である高温被冷却部の十分にして確実な冷却を行うことは出来なくなると言う問題がある。
【0012】
本発明はこのような従来のものにおける問題点を解消し、ガスタービンの高温被冷却部を常に確実に且つ十分に冷却すると共に、この冷却によって得た熱量を確実に回収し、効率の向上を図るようにしたものを提供することを課題とするものである。
【0013】
【課題を解決するための手段】
本発明は前記した課題を解決すべくなされものであり、ガスタービンプラントと蒸気タービンプラントとを組合せ、ガスタービンからの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを備えるとともに、前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるように構成したコンバインドサイクル発電プラントにおいて、前記蒸気タービンプラントを少なくとも高圧タービンと低圧タービンとから構成するとともに、前記高圧タービンの排気の全量を直接前記蒸気冷却システムに導き、かつ、同蒸気冷却システムを出たあと後続の蒸気タービンの初段入口へ直接供給するようにしたコンバインドサイクル発電プラントを提供し、ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システムに導く冷却蒸気として高圧タービンの排気を特定し、その全量を直接前記蒸気冷却システムに導いてこの高圧排気のもつ量的、圧力的、又は温度的特性を利用して同ガスタービンの高温被冷却部を効率的に、かつ適格に冷却し、かつ、この冷却蒸気として特定された高圧タービンの排気は、前記高温被冷却部で所定の仕事をした後に、例えばボイラーの再熱器等の機器に寄り道することなく、後続の蒸気タービンの初段入口へ直接供給されることにより、排熱回収ボイラに再熱器を設ける必要もなしに同後続の蒸気タービンで十分に所定の仕事を成し得るようにしたものである。
【0015】
また、本発明は、前記排熱回収ボイラが少なくとも高圧、中圧、低圧の3圧力式であるコンバインドサイクル発電プラントを提供し、ガスタービンの高温被冷却部を高圧タービンを出た高圧排気で冷却し、次いで中圧タービンに導入するので、排熱回収ボイラが高圧、中圧、低圧の3圧力式であっても再熱器を必ずしも設ける必要のないようにするものである。
【0016】
更にまた、本発明は、前記高温被冷却部の複数の被冷却部に対して前記高圧タービンの排気を並列に流通させるコンバインドサイクル発電プラントを提供し、高圧タービンを出た高圧排気は分流し、並列に配置された高温被冷却部を流れるので、特定の経路の圧力損失は、その特定経路を流れる分流分だけで分担するようにしたものである。
【0017】
【発明の実施の形態】
本発明の実施の一形態を図1に基づいて説明する。
【0018】
101はガスタービン、102は同ガスタービン101で駆動される空気圧縮機、103は燃焼器で空気圧縮機102から供給される圧縮空気を燃料と共に燃焼させ、前記ガスタービン101を駆動する。104は発電機で、前記空気圧縮機102と共に駆動される。このガスタービン101、空気圧縮機102燃焼器103及び発電機104とによりガスタービンプラント100が構成される。
【0019】
前記ガスタービン101の排気ガスは、排気ダクト105を経て排熱回収ボイラ200に導かれる。この排熱回収ボイラ200は、高圧過熱器204、高圧蒸発器205、高圧節炭器206、中圧過熱器207、低圧過熱器208、中圧蒸発器209、高中圧節炭器210、低圧蒸発器211、低圧節炭器212、更に前記高圧蒸発器205、中圧蒸発器209、及び低圧蒸発器211にそれぞれ連接した高圧ドラム201、中圧ドラム202及び低圧ドラム203等で構成され、前記排気ガスを加熱源として、高圧、中圧、及び低圧の各圧力の蒸気を発生する。
【0020】
301は高圧タービン、302は中圧タービンまた303は低圧タービンで、高圧タービン301は前記排熱回収ボイラ200の高圧過熱器204から高圧蒸気ライン306を経て供給される高圧蒸気で駆動され、また、低圧タービン303は同排熱回収ボイラ200の低圧過熱器208から低圧蒸気ライン307を経て供給される低圧蒸気と、後記する中圧タービン302の排気との混合蒸気で駆動される。
【0021】
他方、中圧タービン302は、前記排熱回収ボイラ200から中圧蒸気ライン311を経て供給される中圧蒸気のみに依存するのではなく、後述する蒸気冷却システム400で高温被冷却部を冷却し、蒸気回収系統405から供給される高圧タービン301の高圧排気を主体とする蒸気により駆動される。
【0022】
そしてこの高圧タービン301、中圧タービン302及び低圧タービン303は、発電機304と併せて軸直結され、かつ、前記低圧タービン303に連結したコンデンサ305を含めて蒸気タービンプラント300が構成される。
【0023】
401は冷却蒸気供給系統で、前記高圧タービン301の排気部310に連結しており、同高圧タービン301の排気を受け入れるように構成されている。
402は第1の蒸気冷却系統で、前記冷却蒸気供給系統401から分岐して前記燃焼器103を冷却する。また、403は第2の蒸気冷却系統、404は第3の蒸気冷却系統で、前記第1の蒸気冷却系統402と並列に配置され、それぞれ前記冷却蒸気供給系統401から分岐して前記ガスタービン101の高温被冷却部を冷却する。
【0024】
そしてこの並列に分岐した第1、第2、第3の蒸気冷却系統402、403、404により蒸気冷却システム400を構成し、それぞれに供給される高圧排気を冷却媒体として高温被冷却部を冷却した後、同冷却媒体を再び合流し、蒸気回収系統405を経て、前記中圧タービン302へ供給する。
【0025】
なお、図中106は空気圧縮機102への空気供給系統、308はコンデンサ305の冷却水供給系統、また、309はコンデンサ305で得た復水が排熱回収ボイラ200へ供給される給水系統を示す。
【0026】
このように本実施の形態によれば、ガスタービンプラント100の高温被冷却部を冷却するに際し、蒸気タービンプラント300中の高圧排気、中圧排気及び低圧排気、若しくは、排熱回収ボイラ200中の高圧蒸気、中圧蒸気及び低圧蒸気のなかで、量的、圧力的、又は温度的にみて最適なものである高圧タービンの高圧排気に着目して、その実質的全量を冷却媒体として使用し、その結果、このガスタービンプラント100の被冷却部の冷却によって得た熱量を中圧タービン302に持込み、系外に捨てることなくこれを回収して、熱効率を向上させるようにしたものである。
【0027】
即ち、前記排熱回収ボイラ200で得られる各蒸気のうち、まず、高圧蒸気について考察してみると、蒸気量は申し分ないものの圧力が高いのでガスタービンプラント100の高温被冷却部を強固な構造にする必要があり、その分肉厚が増し、かえって熱応力の増大を招くのみなず、この被冷却部の構造設計が非常に高価で難しいものとなる。
【0028】
また、中圧蒸気については、被冷却部の必要熱量に対し蒸気量が不十分であるので、ボイラー側を設計変更して中圧蒸気量を増やすことが対策として考えられるが、それをするとボイラーでの排熱回収効率が悪くなるという相反する結果となる。
【0029】
さらに、低圧蒸気は、通常、ガスタービンプラント100の高温被冷却部の雰囲気圧力より低い圧力となり、ガスタービンの高温ガスを蒸気系統側に漏洩させないという安全設計の原則を守れなくなる。
【0030】
この様に個別に追求していくと、高圧排気以外の他のものが不適格であることが明らかになるが、それ以上に、このガスタービンプラントの高温被冷却部の冷却において、高圧タービンの高圧排気がいかに適格であるか、ということがここでの大きな発見であった。
【0031】
そして中圧タービン302の作動蒸気は、そのほとんどがガスタービンプラント100の蒸気冷却システム400から供給されるので、通常のこの種プラントに不可欠である排熱回収ボイラ200中の再熱器を設置する必要はなく、プラントの設計製作に際し大幅なコストダウンとなるものである。
【0032】
なお、高圧タービンの高圧排気を直接利用する際には、プラント効率を維持するために、ガスタービンプラント100の被冷却部での圧力損失を極力抑えることが望ましいので、この被冷却部では、第1、第2、第3の蒸気冷却系統402、403、404を並列に分岐して構成するのは勿論のこと、更に被冷却部各部位においても蒸気の流れを極力並列として圧力損失を抑えると共に、局部閉塞による過熱の危険を分散することが出来たものである
【0033】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。
【0034】
【発明の効果】
以上、本発明によれば、ガスタービンプラントの高温被冷却部の冷却に、冷却蒸気として量的、圧力的、又は温度的にみて最適な高圧タービンの高圧排気の全量を直接導いて用いることにより、高温被冷却部の温度が高温化しても、また被冷却部の範囲が拡張しても追随して対処でき、しかも、この高温被冷却部に再熱器の役をさせ、排熱回収ボイラ中に再熱器を設置する必要はなくなるので、プラントの設計製作にさいし大幅なコストダウンを図ることができたものである。
【0035】
また、発明によれば、上記高圧タービンの排気は、ガスタービンの高温被冷却部で所定の仕事をした後に、例えばボイラーの再熱器等の機器に寄り道することなく、後続の例えば中圧タービン等の蒸気タービンの初段入口へ直接供給されるので、前記した排熱回収ボイラ中に再熱器は全く不要となることが明白なものである。
【0036】
また、請求項の発明によれば、排熱回収ボイラが高圧、中圧、低圧の3圧力方式のものにおいて、3圧力方式であるが故に定番品として不可欠であった再熱器を省略することができ、これによるコストダウンの効果は、大きくかつ、顕著なものである。
【0037】
更にまた、請求項の発明によれば、高温被冷却部を複数並列に分岐して構成することにより、同高温被冷却部での圧力損失を抑え、高圧タービンの高圧排気を直接有効に利用することができたものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係わるコンバインドサイクル発電プラントの系統図。
【図2】従来のコンバインドサイクル発電プラントの系統図。
【符号の説明】
100 ガスタービンプラント
101 ガスタービン
103 燃焼器
200 排熱回収ボイラ
201 高圧ドラム
202 中圧ドラム
203 低圧ドラム
300 蒸気タービンプラント
301 高圧タービン
302 中圧タービン
303 低圧タービン
400 蒸気冷却システム
401 冷却蒸気供給系統
402 第1の蒸気冷却系統
403 第2の蒸気冷却系統
404 第3の蒸気冷却系統
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined cycle power plant that combines a gas turbine plant and a steam turbine plant.
[0002]
[Prior art]
A combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant. The high temperature region of the thermal energy is shared by the gas turbine, and the low temperature region is shared by the steam turbine. It is a power generation system that has been collected and used, and has been particularly in the spotlight in recent years.
[0003]
In this combined cycle power plant, research and development has been promoted with the point of increasing the high temperature range as one point for improving efficiency.
[0004]
On the other hand, in order to form a high temperature region, a cooling system must be provided from the viewpoint of heat resistance of the turbine structure, and air has been conventionally used as a cooling medium in this cooling system.
[0005]
However, as long as air is used as the cooling medium, even if a high temperature range can be achieved, the power loss required for boosting the air required for cooling to the required pressure with its own air compressor, and the high temperature gas Considering both the fact that the average gas temperature is lowered by finally mixing the air used for cooling the parts in the turbine passage through which the gas passes, resulting in lowering the energy of the gas. We can't expect any further improvement.
[0006]
In order to solve this problem and further improve the efficiency, there has been proposed one that employs steam instead of the above-mentioned air as the cooling medium of the gas turbine, for example, one disclosed in JP-A-5-163960 has been proposed. It came to be.
[0007]
If the main part of Japanese Patent Laid-Open No. 5-163960 is extracted and shown in FIG. 2, it has the following configuration.
[0008]
A gas turbine plant 11 having a gas turbine 13, an air compressor 18, and a combustor 19 as main components, and an exhaust gas from the gas turbine plant 11 as a heat source, a high pressure drum 20, an intermediate pressure drum 21, and a low pressure drum 22 as main components. The combined cycle power plant 10 includes the exhaust heat recovery boiler 14 and the steam turbine plant 12 mainly including the high pressure turbine 15a, the intermediate pressure turbine 15b, and the low pressure turbine 15c to which steam is supplied from the exhaust heat recovery boiler 14. Has been.
[0009]
The cooling system incorporated here is a steam cooling system 50, and the intermediate pressure steam that has exited from the intermediate pressure drum 21 of the exhaust heat recovery boiler 14 is used as cooling steam to pass through the steam supply path 51 of the gas turbine 13. The cooling steam is led to a steam cooling system 52 provided in the high-temperature cooled part, and the high-temperature cooled part is heated, that is, the cooling steam is heated, that is, given thermal energy, passes through the steam recovery system 53, and enters the steam turbine plant 12. It is supplied to the pressure turbine 15b and effectively recovered.
[0010]
The steam system 60 is a backup system that can supply the backup steam from the high-pressure drum 20 of the exhaust heat recovery boiler 14 via the high-pressure steam line 42 and is used immediately after the gas turbine 13 is started. is there.
[0011]
[Problems to be solved by the invention]
As described above, since the conventional one uses the intermediate pressure steam that has exited the intermediate pressure drum 21 as the cooling steam, the turbine inlet temperature of the gas turbine further increases, or the high temperature coverage of the gas turbine increases. As the cooling section expands and the range of the cooled section of the turbine section expands to the moving blades, stationary blades, and annular sections, the intermediate pressure steam increases the heat load of these high-temperature cooled sections. Due to the limit of the amount of steam generated in the gas turbine, there is a problem that the cooling capacity of the high-temperature cooled part of the gas turbine is insufficient, and the high-temperature cooled part, which is the initial purpose, cannot be sufficiently and reliably cooled. is there.
[0012]
The present invention eliminates such problems in the conventional system, always reliably and sufficiently cools the high-temperature cooled part of the gas turbine, and reliably recovers the amount of heat obtained by this cooling, thereby improving the efficiency. It is an object to provide what is intended.
[0013]
[Means for Solving the Problems]
The present invention has Re resolve all Kunasa the problems described above, combination of a gas turbine plant and a steam turbine plant, comprising a heat recovery steam by utilizing exhaust heat from a gas turbine to generate steam turbine driving steam In addition, in a combined cycle power plant configured to provide a steam cooling system that cools a high-temperature cooled portion of the gas turbine with steam, and configured to cause the steam turbine to recover superheated steam from the steam cooling system, the steam turbine plant is together consist of at least the high-pressure turbine and the low-pressure turbine, and supplies the electrically-out in the high pressure turbine directly the steam cooling system the total amount of the exhaust gas, and directly to the first stage inlet after subsequent steam turbine exiting the same steam cooling system A combined cycle power plant Hot cooled parts of the turbine identifies an exhaust of the high pressure turbine as cooling steam guided to the steam cooling system for cooling steam, quantitative possessed by the high-pressure exhaust led to the whole amount directly the steam cooling system, the pressure, or Using the temperature characteristics, the high-temperature cooled part of the gas turbine is efficiently and adequately cooled , and the exhaust of the high-pressure turbine specified as the cooling steam is subjected to a predetermined work in the high-temperature cooled part. After being supplied, it is supplied directly to the first stage inlet of the subsequent steam turbine without detouring to equipment such as a boiler reheater, so that it is not necessary to install a reheater in the exhaust heat recovery boiler. fully in the steam turbine is obtained by the obtained so that at a predetermined work.
[0015]
The present invention also provides a combined cycle power plant in which the exhaust heat recovery boiler is a three-pressure type of at least high pressure, medium pressure, and low pressure, and cools a high temperature cooled part of a gas turbine with high pressure exhaust from a high pressure turbine. Then, since it is introduced into the intermediate pressure turbine, the reheater is not necessarily provided even if the exhaust heat recovery boiler is a three-pressure type of high pressure, medium pressure, and low pressure.
[0016]
Furthermore, the present invention provides a combined cycle power plant that distributes the exhaust of the high-pressure turbine in parallel to a plurality of cooled parts of the high-temperature cooled part, and the high-pressure exhaust that has exited the high-pressure turbine is diverted, Since it flows through the high-temperature parts to be cooled arranged in parallel, the pressure loss of a specific path is shared only by the shunt that flows through the specific path.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0018]
Reference numeral 101 denotes a gas turbine, reference numeral 102 denotes an air compressor driven by the gas turbine 101, and reference numeral 103 denotes a combustor that burns compressed air supplied from the air compressor 102 together with fuel to drive the gas turbine 101. A generator 104 is driven together with the air compressor 102. The gas turbine plant 100 is configured by the gas turbine 101, the air compressor 102, the combustor 103, and the generator 104.
[0019]
The exhaust gas of the gas turbine 101 is led to the exhaust heat recovery boiler 200 through the exhaust duct 105. The exhaust heat recovery boiler 200 includes a high pressure superheater 204, a high pressure evaporator 205, a high pressure economizer 206, an intermediate pressure superheater 207, a low pressure superheater 208, an intermediate pressure evaporator 209, a high intermediate pressure economizer 210, and a low pressure evaporator. 211, low pressure economizer 212, high pressure evaporator 205, medium pressure evaporator 209, low pressure evaporator 211, high pressure drum 201 connected to low pressure evaporator 211, medium pressure drum 202, low pressure drum 203, etc. Using gas as a heat source, steam of high pressure, medium pressure, and low pressure is generated.
[0020]
301 is a high-pressure turbine, 302 is a medium-pressure turbine or 303 is a low-pressure turbine, and the high-pressure turbine 301 is driven by high-pressure steam supplied from the high-pressure superheater 204 of the exhaust heat recovery boiler 200 via the high-pressure steam line 306, The low-pressure turbine 303 is driven by mixed steam of low-pressure steam supplied from the low-pressure superheater 208 of the exhaust heat recovery boiler 200 via the low-pressure steam line 307 and exhaust of the intermediate-pressure turbine 302 described later.
[0021]
On the other hand, the intermediate pressure turbine 302 does not depend only on the intermediate pressure steam supplied from the exhaust heat recovery boiler 200 via the intermediate pressure steam line 311, but cools the high-temperature cooled part with a steam cooling system 400 described later. The high-pressure turbine 301 supplied from the steam recovery system 405 is driven by steam mainly composed of high-pressure exhaust.
[0022]
The high-pressure turbine 301, the intermediate-pressure turbine 302, and the low-pressure turbine 303 are directly connected to the shaft together with the generator 304, and the steam turbine plant 300 includes the condenser 305 connected to the low-pressure turbine 303.
[0023]
A cooling steam supply system 401 is connected to the exhaust section 310 of the high-pressure turbine 301 and is configured to receive the exhaust from the high-pressure turbine 301.
A first steam cooling system 402 branches from the cooling steam supply system 401 and cools the combustor 103. Reference numeral 403 denotes a second steam cooling system, and reference numeral 404 denotes a third steam cooling system, which are arranged in parallel with the first steam cooling system 402 and branch from the cooling steam supply system 401, respectively, to the gas turbine 101. The high temperature cooled part is cooled.
[0024]
The first, second, and third steam cooling systems 402, 403, and 404 branching in parallel constitute the steam cooling system 400, and the high-temperature cooled parts are cooled using the high-pressure exhaust gas supplied to each as a cooling medium. Thereafter, the coolants are merged again, and supplied to the intermediate pressure turbine 302 via the steam recovery system 405.
[0025]
In the figure, 106 is an air supply system to the air compressor 102, 308 is a cooling water supply system for the condenser 305, and 309 is a water supply system in which the condensate obtained by the condenser 305 is supplied to the exhaust heat recovery boiler 200. Show.
[0026]
As described above, according to the present embodiment, when the high-temperature cooled part of the gas turbine plant 100 is cooled, the high-pressure exhaust, intermediate-pressure exhaust and low-pressure exhaust in the steam turbine plant 300, or the exhaust heat recovery boiler 200 Focusing on the high-pressure exhaust of the high-pressure turbine that is optimal in terms of quantity, pressure, or temperature among high-pressure steam, medium-pressure steam, and low-pressure steam, using substantially the entire amount as a cooling medium, As a result, the amount of heat obtained by cooling the cooled part of the gas turbine plant 100 is brought into the intermediate pressure turbine 302 and recovered without being thrown out of the system, thereby improving the thermal efficiency.
[0027]
That is, among the steams obtained by the exhaust heat recovery boiler 200, first, when considering high-pressure steam, although the amount of steam is satisfactory, the pressure is high, so the high-temperature cooled part of the gas turbine plant 100 has a strong structure. Therefore, the thickness of the portion to be cooled is increased and the thermal stress is increased, and the structural design of the cooled portion is very expensive and difficult.
[0028]
For medium-pressure steam, the amount of steam is insufficient relative to the amount of heat required for the part to be cooled, so it is conceivable to increase the amount of medium-pressure steam by redesigning the boiler side. This results in a conflicting result that the exhaust heat recovery efficiency in the case becomes worse.
[0029]
Further, the low-pressure steam is usually at a pressure lower than the atmospheric pressure of the high-temperature cooled part of the gas turbine plant 100, and the safety design principle that the high-temperature gas of the gas turbine is not leaked to the steam system cannot be observed.
[0030]
This individual pursuit reveals that anything other than high-pressure exhaust is ineligible, but more than that, in the cooling of high-temperature cooled parts of this gas turbine plant, The big discovery here was how well high-pressure exhaust was qualified.
[0031]
Since most of the working steam of the intermediate pressure turbine 302 is supplied from the steam cooling system 400 of the gas turbine plant 100, a reheater in the exhaust heat recovery boiler 200 that is indispensable for this kind of plant is installed. This is not necessary, and the cost is greatly reduced when designing and producing the plant.
[0032]
When directly using the high-pressure exhaust of the high-pressure turbine, it is desirable to suppress the pressure loss in the cooled part of the gas turbine plant 100 as much as possible in order to maintain the plant efficiency. The first, second, and third steam cooling systems 402, 403, and 404 are of course branched in parallel, and the steam flow is paralleled as much as possible in each part to be cooled and pressure loss is suppressed. It was possible to disperse the danger of overheating due to local blockage .
[0033]
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to this embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention. Absent.
[0034]
【The invention's effect】
As described above, according to the present invention, the entire amount of high-pressure exhaust of a high-pressure turbine that is optimal in terms of quantity, pressure, or temperature is directly guided and used as cooling steam for cooling a high-temperature cooled part of a gas turbine plant. Even if the temperature of the high-temperature cooled part is increased or the range of the cooled part is expanded, it is possible to cope with it, and further, this high-temperature cooled part can be used as a reheater, and the exhaust heat recovery boiler Since there is no need to install a reheater inside, the cost could be greatly reduced in the design and manufacture of the plant.
[0035]
Further, according to the present invention, the exhaust of the high pressure turbine, after a predetermined work at high temperature the cooled portion of the gas turbine, without detour example the device of the reheater or the like of a boiler, a subsequent example medium pressure Since it is directly supplied to the first stage inlet of a steam turbine such as a turbine , it is obvious that no reheater is required in the exhaust heat recovery boiler.
[0036]
According to the invention of claim 2, the reheater that is indispensable as a standard product is omitted because the exhaust heat recovery boiler is a three-pressure type of high pressure, medium pressure, and low pressure. The cost reduction effect due to this is large and remarkable.
[0037]
Furthermore, according to the invention of claim 3 , by forming a plurality of high temperature cooled parts in parallel , the pressure loss in the high temperature cooled parts is suppressed, and the high pressure exhaust of the high pressure turbine is directly used effectively. those that could and to Turkey.
[Brief description of the drawings]
FIG. 1 is a system diagram of a combined cycle power plant according to an embodiment of the present invention.
FIG. 2 is a system diagram of a conventional combined cycle power plant.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Gas turbine plant 101 Gas turbine 103 Combustor 200 Waste heat recovery boiler 201 High pressure drum 202 Medium pressure drum 203 Low pressure drum 300 Steam turbine plant 301 High pressure turbine 302 Medium pressure turbine 303 Low pressure turbine 400 Steam cooling system 401 Cooling steam supply system 402 1 steam cooling system 403 second steam cooling system 404 third steam cooling system

Claims (3)

ガスタービンプラントと蒸気タービンプラントとを組合せ、ガスタービンからの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを備えるとともに、前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるように構成したコンバインドサイクル発電プラントにおいて、前記蒸気タービンプラントを少なくとも高圧タービンと低圧タービンとから構成するとともに、前記高圧タービンの排気の全量を直接前記蒸気冷却システムに導き、かつ、同蒸気冷却システムを出たあと後続の蒸気タービンの初段入口へ直接供給するようにしたことを特徴とするコンバインドサイクル発電プラント。A gas turbine plant and a steam turbine plant are combined, and an exhaust heat recovery boiler that generates steam for driving a steam turbine using exhaust heat from the gas turbine is provided, and a high-temperature cooled part of the gas turbine is cooled with steam. In a combined cycle power plant provided with a steam cooling system and configured to cause the steam turbine to recover superheated steam from the steam cooling system, the steam turbine plant is composed of at least a high pressure turbine and a low pressure turbine, and the high pressure turbine the total amount of the exhaust-out directly the guide to the steam cooling system, and of combined cycle power plant, characterized in that the so supplied directly to the first stage inlet after subsequent steam turbine exiting the same steam cooling system. 前記排熱回収ボイラが少なくとも高圧、中圧、低圧の3圧力式であることを特徴とする請求項1に記載のコンバインドサイクル発電プラント。The combined cycle power plant according to claim 1, wherein the exhaust heat recovery boiler is a three-pressure type of at least high pressure, medium pressure, and low pressure. 前記高温被冷却部の複数の被冷却部に対して前記高圧タービンの排気を並列に流通させることを特徴とする請求項1または2に記載のコンバインドサイクル発電プラント。  3. The combined cycle power plant according to claim 1, wherein exhaust gas of the high-pressure turbine is circulated in parallel to a plurality of cooled parts of the high-temperature cooled part.
JP19459996A 1996-07-24 1996-07-24 Combined cycle power plant Expired - Fee Related JP3825088B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19459996A JP3825088B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
PCT/JP1998/000258 WO1999037889A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19459996A JP3825088B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
PCT/JP1998/000258 WO1999037889A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH1037710A JPH1037710A (en) 1998-02-10
JP3825088B2 true JP3825088B2 (en) 2006-09-20

Family

ID=26439123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19459996A Expired - Fee Related JP3825088B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3825088B2 (en)

Also Published As

Publication number Publication date
JPH1037710A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
US6178734B1 (en) Combined cycle power generation plant and operating method thereof
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
CA2230347C (en) Steam cooled gas turbine system
CA2437442C (en) Combined cycle plant
CA2230334C (en) Combined cycle power plant
US6038851A (en) Exhaust re-combustion type combined cycle power generation plant
JP2699808B2 (en) Steam-cooled gas turbine combined plant
CA2284494C (en) Combined cycle power plant
US6272841B2 (en) Combined cycle power plant
JP3825088B2 (en) Combined cycle power plant
JP3586542B2 (en) Multi-shaft combined cycle power plant
JP3389019B2 (en) Steam cooled gas turbine
JP3776516B2 (en) Combined cycle power plant
JP4090584B2 (en) Combined cycle power plant
JPH11148315A (en) Combined cycle power plant
EP0978636B1 (en) Combined cycle power plant
JP2000130107A (en) Combined cycle power plant with gas turbine
JP2000291411A (en) Coal gasification combined cycle power generation plant
CA2284490C (en) Combined cycle power plant
JPH10325338A (en) Combined cycle generating plant
JP2001090552A (en) Steam cooling system for gas turbine
JPH10288008A (en) Combined cycle power generating plant
JP2000110509A (en) Combined cycle electric power plant
WO1999037902A1 (en) Combined cycle electric power plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees