JP3824373B2 - Regeneration part structure in ammonia absorption refrigerator. - Google Patents

Regeneration part structure in ammonia absorption refrigerator. Download PDF

Info

Publication number
JP3824373B2
JP3824373B2 JP08983797A JP8983797A JP3824373B2 JP 3824373 B2 JP3824373 B2 JP 3824373B2 JP 08983797 A JP08983797 A JP 08983797A JP 8983797 A JP8983797 A JP 8983797A JP 3824373 B2 JP3824373 B2 JP 3824373B2
Authority
JP
Japan
Prior art keywords
storage chamber
ammonia
aqueous ammonia
absorption refrigerator
ammonia solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08983797A
Other languages
Japanese (ja)
Other versions
JPH10281587A (en
Inventor
尚 大西
幸男 平中
宣夫 幡中
克男 岩田
和久 吉良
義信 高木
辰彦 梅田
光史 松田
猛 矢野
皓夫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Hitachi Zosen Corp
Osaka Gas Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Hitachi Zosen Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, Hitachi Zosen Corp, Osaka Gas Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP08983797A priority Critical patent/JP3824373B2/en
Publication of JPH10281587A publication Critical patent/JPH10281587A/en
Application granted granted Critical
Publication of JP3824373B2 publication Critical patent/JP3824373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニア吸収式冷凍機における再生部構造に関するものである。
【0002】
【従来の技術】
アンモニア吸収式冷凍機における再生部は、図6に示すように、精留塔51の下部に再生器としての加熱用容器部52が設けられるとともにこの加熱用容器部52内に、燃焼空間部53およびこの燃焼空間部53内で燃焼した燃焼ガスを導き加熱用容器部52内のアンモニア水溶液を加熱する複数のガス通路部54が設けられた構成とされ、このガス通路部54を通過する燃焼ガスにより、加熱用容器部52内に溜った濃度の高い濃アンモニア水溶液が加熱されてアンモニアが蒸発分離されていた。
【0003】
なお、このアンモニアが分離された後の濃度の低い稀アンモニア水溶液は、加熱用容器部52の底部から取り出されて、吸収器に移送される。
【0004】
【発明が解決しようとする課題】
上記従来のアンモニア水溶液を加熱する加熱部(再生部)の構造によると、加熱用容器部52内に配置されたガス通路部54からの熱は、加熱用容器部52内のアンモニア水溶液に対して均等に伝わらないとともに、精留塔51内に供給された濃アンモニア水溶液がアンモニアが蒸発した後の稀アンモニア水溶液に混じるような構造であるため、再生効率が良好でないとともに、精留塔51の底部から取り出される稀アンモニア水溶液の濃度が一定でないという問題があった。
【0005】
そこで、本発明は、再生部における再生効率の向上を図り得るとともに、再生部から取り出される稀アンモニア水溶液の濃度をできるだけ均一にし得るアンモニア吸収式冷凍機における再生部構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明のアンモニア吸収式冷凍機における再生部構造は、アンモニア吸収式冷凍機におけるアンモニアを蒸留する精留塔の容器本体の下部に、アンモニア水溶液からアンモニアを分離するための気液分離用空間を形成するとともに、その底部に、所定高さの仕切壁を設けて、第1貯溜室と第2貯溜室とを形成し、上記第1貯溜室内のアンモニア水溶液を取出用配管を介して導き加熱する加熱装置を設け、この加熱装置で加熱された加熱アンモニア水溶液を上記容器本体内の第2貯溜室の上方部の気液分離用空間に供給するための供給用配管を設け、かつ上記容器本体内に、上記供給用配管を介して気液分離用空間内に供給された加熱アンモニア水溶液を下方の第2貯溜室内に導くためのバッフル板を設け、上記第2貯溜室内のアンモニア水溶液を吸収器に移送する移送用配管を設けたものである。
【0007】
また、上記構成の再生部構造において、仕切壁に、第1貯溜室内と第2貯溜室内とを連通する連通穴を形成したものである。
さらに、上記各構成の再生部構造において、仕切壁とバッフル板とを一体化させたものである。
【0008】
上記の構成によると、精留塔内に供給落下された濃アンモニア水溶液は、第1貯溜室内に溜り、一方、第1貯溜室内の濃アンモニア水溶液が加熱装置で加熱されてアンモニア蒸気が分離された稀アンモニア水溶液は、バッフル板により、第2貯溜室内に貯められるため、濃アンモニア水溶液と稀アンモニア水溶液とが、従来のように、多く混じり合うことはない。
【0009】
【発明の実施の形態】
以下、本発明のアンモニア吸収式冷凍機における再生部構造の実施の形態を、図1および図2に基づき説明する。
【0010】
図1において、1はアンモニア吸収式冷凍機におけるアンモニアの精留塔で、その竪型で円筒状の容器本体2の下部にはアンモニアを分離するための気液分離用空間3が形成されるとともに、上部には充填材4が配置されている。
【0011】
上記容器本体2の底部内には、所定高さの仕切壁5が設けられて、第1貯溜室6と第2貯溜室7とが形成されている。
そして、上記第1貯溜室6内のアンモニア水溶液を取出用配管8を介して導き飽和温度以上に加熱する加熱装置(リボイラともいう)9が設けられるとともに、この加熱装置9で加熱された加熱アンモニア水溶液を容器本体2の第2貯溜室7の気液分離用空間3に供給するための供給用配管10が設けられている。
【0012】
さらに、上記容器本体2内で、供給用配管10が接続された開口部11に対応する位置には、その開口部11から容器本体2内に供給された(吹き出された)加熱アンモニア水溶液を、強制的に下方の第2貯溜室7内に導くためのバッフル板12が設けられている。
【0013】
このバッフル板12は、容器本体2の側壁部2aから斜め下方に突設された傾斜部12aと、この傾斜部12a先端から下方に垂下された垂下部12bとから構成され、またこのバッフル板12の幅は、容器本体2の側壁部2aとの間に、アンモニア飽和蒸気が上方に移動し得る連通空間部が形成され得るような、比較的狭く(例えば、容器本体の直径の1/2〜2/3程度)されている。
【0014】
また、図2に示すように、バッフル板12の両端面と容器本体2の側壁部2aとの間の連通空間部には、トレイ部材13が複数個並列に配置されて、連通空間部に落下してくる上方からの濃アンモニア水溶液が、第2貯溜室7内の稀アンモニア水溶液に入るのをできるだけ防止するようされている。勿論、このトレイ部材13も、傾斜されるとともにV字状に形成されたトレイ部13aと、垂直部13bとから構成されている。
【0015】
また、上記第2貯溜室7内に溜った濃度が薄い稀アンモニア水溶液は、移送用配管13を介して、吸収器(図示せず)に移送される。
さらに、上記仕切壁5の下部には、両貯溜室6,7同士を連通させて、両貯溜室6,7内の液面の自動調整を行うために、連通穴5aが形成されている。
【0016】
したがって、上記構成において、吸収器にてアンモニアを吸収してアンモニア濃度が濃くなった濃アンモニア水溶液は、精留塔1の供給部から容器本体2内に供給され、容器本体2内を落下して第1貯溜部6に溜められる。
【0017】
この第1貯溜室6に溜ったアンモニア水溶液は、取出用配管8を介して加熱装置9に送られ、ここで飽和温度以上に加熱された後、供給用配管10を介して、容器本体2の開口部11から気液分離用空間3内に吹き出される。
【0018】
容器本体2内に吹き出された蒸気混じりの加熱アンモニア水溶液は、バッフル板12に衝突して、その方向が下方に強制的に変えられ、その液分は下方の第2貯溜部7に落下し、また蒸気分については、バッフル板12の側方の連通空間部から上方の充填材4側に移動する。なお、連通空間部に落下してくる濃アンモニア水溶液の殆どは、トレイ部材13のトレイ部13aにより、第1貯溜室6側に導かれる。
【0019】
また、上記第2貯溜室7に溜った液分は、移送用配管13を介して、吸収器に移送される。
このように、容器本体2内の下部を仕切壁5により仕切り、容器本体2内に供給された吸収器からの濃アンモニア水溶液と、加熱装置9により加熱されて蒸気が分離された稀アンモニア水溶液とを別個の貯溜室6,7に貯溜するようにしたので、容器本体2の再生部から取り出される稀アンモニア水溶液の濃度を一定に維持できる。すなわち、再生効率を向上させることができる。
【0020】
ところで、上記実施の形態においては、バッフル板と仕切壁とを別々に設けたが、例えば図3に示すように、バッフル板と仕切壁とを一体化した、仕切部材21を、容器本体2内の下部に設けてもよい。
【0021】
また、図4および図5に示すように、バッフル板と仕切壁とを一体化した仕切部材31を下端部から上方に立設して、その上端部を容器本体2の側壁部2aに対して隙間aを有するように構成してもよい。なお、図4に、仕切部材31の斜視図を示しておくが、両貯溜室を仕切る仕切部32よりも上方の部分は、上記実施の形態にて説明したように、所定の幅とされ、その両側にはアンモニア蒸気を上方に移動させるための連通空間部33が形成される。
【0022】
なお、図示しないが、この連通空間部33および図3にて説明したものについても、図2に示したような、濃アンモニア水溶液が第2貯溜室7側の稀アンモニア水溶液内に落下するのを防止し得るトレイ部材が設けられる。
【0023】
また、上記各説明においては、バッフル板の両側にトレイ部材を設けるように説明したが、例えばバッフル板の幅を広げるとともに、このバッフル板の傾斜部自体の両側部に、V字状のトレイ部を設けるような構成であってもよい。
【0024】
【発明の効果】
以上のように本発明の構成によると、精留塔の下部内に第1および第2貯溜室を形成し、この第1貯溜室から濃アンモニア水溶液を導き加熱して容器本体内に戻すとともにバッフル板を介して第2貯溜室内に落下させ、この第2貯溜室内の稀アンモニア水溶液を吸収器に移送させるようにしたので、従来のように、精留塔内に落下された濃アンモニア水溶液が稀アンモニア水溶液に混じるのを防止でき、したがって一定の濃度の稀アンモニア水溶液を取り出すことができ、ひいては再生効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるアンモニア吸収式冷凍機における再生部構造の要部を示す断面図である。
【図2】図1のA−A矢視図である。
【図3】本発明の他の実施の形態における再生部構造の要部を概略的に示す断面図である。
【図4】本発明の他の実施の形態における再生部構造の要部を概略的に示す断面図である。
【図5】図4に示す再生部構造における仕切部材の斜視図である。
【図6】従来例におけるアンモニア吸収式冷凍機における加熱部の断面図である。
【符号の説明】
1 精留器
2 容器本体
3 気液分離用空間
5 仕切壁
5a 連通穴
6 第1貯溜室
7 第2貯溜室
8 取出用配管
9 加熱装置
10 供給用配管
12 バッフル板
12a 傾斜部
12b 垂下部
13 移送用配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regeneration unit structure in an ammonia absorption refrigerator.
[0002]
[Prior art]
As shown in FIG. 6, the regeneration section in the ammonia absorption refrigerator is provided with a heating container section 52 as a regenerator in the lower part of the rectifying column 51, and a combustion space section 53 in the heating container section 52. And a plurality of gas passage portions 54 for guiding the combustion gas burned in the combustion space portion 53 and heating the aqueous ammonia solution in the heating vessel portion 52, and the combustion gas passing through the gas passage portion 54 As a result, the concentrated aqueous ammonia solution having a high concentration accumulated in the heating container 52 was heated and the ammonia was evaporated and separated.
[0003]
The dilute aqueous ammonia solution having a low concentration after the ammonia is separated is taken out from the bottom of the heating container 52 and transferred to the absorber.
[0004]
[Problems to be solved by the invention]
According to the structure of the heating unit (regeneration unit) that heats the conventional aqueous ammonia solution, the heat from the gas passage part 54 disposed in the heating container part 52 is applied to the aqueous ammonia solution in the heating container part 52. Since the concentrated ammonia aqueous solution supplied into the rectifying column 51 is mixed with the dilute ammonia aqueous solution after the ammonia has evaporated, the regeneration efficiency is not good and the bottom of the rectifying column 51 is not transmitted uniformly. There is a problem that the concentration of the diluted aqueous ammonia solution taken out from the tank is not constant.
[0005]
Accordingly, an object of the present invention is to provide a regeneration unit structure in an ammonia absorption refrigerator that can improve the regeneration efficiency in the regeneration unit and can make the concentration of the diluted ammonia aqueous solution taken out from the regeneration unit as uniform as possible. .
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the regenerator structure in the ammonia absorption refrigerator of the present invention is for separating ammonia from the aqueous ammonia solution at the bottom of the container body of the rectifying tower for distilling ammonia in the ammonia absorption refrigerator. A space for gas-liquid separation is formed, and a partition wall having a predetermined height is provided at the bottom thereof to form a first storage chamber and a second storage chamber, and an aqueous ammonia solution in the first storage chamber is taken out. A heating device is provided for guiding and heating through the heating device, and a supply pipe for supplying the heated ammonia aqueous solution heated by the heating device to the gas-liquid separation space above the second storage chamber in the container body is provided. A baffle plate is provided in the container body for guiding the heated aqueous ammonia solution supplied into the gas-liquid separation space through the supply pipe into the lower second storage chamber; Aqueous ammonia solution reservoir chamber is provided with a transfer pipe for transferring the absorber.
[0007]
Further, in the reproducing portion structure having the above-described configuration, a communication hole that connects the first storage chamber and the second storage chamber is formed in the partition wall.
Furthermore, in the reproducing part structure having the above-described configurations, the partition wall and the baffle plate are integrated.
[0008]
According to the above configuration, the concentrated ammonia aqueous solution supplied and dropped into the rectification tower is accumulated in the first storage chamber, while the concentrated ammonia aqueous solution in the first storage chamber is heated by the heating device to separate the ammonia vapor. Since the diluted ammonia aqueous solution is stored in the second storage chamber by the baffle plate, the concentrated ammonia aqueous solution and the diluted ammonia aqueous solution are not mixed as much as in the prior art.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a regeneration unit structure in an ammonia absorption refrigerator according to the present invention will be described with reference to FIGS. 1 and 2.
[0010]
In FIG. 1, reference numeral 1 denotes an ammonia rectification tower in an ammonia absorption refrigerator, and a gas-liquid separation space 3 for separating ammonia is formed in a lower portion of a vertical and cylindrical container body 2. In the upper part, a filler 4 is arranged.
[0011]
A partition wall 5 having a predetermined height is provided in the bottom of the container body 2 to form a first storage chamber 6 and a second storage chamber 7.
A heating device (also referred to as a reboiler) 9 that guides the aqueous ammonia solution in the first storage chamber 6 through the extraction pipe 8 and heats it to a saturation temperature or higher is provided, and heated ammonia heated by the heating device 9 A supply pipe 10 for supplying the aqueous solution to the gas-liquid separation space 3 of the second storage chamber 7 of the container body 2 is provided.
[0012]
Further, in the container main body 2, the heated ammonia aqueous solution supplied (blowed out) into the container main body 2 from the opening 11 is provided at a position corresponding to the opening 11 to which the supply pipe 10 is connected. A baffle plate 12 is provided for forcibly guiding it into the second storage chamber 7 below.
[0013]
The baffle plate 12 includes an inclined portion 12a projecting obliquely downward from the side wall portion 2a of the container body 2, and a hanging portion 12b hanging downward from the tip of the inclined portion 12a. Of the container body 2 is relatively narrow (for example, ½ to the diameter of the container body) so that a communication space part in which ammonia-saturated vapor can move upward is formed between the container body 2 and the side wall part 2a. 2/3).
[0014]
In addition, as shown in FIG. 2, a plurality of tray members 13 are arranged in parallel in the communication space between the both end faces of the baffle plate 12 and the side wall 2a of the container body 2, and fall into the communication space. The concentrated aqueous ammonia solution from above is prevented from entering the diluted aqueous ammonia solution in the second storage chamber 7 as much as possible. Of course, the tray member 13 is also composed of a tray portion 13a that is inclined and formed in a V shape, and a vertical portion 13b.
[0015]
Further, the dilute aqueous ammonia solution having a low concentration accumulated in the second storage chamber 7 is transferred to an absorber (not shown) through the transfer pipe 13.
Furthermore, a communication hole 5a is formed in the lower part of the partition wall 5 in order to allow the reservoirs 6 and 7 to communicate with each other and to automatically adjust the liquid level in the reservoirs 6 and 7.
[0016]
Therefore, in the above configuration, the concentrated aqueous ammonia solution whose ammonia concentration has been increased by absorbing ammonia by the absorber is supplied from the supply unit of the rectification tower 1 into the container body 2 and falls in the container body 2. Stored in the first reservoir 6.
[0017]
The aqueous ammonia solution stored in the first storage chamber 6 is sent to the heating device 9 via the extraction pipe 8, heated here to the saturation temperature or higher, and then supplied to the container body 2 via the supply pipe 10. It blows out into the space 3 for gas-liquid separation from the opening part 11. FIG.
[0018]
The steam-mixed heated aqueous ammonia solution blown into the container main body 2 collides with the baffle plate 12 and its direction is forcibly changed downward, and the liquid component falls to the second storage section 7 below, Moreover, about a vapor | steam part, it moves to the upper filler 4 side from the communicating space part of the side of the baffle board 12. FIG. Note that most of the concentrated aqueous ammonia solution falling into the communication space is guided to the first storage chamber 6 side by the tray portion 13 a of the tray member 13.
[0019]
Further, the liquid component stored in the second storage chamber 7 is transferred to the absorber via the transfer pipe 13.
Thus, the lower part in the container main body 2 is partitioned by the partition wall 5, the concentrated ammonia aqueous solution from the absorber supplied into the container main body 2, and the diluted ammonia aqueous solution heated by the heating device 9 and separated from the vapor, Is stored in the separate storage chambers 6 and 7, so that the concentration of the diluted aqueous ammonia solution taken out from the regeneration portion of the container body 2 can be kept constant. That is, the reproduction efficiency can be improved.
[0020]
By the way, in the said embodiment, although the baffle board and the partition wall were provided separately, as shown, for example in FIG. 3, the partition member 21 which integrated the baffle board and the partition wall is made into the container main body 2. You may provide in the lower part of.
[0021]
Moreover, as shown in FIGS. 4 and 5, a partition member 31 in which the baffle plate and the partition wall are integrated is erected upward from the lower end portion, and the upper end portion thereof is opposed to the side wall portion 2 a of the container body 2. You may comprise so that it may have the clearance gap a. In addition, although the perspective view of the partition member 31 is shown in FIG. 4, the part above the partition part 32 which partitions both the storage chambers is made into the predetermined width as demonstrated in the said embodiment, Communication spaces 33 for moving ammonia vapor upward are formed on both sides.
[0022]
Although not shown in the figure, this communication space 33 and the one described with reference to FIG. 3 also cause the concentrated ammonia aqueous solution to fall into the diluted ammonia aqueous solution on the second storage chamber 7 side as shown in FIG. A tray member that can be prevented is provided.
[0023]
In each of the above descriptions, the tray members are provided on both sides of the baffle plate. For example, the width of the baffle plate is widened, and the V-shaped tray portion is provided on both sides of the inclined portion of the baffle plate itself. The structure which provides may be sufficient.
[0024]
【The invention's effect】
As described above, according to the configuration of the present invention, the first and second storage chambers are formed in the lower portion of the rectification column, the concentrated aqueous ammonia solution is guided from the first storage chamber, heated and returned to the container body, and the baffle. Since the diluted ammonia aqueous solution in the second storage chamber is transferred to the absorber through the plate, the concentrated ammonia aqueous solution dropped in the rectification tower is diluted as in the prior art. Mixing with the aqueous ammonia solution can be prevented, and therefore a dilute aqueous ammonia solution having a constant concentration can be taken out, and the regeneration efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a regeneration unit structure in an ammonia absorption refrigerator according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows AA in FIG.
FIG. 3 is a cross-sectional view schematically showing a main part of a reproducing unit structure according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view schematically showing a main part of a reproducing unit structure according to another embodiment of the present invention.
5 is a perspective view of a partition member in the reproducing unit structure shown in FIG.
FIG. 6 is a cross-sectional view of a heating unit in an ammonia absorption refrigerator in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectifier 2 Container body 3 Gas-liquid separation space 5 Partition wall 5a Communication hole 6 1st storage chamber 7 2nd storage chamber 8 Extraction piping 9 Heating apparatus 10 Supply piping 12 Baffle plate 12a Inclined portion 12b Hanging portion 13 Transfer piping

Claims (3)

アンモニア吸収式冷凍機におけるアンモニアを蒸留する精留塔の容器本体の下部に、アンモニア水溶液からアンモニアを分離するための気液分離用空間を形成するとともに、その底部に、所定高さの仕切壁を設けて、第1貯溜室と第2貯溜室とを形成し、上記第1貯溜室内のアンモニア水溶液を取出用配管を介して導き加熱する加熱装置を設け、この加熱装置で加熱された加熱アンモニア水溶液を上記容器本体内の第2貯溜室の上方部の気液分離用空間に供給するための供給用配管を設け、かつ上記容器本体内に、上記供給用配管を介して気液分離用空間内に供給された加熱アンモニア水溶液を下方の第2貯溜室内に導くためのバッフル板を設け、上記第2貯溜室内のアンモニア水溶液を吸収器に移送する移送用配管を設けたことを特徴とするアンモニア吸収式冷凍機における再生部構造。In the ammonia absorption refrigerator, a gas-liquid separation space for separating ammonia from the aqueous ammonia solution is formed at the bottom of the rectifying column container for distilling ammonia, and a partition wall of a predetermined height is formed at the bottom. There is provided a heating device that forms a first storage chamber and a second storage chamber, guides and heats the aqueous ammonia solution in the first storage chamber through a piping for extraction, and the heated aqueous ammonia solution heated by the heating device Is provided to the gas-liquid separation space above the second storage chamber in the container body, and the gas-liquid separation space is provided in the container body via the supply pipe. A baffle plate is provided for guiding the heated aqueous ammonia solution supplied to the second storage chamber below, and a transfer pipe for transferring the aqueous ammonia solution in the second storage chamber to the absorber is provided. Playback unit structure in the ammonia absorption chiller. 仕切壁に、第1貯溜室内と第2貯溜室内とを連通する連通穴を形成したことを特徴とする請求項1記載のアンモニア吸収式冷凍機における再生部構造。The regeneration part structure in an ammonia absorption refrigerator according to claim 1, wherein a communication hole for communicating the first storage chamber and the second storage chamber is formed in the partition wall. 仕切壁とバッフル板とを一体化させたことを特徴とする請求項1または2記載のアンモニア吸収式冷凍機における再生部構造。The regenerator structure in the ammonia absorption refrigerator according to claim 1 or 2, wherein the partition wall and the baffle plate are integrated.
JP08983797A 1997-04-09 1997-04-09 Regeneration part structure in ammonia absorption refrigerator. Expired - Fee Related JP3824373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08983797A JP3824373B2 (en) 1997-04-09 1997-04-09 Regeneration part structure in ammonia absorption refrigerator.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08983797A JP3824373B2 (en) 1997-04-09 1997-04-09 Regeneration part structure in ammonia absorption refrigerator.

Publications (2)

Publication Number Publication Date
JPH10281587A JPH10281587A (en) 1998-10-23
JP3824373B2 true JP3824373B2 (en) 2006-09-20

Family

ID=13981886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08983797A Expired - Fee Related JP3824373B2 (en) 1997-04-09 1997-04-09 Regeneration part structure in ammonia absorption refrigerator.

Country Status (1)

Country Link
JP (1) JP3824373B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261073B2 (en) * 2007-08-22 2013-08-14 荏原冷熱システム株式会社 Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump

Also Published As

Publication number Publication date
JPH10281587A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
KR100370703B1 (en) Gas-liquid contact tray device and steam discharge method using the same
JP4518510B2 (en) Full liquid evaporator
CN101373115B (en) Gas-liquid separator, high temperature regenerator, absorption type refrigerator and absorption type heatpump
US2365797A (en) Means for heating and cooling
JP2010070438A (en) Separation and recovery method of carbon dioxide in gas and apparatus for the same
JP3824373B2 (en) Regeneration part structure in ammonia absorption refrigerator.
JPS58129474U (en) Spray generator for absorption refrigeration equipment
JP2018134604A (en) Carbon dioxide separation recovery system
US20130220122A1 (en) Carbon dioxide separating and collecting system and method of operating same
KR101550618B1 (en) Reboiling device and regeneration tower
US2207838A (en) Refrigeration
US2354982A (en) Absorption machine containing an inert auxiliary gas
US20180257021A1 (en) Co2 recovery device and co2 recovery method
KR101646125B1 (en) Gas capturing plant
KR20010015836A (en) Regenerator for ammonia absorbing refrigerating machine
CA1105373A (en) Combined separator vessel and gas absorber vessel
JP2001174099A (en) Heat exchanger, regenerator and absorption hot and chilled water generator
US2323186A (en) Refrigeration
US2338223A (en) Refrigeration
CN108375238A (en) Absorption refrigerator
JPH11325756A (en) Sprinkling device for open rack type heat-exchanger
US2274680A (en) Absorption and adsorption refrigerating apparatus
JPS6130294Y2 (en)
JPH1130452A (en) Low temperature regenerator force absorption refrigerator
JPH0410897Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees