JP3825006B2 - Circularly polarized planar antenna - Google Patents

Circularly polarized planar antenna Download PDF

Info

Publication number
JP3825006B2
JP3825006B2 JP2003052925A JP2003052925A JP3825006B2 JP 3825006 B2 JP3825006 B2 JP 3825006B2 JP 2003052925 A JP2003052925 A JP 2003052925A JP 2003052925 A JP2003052925 A JP 2003052925A JP 3825006 B2 JP3825006 B2 JP 3825006B2
Authority
JP
Japan
Prior art keywords
conductor
hybrid
circularly polarized
radiation
radiation electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003052925A
Other languages
Japanese (ja)
Other versions
JP2004266438A (en
Inventor
直史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2003052925A priority Critical patent/JP3825006B2/en
Publication of JP2004266438A publication Critical patent/JP2004266438A/en
Application granted granted Critical
Publication of JP3825006B2 publication Critical patent/JP3825006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波無線機器用円偏波平面アンテナに係るもので、マイクロ波帯の複数のITSサービス(GPS,ETC等)や無線LAN用などに適した円偏波平面アンテナに関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2002−9538号公報
【特許文献2】
特開2002−232227号公報
【0003】
GPS(Global Positioning System)を利用する自動車に搭載されるカー・ナビゲーション・システムなどのアンテナとして、どの方位にも最適な状態で通信がし易く、薄くてコンパクトな円偏波平面アンテナが利用されている。また、最近では、その特性(特長)から無線LANのアクセスポイントのアンテナなどとして利用範囲が広がっている。
【0004】
この円偏波平面アンテナは通常図9に示すように、配線基板92の表面の接地導体93上に放射導体91が形成された誘電体セラミクス90を搭載している。互いに偏波が直交する2つのモード#1、#2が各々独立して励振する。給電方式には、図9に示したように、直交する2つのモード#1、#2に同一点から1点給電する方式と、図10に示したように、配線基板102の裏面に形成した90°ハイブリッド104などの位相調整器を使用して異なる2点から給電する2点給電方式とがある。これらの円偏波平面アンテナでは、特性面において、周波数帯域、アンテナ利得、インピーダンスの他、軸比特性が重要視されている。軸比特性が低下すると交差偏波成分のアイソレーションが悪くなることが分かっている。
【0005】
電子機器の流れは小型化、軽量化、薄型化にあるところから、アンテナの分野において誘電体セラミクスの誘電率を高い方へと変えることや複雑な放射電極形状とすることが考えられているが、特性の低下を伴ってしまうのが現状となっている。特に、帯域特性、軸比特性の低下が著しいので、比較的広い帯域を必要とする無線LANなどの機器として適さなくなってしまう。
【0006】
【発明が解決しようとする課題】
本発明は、特性の低下を極力抑えながら小型化が可能な円偏波平面アンテナを提供するものである。特に、軸比特性を改善して広帯域化を可能にする円偏波平面アンテナを提供するものである。
【0007】
【課題を解決するための手段】
すなわち、導体パターンが形成された配線基板に放射電極が形成された誘電体セラミクスが搭載されてなる円偏波平面アンテナにおいて、放射導体は環状の導体パターンからなり、配線基板の表面には接地導体が、裏面には90°ハイブリッドが形成されており、90°ハイブリッドの全周を4等分した点の隣接する2点に接続された導体と放射電極とが容量的に結合されて給電され、90°ハイブリッドの残りの2点に近接する導体と放射電極とが容量的に結合されるとともにそれらの導体が接地された導体パターンに接続されることに特長を有するものである。
【0008】
【発明の実施の形態】
本発明による円偏波平面アンテナの概念を図3に従って説明する。リング状の放射導体32を用い、それを4等分した点A、B、C、Dのうちの2点A、Bに給電する2点給電方式を採っている。2つの給電点A,Bは給電導体と容量的に結合されて90°ハイブリッド34に接続されて同軸ケーブル等で外部回路を接続される。残りの2点C、Dは容量的に導体と結合されて、リアクタンス素子を介して接地される。このリアクタンス素子と接続される容量結合手段を付加することによって特性が改善されるとともに、小型化が可能となる。
【0009】
【実施例】
以下、図面を参照して、本発明の実施例について説明する。図1と図2は本発明の第1の実施体を示すもので、図1は上面および下面の斜視図、図2は平面図と底面図および側面と正面の断面図である。誘電体セラミクス10の表面には1周がほぼ1波長の四角形のリング状の放射導体11が形成されており、配線基板12の表面に形成された接地導体13上に搭載されている。配線基板12の裏面には導体パターンによって90°ハイブリッド14が形成されている。この90°ハイブリッドも全長がほぼ1波長となるように形成されている。
【0010】
90°ハイブリッドは全周を4等分した点の隣接する2点から内側に導体パターンが引き出されて給電点に対応する位置に配置された給電用ピン15と接続される。この給電用ピン15は誘電体セラミクス10に形成された穴に挿入されて先端が放射導体11と対向するように配置される。これによって、給電用ピン15は放射導体11と容量的に結合されることになる。90°ハイブリッドは入出力コネクタ17を介して(図示しない)同軸ケーブルに接続されて外部回路に接続される。また、チップ抵抗18を介して接地された導体パターンと接続される。
【0011】
90°ハイブリッドを4等分した点の残りの2点に近接する位置に配置された装架リアクタンス用ピン16も、給電用ピン15と同様に、誘電体セラミクス10に形成された穴に挿入されて先端が放射導体11と対向するように配置される。この装荷リアクタンス用ピン16の形状は給電用ピンと同一でよい。これによって、装荷リアクタンス用ピン16と放射導体11も容量的に結合される。この装架リアクタンス用ピン16はチップコンデンサ19を介して接地された導体パターンと接続される。この容量は接地導体パターンとの間のギャップによって得られる容量でもよい。これによって、図3に示した接続構造が得られる。
【0012】
図1と図2に示した本発明による円偏波平面アンテナを、比誘電率が約8の直方体の誘電体セラミクスで試作した。誘電体セラミクスのサイズは縦横20mmで厚さを6mmとして、その表面に外側が16mm、内側が8mmの放射導体を形成した。リング状の放射導体の各直線部の中央の位置で、裏面から挿入した給電用ピンと装荷リアクタンス用ピンと1mmの間隔で対向させた。給電用ピンと装荷リアクタンス用ピンは上記の説明のとおりに接続した。比較のために、図10に示した素子を26mm角の誘電体セラミクスに22mm角の放射電極を形成して作製した。これは給電ピンが容量的に結合されたのもではなく、直接給電導体に接続されたものである。
【0013】
図5と図6はアンテナの周波数対アンテナ最大利得特性を示すもので、図5は右旋偏波の、図6は左旋偏波の特性を示すものである。図において、実線が本発明による円偏波平面アンテナの特性を、破線が従来のアンテナの特性を示している。図7は周波数対軸比特性を示すもので、本発明による円偏波平面アンテナでは大幅に改善されていることが分かる。これによって、広い周波数帯において利用可能なアンテナが得られる。図8は本発明による円偏波平面アンテナの垂直面放射パターンを示すももので、実線が右旋偏波を、破線が左旋偏波を示したものである。
【0014】
図4は本発明の他の実施例を示す斜視図である。図1、図2の給電用ピン、装荷リアクタンス用ピンに代えて、給電用導体45と装荷リアクタンス用導体46を誘電体セラミクス40の表面に形成したものである。この場合でも給電用導体45と装荷リアクタンス用導体46は放射導体41と容量的に結合されている。なお、この場合には90°ハイブリッド44から引き出す導体パターンは外側に形成される点が異なる。また、装荷リアクタンス用導体46は導体パターンのギャップによって容量を得る構造となっている。
【0015】
本発明における装荷リアクタンス用導体は、コンデンサだけでなく抵抗やインダクタなどのリアクタンス素子を用いて終端させることもできる。また、配線基板状の導体パターンによってそれらのリアクタンス素子を得ることもできる。さらに、放射導体の形状は円環状としてもよい。なお、90°ハイブリッドは位相調整器として作用するもので、他の位相調整器(回路)を利用してもよい。
【0016】
【発明の効果】
本発明によれば、特性の劣化を極力抑えながら小型化が可能な円偏波平面アンテナが得られる。特に、軸比特性が改善されて広帯域化が可能な円偏波平面アンテナが得られる。
【図面の簡単な説明】
【図1】 本発明の実施例の(A)は表面側、(B)は裏面側斜視図
【図2】 本発明の実施例の(A)は平面図、(B)は側面断面図、(C)は正面断面図、(D)は底面図
【図3】 本発明の概念の説明図
【図4】 本発明の他の実施例を示す(A)は表面側、(B)は裏面側斜視図
【図5】 本発明による円偏波平面アンテナの周波数対右旋偏波アンテナ最大利得特性の説明図
【図6】 本発明による円偏波平面アンテナの周波数対左旋偏波アンテナ最大利得特性の説明図
【図7】 本発明による円偏波平面アンテナの周波数対軸比特性の説明図
【図8】 本発明による円偏波平面アンテナの垂直面放射パターンの説明図
【図9】 従来の1点給電平面アンテナの斜視図
【図10】 従来の2点給電平面アンテナの(A)は表面側、(B)は裏面側斜視図
【符号の説明】
10、40、90:誘電体セラミクス
11、32、41:放射導体
12、32、92、102:配線基板
13、93:接地導体
14、34、44、104:90°ハイブリッド
15:給電用ピン
45:給電用導体
16:装荷リアクタンス用ピン
46:装荷リアクタンス用導体
17:入出力コネクタ
18:チップ抵抗
19:チップコンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circularly polarized planar antenna for high-frequency wireless equipment, and more particularly to a circularly polarized planar antenna suitable for a plurality of microwave band ITS services (GPS, ETC, etc.) and wireless LAN.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-9538 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-232227
As a car navigation system antenna mounted on a car that uses GPS (Global Positioning System), it is easy to communicate in an optimal state in any direction, and a thin and compact circularly polarized flat antenna is used. Yes. Recently, due to its characteristics (features), the range of use as an antenna for a wireless LAN access point has expanded.
[0004]
As shown in FIG. 9, this circularly polarized wave planar antenna usually has a dielectric ceramic 90 in which a radiation conductor 91 is formed on a ground conductor 93 on the surface of a wiring board 92. Two modes # 1 and # 2 whose polarizations are orthogonal to each other are excited independently. As shown in FIG. 9, the power feeding method is a method in which two orthogonal modes # 1 and # 2 are fed at one point from the same point, and as shown in FIG. There is a two-point power feeding system that feeds power from two different points using a phase adjuster such as 90 ° hybrid 104. In these circularly polarized flat antennas, in terms of characteristics, in addition to the frequency band, antenna gain, and impedance, axial ratio characteristics are regarded as important. It has been found that the cross-polarized component isolation becomes worse when the axial ratio characteristic is lowered.
[0005]
Although the flow of electronic devices is from miniaturization, weight reduction, and thinning, in the field of antennas, it is considered to change the dielectric constant of dielectric ceramics to a higher one or to make it a complicated radiation electrode shape. However, the current situation is that the characteristics are deteriorated. In particular, since the band characteristics and the axial ratio characteristics are remarkably lowered, it becomes unsuitable as a device such as a wireless LAN that requires a relatively wide band.
[0006]
[Problems to be solved by the invention]
The present invention provides a circularly polarized wave planar antenna that can be miniaturized while minimizing deterioration in characteristics as much as possible. In particular, the present invention provides a circularly polarized planar antenna that improves the axial ratio characteristics and enables a wide band.
[0007]
[Means for Solving the Problems]
That is, in a circularly polarized wave planar antenna in which a dielectric ceramic with a radiation electrode formed thereon is mounted on a wiring board on which a conductor pattern is formed, the radiation conductor has an annular conductor pattern, and the grounding conductor is formed on the surface of the wiring board. However, a 90 ° hybrid is formed on the back surface, and the conductor connected to the two adjacent points of the 90 ° hybrid is divided into four equal parts and the radiation electrode are capacitively coupled and fed. The conductor adjacent to the remaining two points of the 90 ° hybrid and the radiation electrode are capacitively coupled, and the conductors are connected to a grounded conductor pattern.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The concept of the circularly polarized flat antenna according to the present invention will be described with reference to FIG. A two-point power feeding method is employed in which a ring-shaped radiation conductor 32 is used and power is fed to two points A and B among points A, B, C, and D divided into four equal parts. The two feeding points A and B are capacitively coupled to the feeding conductor, connected to the 90 ° hybrid 34, and connected to an external circuit by a coaxial cable or the like. The remaining two points C and D are capacitively coupled to the conductor and grounded via the reactance element. By adding capacitive coupling means connected to the reactance element, the characteristics can be improved and the size can be reduced.
[0009]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a first embodiment of the present invention. FIG. 1 is a perspective view of the top and bottom surfaces, and FIG. 2 is a plan view, a bottom view, and side and front sectional views. On the surface of the dielectric ceramic 10, a rectangular ring-shaped radiation conductor 11 having a circumference of approximately one wavelength is formed and mounted on a ground conductor 13 formed on the surface of the wiring board 12. A 90 ° hybrid 14 is formed on the back surface of the wiring board 12 by a conductor pattern. This 90 ° hybrid is also formed so that its overall length is almost one wavelength.
[0010]
In the 90 ° hybrid, a conductor pattern is drawn inward from two adjacent points obtained by dividing the whole circumference into four equal parts, and is connected to a power feeding pin 15 disposed at a position corresponding to the power feeding point. The power feeding pin 15 is inserted into a hole formed in the dielectric ceramic 10 and arranged so that the tip thereof faces the radiation conductor 11. As a result, the feeding pin 15 is capacitively coupled to the radiation conductor 11. The 90 ° hybrid is connected to a coaxial cable (not shown) via an input / output connector 17 and connected to an external circuit. Further, it is connected to a grounded conductor pattern via a chip resistor 18.
[0011]
The mounting reactance pin 16 arranged near the remaining two points of the 90 ° hybrid divided into four parts is also inserted into the hole formed in the dielectric ceramics 10 in the same manner as the power feeding pin 15. The tip is arranged so as to face the radiation conductor 11. The shape of the loading reactance pin 16 may be the same as that of the power feeding pin. As a result, the loading reactance pin 16 and the radiation conductor 11 are also capacitively coupled. The mounting reactance pin 16 is connected to a grounded conductor pattern via a chip capacitor 19. This capacitance may be a capacitance obtained by a gap between the ground conductor pattern. Thereby, the connection structure shown in FIG. 3 is obtained.
[0012]
A circularly polarized wave planar antenna according to the present invention shown in FIGS. 1 and 2 was fabricated with a rectangular parallelepiped dielectric ceramic having a relative dielectric constant of about 8. The size of the dielectric ceramics was 20 mm in length and width, and the thickness was 6 mm. A radiating conductor having an outer side of 16 mm and an inner side of 8 mm was formed on the surface. At the center position of each linear portion of the ring-shaped radiation conductor, the feeding pin and the loading reactance pin inserted from the back face were opposed to each other at an interval of 1 mm. The power feeding pin and the loading reactance pin were connected as described above. For comparison, the device shown in FIG. 10 was fabricated by forming a 22 mm square radiation electrode on a 26 mm square dielectric ceramic. This is not the case where the feed pin is capacitively coupled, but directly connected to the feed conductor.
[0013]
5 and 6 show the antenna frequency vs. antenna maximum gain characteristics. FIG. 5 shows the characteristics of right-handed polarization and FIG. 6 shows the characteristics of left-handed polarization. In the figure, the solid line indicates the characteristic of the circularly polarized flat antenna according to the present invention, and the broken line indicates the characteristic of the conventional antenna. FIG. 7 shows frequency-to-axis ratio characteristics, and it can be seen that the circularly polarized flat antenna according to the present invention is greatly improved. As a result, an antenna that can be used in a wide frequency band can be obtained. FIG. 8 shows a vertical plane radiation pattern of a circularly polarized wave planar antenna according to the present invention, in which the solid line indicates right-handed polarization and the broken line indicates left-handed polarization.
[0014]
FIG. 4 is a perspective view showing another embodiment of the present invention. A power supply conductor 45 and a loaded reactance conductor 46 are formed on the surface of the dielectric ceramics 40 in place of the power supply pin and the loaded reactance pin shown in FIGS. Even in this case, the power supply conductor 45 and the loaded reactance conductor 46 are capacitively coupled to the radiation conductor 41. In this case, the conductor pattern drawn out from the 90 ° hybrid 44 is different in that it is formed outside. The loaded reactance conductor 46 has a structure in which a capacitance is obtained by a gap in the conductor pattern.
[0015]
The loaded reactance conductor according to the present invention can be terminated using not only a capacitor but also a reactance element such as a resistor or an inductor. Moreover, those reactance elements can also be obtained by a wiring board-like conductor pattern. Furthermore, the shape of the radiation conductor may be an annular shape. Note that the 90 ° hybrid acts as a phase adjuster, and other phase adjusters (circuits) may be used.
[0016]
【The invention's effect】
According to the present invention, it is possible to obtain a circularly polarized wave planar antenna that can be miniaturized while minimizing deterioration of characteristics as much as possible. In particular, it is possible to obtain a circularly polarized wave planar antenna having improved axial ratio characteristics and capable of widening the band.
[Brief description of the drawings]
1A is a front side view of an embodiment of the present invention, FIG. 2B is a rear perspective view thereof, FIG. 2A is a plan view of the embodiment of the present invention, and FIG. (C) is a front sectional view, (D) is a bottom view. FIG. 3 is an explanatory view of the concept of the present invention. FIG. 4 shows another embodiment of the present invention. Side perspective view [FIG. 5] Explanatory diagram of frequency vs. right-handed polarization antenna maximum gain characteristic of circularly polarized flat antenna according to the present invention [FIG. 6] Frequency of circularly polarized plane antenna according to the present invention vs. left-handed polarized antenna maximum gain FIG. 7 is an explanatory diagram of frequency-to-axis ratio characteristics of a circularly polarized flat antenna according to the present invention. FIG. 8 is an explanatory diagram of a vertical plane radiation pattern of the circularly polarized planar antenna according to the present invention. FIG. 10 is a perspective view of a conventional two-point feed planar antenna. FIG. 10A is a front side view, and FIG. View [Explanation of symbols]
10, 40, 90: Dielectric ceramics
11, 32, 41: Radiation conductor
12, 32, 92, 102: Wiring board
13, 93: Grounding conductor
14, 34, 44, 104: 90 ° hybrid
15: Power supply pin
45: Power supply conductor
16: Load reactance pin
46: Conductor for loading reactance
17: I / O connector
18: Chip resistance
19: Chip capacitor

Claims (4)

導体パターンが形成された配線基板に放射電極が形成された誘電体セラミクスが搭載されてなる円偏波平面アンテナにおいて、
放射導体は環状の導体パターンからなり、
配線基板の表面には接地導体が、裏面には90°ハイブリッドが形成されており、90°ハイブリッドの全周を4等分した点の隣接する2点に接続された導体と放射電極とが容量的に結合されて給電され、
90°ハイブリッドの残りの2点に近接する導体と放射電極とが容量的に結合されるとともにそれらの導体が接地された導体パターンに接続される、
ことを特徴とする円偏波平面アンテナ。
In a circularly polarized wave planar antenna in which a dielectric ceramic in which a radiation electrode is formed is mounted on a wiring board on which a conductor pattern is formed,
The radiation conductor consists of an annular conductor pattern,
A ground conductor is formed on the front surface of the wiring board, and a 90 ° hybrid is formed on the back surface. The conductor and radiation electrode connected to two adjacent points that divide the entire circumference of the 90 ° hybrid into four equal parts Combined and powered,
The conductor adjacent to the remaining two points of the 90 ° hybrid and the radiation electrode are capacitively coupled and the conductors are connected to a grounded conductor pattern.
A circularly polarized flat antenna characterized by that.
導体パターンが形成された配線基板に放射電極が形成された誘電体セラミクスが搭載されてなる円偏波平面アンテナにおいて、
放射導体は環状の導体パターンからなり、
配線基板の表面には接地導体が、裏面には90°ハイブリッドが形成されており、90°ハイブリッドの全周を4等分した点の隣接する2点に接続された給電用ピンの先端と放射電極とが容量的に結合されて給電され、
90°ハイブリッドの残りの2点に近接する装荷リアクタンス用ピンと放射電極とが容量的に結合されるとともにそれらの装荷リアクタンス用ピンがリアクタンス素子を介して接地された導体パターンに接続される、
ことを特徴とする円偏波平面アンテナ。
In a circularly polarized wave planar antenna in which a dielectric ceramic in which a radiation electrode is formed is mounted on a wiring board on which a conductor pattern is formed,
The radiation conductor consists of an annular conductor pattern,
A grounding conductor is formed on the front surface of the wiring board, and a 90 ° hybrid is formed on the back surface. The tip of the power supply pin connected to two adjacent points that divide the entire circumference of the 90 ° hybrid into four equal parts and radiation The electrode is capacitively coupled and powered,
The loaded reactance pin and the radiation electrode adjacent to the remaining two points of the 90 ° hybrid are capacitively coupled and the loaded reactance pin is connected to the grounded conductor pattern via the reactance element.
A circularly polarized flat antenna characterized by that.
導体パターンが形成された配線基板に放射電極が形成された誘電体セラミクスが搭載されてなる円偏波平面アンテナにおいて、
放射導体は環状の導体パターンからなり、
配線基板の表面には接地導体が、裏面には90°ハイブリッドが形成されており、90°ハイブリッドの全周を4等分した点の隣接する2点に接続されて誘電体セラミクスの表面に形成された給電用導体の先端と放射電極とが容量的に結合されて給電され、
90°ハイブリッドの残りの2点に近接する誘電体セラミクスの表面に形成された装荷リアクタンス用導体と放射電極とが容量的に結合されるとともにそれらの装荷リアクタンス用導体がリアクタンス素子を介して接地された導体パターンに接続される
ことを特徴とする円偏波平面アンテナ。
In a circularly polarized wave planar antenna in which a dielectric ceramic in which a radiation electrode is formed is mounted on a wiring board on which a conductor pattern is formed,
The radiation conductor consists of an annular conductor pattern,
A grounding conductor is formed on the front surface of the wiring board, and a 90 ° hybrid is formed on the back surface. The 90 ° hybrid is formed on the surface of the dielectric ceramic by connecting it to two adjacent points that divide the entire circumference of the 90 ° hybrid into four equal parts. The power supply conductor tip and the radiation electrode are capacitively coupled and supplied with power,
The loaded reactance conductor and the radiation electrode formed on the surface of the dielectric ceramic adjacent to the remaining two points of the 90 ° hybrid are capacitively coupled, and the loaded reactance conductor is grounded via the reactance element. A circularly polarized flat antenna connected to a conductive pattern.
放射電極は1周はほぼ1波長である請求項1、請求項2または請求項3記載の円偏波平面アンテナ。The circularly polarized wave planar antenna according to claim 1, 2, or 3, wherein the radiation electrode has substantially one wavelength per circumference.
JP2003052925A 2003-02-28 2003-02-28 Circularly polarized planar antenna Expired - Fee Related JP3825006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052925A JP3825006B2 (en) 2003-02-28 2003-02-28 Circularly polarized planar antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052925A JP3825006B2 (en) 2003-02-28 2003-02-28 Circularly polarized planar antenna

Publications (2)

Publication Number Publication Date
JP2004266438A JP2004266438A (en) 2004-09-24
JP3825006B2 true JP3825006B2 (en) 2006-09-20

Family

ID=33117676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052925A Expired - Fee Related JP3825006B2 (en) 2003-02-28 2003-02-28 Circularly polarized planar antenna

Country Status (1)

Country Link
JP (1) JP3825006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535918A (en) * 2010-07-30 2013-09-12 サランテル リミテッド antenna

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5443870B2 (en) * 2009-07-22 2014-03-19 凸版印刷株式会社 Antenna device
JP5830688B2 (en) * 2010-03-23 2015-12-09 パナソニックIpマネジメント株式会社 Drawer type heating device
CN111430898A (en) * 2020-04-07 2020-07-17 成都环宇远景科技有限责任公司 Low-cost flat-panel phased array antenna for low-earth-orbit satellite communication and method for realizing phased array scanning by using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013535918A (en) * 2010-07-30 2013-09-12 サランテル リミテッド antenna

Also Published As

Publication number Publication date
JP2004266438A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
US6476767B2 (en) Chip antenna element, antenna apparatus and communications apparatus comprising same
US6987483B2 (en) Effectively balanced dipole microstrip antenna
JP4423809B2 (en) Double resonance antenna
JP3194468B2 (en) Microstrip antenna
JP3032664B2 (en) Antenna device
JP2001521311A (en) Small antenna structure including balun
JP2003309418A (en) Dipole antenna
EP1032958B1 (en) Compact antenna feed circuits
US6677902B2 (en) Circularly polarized antenna apparatus and radio communication apparatus using the same
WO2004051800A1 (en) Chip antenna, chip antenna unit and radio communication device using them
WO2014008508A1 (en) Compact dual band gnss antenna design
JP3139975B2 (en) Antenna device
US6646619B2 (en) Broadband antenna assembly of matching circuitry and ground plane conductive radiating element
KR100420489B1 (en) A Compact Folded Patch Antenna
JP2002530909A (en) Patch antenna device
JP5011029B2 (en) Antenna and radio equipment
JP3825006B2 (en) Circularly polarized planar antenna
JP3030590B2 (en) Flat antenna
WO2005081364A1 (en) Dielectric antenna
JP2002094323A (en) Circularly polarized wave antenna system
JP2004221964A (en) Antenna module
JP4158704B2 (en) Antenna device
JP2003124725A (en) Chip antenna device and packaging structure for chip antenna
KR20180123804A (en) Ultra wideband planar antenna
JP2001024426A (en) Antenna element and circularly polarized antenna system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees