JP3823812B2 - Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber - Google Patents

Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber Download PDF

Info

Publication number
JP3823812B2
JP3823812B2 JP2001360743A JP2001360743A JP3823812B2 JP 3823812 B2 JP3823812 B2 JP 3823812B2 JP 2001360743 A JP2001360743 A JP 2001360743A JP 2001360743 A JP2001360743 A JP 2001360743A JP 3823812 B2 JP3823812 B2 JP 3823812B2
Authority
JP
Japan
Prior art keywords
silica
optical waveguide
optical fiber
based optical
waveguide element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001360743A
Other languages
Japanese (ja)
Other versions
JP2003161858A (en
Inventor
康太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001360743A priority Critical patent/JP3823812B2/en
Publication of JP2003161858A publication Critical patent/JP2003161858A/en
Application granted granted Critical
Publication of JP3823812B2 publication Critical patent/JP3823812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス導波路素子と光ファイバとの融着接続方法に関するものである。
【0002】
【従来の技術】
図2は、一般的な石英系光導波路素子の断面構造を示す図である。
【0003】
図2に示すように、一般に石英系光導波路素子6は、石英基板からなる下部クラッド3と、石英系のガラスにTi、Geなどの不純物を添加して屈折率を高くしてあるコア1a,1bと、SiO2を主成分とするガラスにB23、P25を添加してなる多成分系ガラスからなる上部クラッド2とで構成されている。
【0004】
上部クラッド2は、火炎堆積法を用いて成膜されている。
【0005】
火炎堆積法とは、SiCl4、BCl4、PCl4からなる原料ガスを酸水素炎中で加熱し、加水分解することで生成されるガラス微粒子(SiO2を主成分としB23、P25を含有する)を石英基板上に堆積し、1300℃以上の高温において焼結し透明ガラス化する方法である。
【0006】
一般に火炎堆積法で成膜する多成分系ガラスは、不純物濃度が高くなると軟化温度が下がり、焼結温度における粘度が低下する。
【0007】
この性質を利用して例えばコア1a,1bのようにコア間隙が狭い光回路パターンを有する光導波路素子6を製作するとき、コア間隙を完全に埋め込むために上部クラッド2となる多成分系ガラスの不純物濃度を高く設定することがある。
【0008】
ただし、多成分系ガラスの不純物濃度を高くしすぎると、石英基板と多成分系ガラスとの熱膨張率の差から焼結後の石英基板に大きな反りが発生し、基板の割れ、ガラス膜の剥離等の原因となることがあり、多成分系ガラスに添加する不純物濃度には上限がある。
【0009】
一方、石英系光導波路素子6を光通信システムに利用する場合には光ファイバとの接続が必要となる。この接続方法の一つに石英系光導波路素子6と光ファイバとを溶融一体化して永久接続する融着接続法がある。融着接続法は、接続部での反射戻り光がほとんど発生しないことや、温度変化による結合効率の変動がほとんどないことが特徴であり、高い信頼性が求められる用途への利用が進められている。
【0010】
図3は一般的な石英系光導波路素子6と光ファイバ9との融着接続方法を示した図である。石英系光導波路素子6に形成された光回路と、光ファイバ9とを融着接続する場合、石英系光導波路素子6端面と光ファイバ9とを突き合わせ、その突き合わせ部分11にレーザ光10を照射し、突き合わせ部分11を加熱融解することにより融着接続を行っている。
【0011】
この場合、レーザ光10の出力、照射時間、照射間隔等の条件のほかに融着の対象となる石英系光導波路素子6の上部クラッド2の不純物濃度条件は予め決められている。
【0012】
【発明が解決しようとする課題】
ところで、石英系光導波路素子6の上部クラッド2となる多成分系ガラスは一般に不純物濃度が高くなると軟化温度が下がると共に、膜中に溶解するO2、He等のガス成分が増加するため、レーザ照射によって石英系光導波路素子6端面と光ファイバ9との突き合わせ部分11を溶解したときに石英系光導波路素子6のクラッド2に溶解しきれなくなったガス成分が気泡となって発生し易くなる。
【0013】
気泡が発生すると、融着部に気泡が残留し、融着部の接続強度が低下し、さらに接続損失が増加してしまう問題があった。
【0014】
このため、不純物濃度を高くして軟化温度を下げた多成分系ガラスに対しては融着接続を適用できないという課題があった。
【0015】
そこで、本発明の目的は上記課題を解決し、クラッドに不純物濃度の高い多成分系ガラスをもつ石英系光導波路素子と光ファイバとを気泡を発生させることなく融着接続できる融着接続方法とその装置を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するために本発明は、石英系光導波路素子と光ファイバとを加圧チャンバ内に設置し、前記加圧チャンバ内の気圧を大気圧よりも高くするように上昇させ、前記石英系光導波路素子をヒータによって加熱し、前記石英系光導波路素子と前記光ファイバを突き合わせた部分にレーザ光を照射することにより融着するものである。
【0017】
また、上記石英系光導波路素子の上部クラッドを、SiO2にB23、P25を添加してなる多成分系ガラスで形成し、かつ、上記B23、P25の成分比をそれぞれ多成分系ガラス全体に対して8%〜10%とするとよい。
【0018】
融着接続装置は、石英系光導波路素子と光ファイバとを気密に収容する加圧チャンバと、前記加圧チャンバ内の気圧を少なくとも大気圧よりも高い気圧に上昇させるための加圧手段と、前記石英系光導波路素子を加熱するために前記加圧チャンバ内に設けられたヒータと、前記石英系光導波路素子と前記光ファイバとを融着接続するためにレーザ光を照射するレーザ光照射手段と、前記加圧チャンバに設けられ前記レーザ光を前記加圧チャンバ外から導入するための窓とを備えて構成した。前記ヒータは前記石英系光導波路素子と前記光ファイバとを固定する治具に設けられてもよい。
【0019】
【発明の実施の形態】
本発明の好適実施の形態を添付図面に基づいて詳述する。
【0020】
図1は、融着接続装置12の側断面図を示すものである。
【0021】
図1に示すように、融着接続装置12は、石英系光導波路素子6と光ファイバ9とを気密に収容する加圧チャンバ4と、加圧チャンバ4内の気圧を少なくとも大気圧よりも高い気圧に上昇させるための加圧手段13とからなる。
【0022】
加圧チャンバ4は、円筒の両端を気密に塞いだ形状に形成されており、加圧チャンバ4の周面にはZn-Seで形成された窓5が設けられている。
【0023】
窓5は、石英系光導波路素子6と光ファイバ9とを融着接続するためのレーザ光10を加圧チャンバ4外から導入するためのものであり、具体的には加圧チャンバ4の上端に気密に設けられている。
【0024】
レーザ光10は、加圧チャンバ4外の図示しない光源から照射されるようになっており、具体的にはCO2レーザからなる。
【0025】
また、加圧チャンバ4内には、石英系光導波路素子6と光ファイバ9とを突き合わせた状態で留めるための固定治具8が着脱自在に設けられている。
【0026】
固定治具8は、レーザ光10の照射に支障がないように窓5に臨む位置、すなわち、窓5に直径線上で向かい合う位置(直下位置)に装着されるようになっており、石英系光導波路素子6に加熱するための予備加熱用のヒータ7を有する。
【0027】
ヒータ7は、具体的にはセラミックスヒータ7からなり、光導波路素子6の裏側に密着するようになっている。そして、石英系光導波路素子6及び光ファイバ9の溶融温度が高くなる高圧下において、レーザ光10だけでは不足する熱量を補うようになっている。
【0028】
加圧手段13は、圧縮機15からなる。圧縮機15は、エア配管16を介して加圧チャンバ4に接続されており、加圧チャンバ4内に圧気を送り込めるようになっている。
【0029】
次に作用を述べる。
【0030】
不純物濃度の高い多成分系ガラスを用いて形成された石英系光導波路素子6の端面と光ファイバ9とを突き合わせ、固定治具8に設置する。固定治具8は、石英系光導波路素子6の端面と光ファイバ9とを互いに突き合わせた状態で留める。
【0031】
この後、固定治具8を加圧チャンバ4内の所定の位置に装着し、加圧チャンバ4を気密に閉じる。
【0032】
圧縮機15を作動させ、加圧チャンバ4内の気圧が大気圧よりも高い所定の気圧になったら、セラミックスヒータ7に通電して石英系光導波路素子6に熱を加えつつ、石英系光導波路素子6と光ファイバ9との突き合わせ部分11にレーザ光10を照射する。レーザ光10の照射は、加圧チャンバ4の外から窓5を通じて行う。
【0033】
このとき、加圧チャンバ4内の気圧は高いため、石英系光導波路素子6と光ファイバ9は大気圧下での溶融温度より高い温度でなければ溶融しないようになっているが、セラミックスヒータ7からも加熱されているため容易に溶融される。
【0034】
また、気圧が高い環境下では多成分系ガラスに溶解しているO2、He等のガス成分もほとんど気化せず、融着接続される突き合わせ部分11に気泡が発生することもない。
【0035】
石英系光導波路素子6と光ファイバ9とが融着されたら、レーザ光10の照射を止めると共に、セラミックスヒータ7への通電を止める。
【0036】
加圧チャンバ4内の内圧を高圧に維持したまま石英系光導波路素子6と光ファイバ9とを自然に冷ますことで、石英系光導波路素子6と光ファイバ9とは気泡のない状態で融着接続される。
【0037】
このように、石英系光導波路素子6と光ファイバ9とを加圧チャンバ4内に設置し、加圧チャンバ4内の気圧を大気圧よりも高くするように上昇させ、石英系光導波路素子6をヒータ7によって加熱し、石英系光導波路素子6と光ファイバ9とを突き合わせた部分にレーザ光を照射することにより融着するようにしたため、不純物濃度の高い多成分系ガラスを用いて形成された石英系光導波路素子6と光ファイバ9とを気泡を発生させることなく良好に融着接続することができる。
【0038】
また、融着接続装置12を、石英系光導波路素子6と光ファイバ9とを気密に収容する加圧チャンバ4と、加圧チャンバ4内の気圧を少なくとも大気圧よりも高い気圧に上昇させるための加圧手段13と、石英系光導波路素子6を加熱するために加圧チャンバ4内に設けられたヒータ7と、石英系光導波路素子6と光ファイバ9とを融着接続するためにレーザ光10を照射する光源と、加圧チャンバ4に設けられレーザ光10を加圧チャンバ4外から導入するための窓5とを備えて構成したため、不純物濃度の高い多成分系ガラスを用いて形成された石英系光導波路素子6と光ファイバ9とを容易に融着接続することができる。
【0039】
本発明の効果を検証すべく実験を行ったので、実験結果について述べる。
【0040】
実験に用いる石英系光導波路素子6は、図2に示すように、石英基板からなる下部クラッド3上に導波路コア1a,1bとなるガラス膜をEB蒸着法を用いて厚さ8μmに成膜し、この下部クラッド3上にフォトリソグラフィ技術を用いて光回路パターンを形成し、この光回路パターンの上に火炎堆積法を用いて上部クラッド2となる多成分系ガラスを成膜することで形成した。
【0041】
このとき成膜した多成分系ガラスは、SiO2を主成分とするB23、P25を添加したもので、それぞれの成分比は多成分系ガラス全体に対し8%、8%とした。
【0042】
多成分系ガラスの不純物濃度は石英基板と多成分系ガラスの熱膨張率差による反り発生の問題のために上限があり、上限は一般にSiO2を主成分とするB23、P25を添加した多成分系ガラスの場合、多成分系ガラス全体に対しB23、P25をそれぞれ10%づつ程度である。
【0043】
実験は図1に示す融着接続装置12を用いて行った。
【0044】
まず、前記の方法により製作した石英系光導波路素子6の端面と光ファイバ9とを突き合わせ、両者を固定した後、加圧チャンバ4内に設置した。
【0045】
加圧チャンバ4内の圧力を12000hPa(大気圧の約12倍)とした後、セラミックスヒータ7を約500℃に通電加熱し、レーザ光(CO2レーザ)10を出力8Wで光導波路素子6と光ファイバ9との突き合わせ部11に照射した。
【0046】
このようにして融着接続が完了した後、加圧チャンバ4内圧力を保持したまま、予備加熱用のセラミックスヒータ7を切り、1時間の冷却を行った。
【0047】
この結果、融着接続部分に気泡は残らず、接続損失は0.3dB、平均引張強度は1000gであり、良好に融着接続されていることが確認できた。
【0048】
そして、上部クラッド2を、SiO2にB23、P25を添加してなる多成分系ガラスで形成し、かつ、上記B23、P25の成分比をそれぞれ多成分系ガラス全体に対して8%〜10%とした石英系光導波路素子6に対しては、光ファイバ9を極めて有効に融着接続できることが認められた。
【0049】
一方、加圧チャンバ4内の圧力を大気圧(1013hPa)とした以外は同様の方法、同様の条件で融着接続を行ってみた。
【0050】
その結果、融着接続部分に気泡が発生し、接続損失は0.5dBから1.0dBで大きくばらつき、平均引張強度は400gであった。
【0051】
これにより、石英系光導波路素子6と光ファイバ9との融着接続は少なくとも大気圧よりも高い圧力中で行うことが必要であることが確認された。
【0052】
なお、窓5はZn-Seで形成するものとしたがこれに限るものではない、加圧チャンバ内の高圧に耐え、レーザ光10を良好に透過するものであれば他の材質であってもよい。
【0053】
また、加圧手段13は、圧縮機15に限るものではない。加圧チャンバ4内を所定の圧力に高められるものであれば、ガスボンベ等他のものであってもよい。
【0054】
この場合、ガスは特に低い発火点で燃焼するなど融着を妨げるものでなければ窒素、空気、二酸化炭素、酸素等どのようなものであってもよい。
【0055】
【発明の効果】
以上要するに本発明によれば、次のような優れた効果を奏する。
(1)クラッドに不純物濃度の高い多成分系ガラスをもつ石英系光導波路素子と光ファイバとを気泡を発生させることなく融着接続できる。
【図面の簡単な説明】
【図1】本発明の好適実施の形態を示す加圧チャンバの側断面図である。
【図2】一般的な石英系光導波路素子の断面構造を示す概略説明図である。
【図3】一般的な融着接続方法を示す概略説明図である。
【符号の説明】
2 上部クラッド
4 加圧チャンバ
5 窓
6 石英系光導波路素子
9 光ファイバ
10 レーザ光
12 融着接続装置
13 加圧手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fusion splicing method between a glass waveguide element and an optical fiber.
[0002]
[Prior art]
FIG. 2 is a diagram showing a cross-sectional structure of a general silica-based optical waveguide element.
[0003]
As shown in FIG. 2, in general, the silica-based optical waveguide element 6 includes a lower clad 3 made of a quartz substrate, and a core 1a, which has a refractive index increased by adding impurities such as Ti and Ge to a silica-based glass. 1b and an upper clad 2 made of multicomponent glass obtained by adding B 2 O 3 and P 2 O 5 to glass containing SiO 2 as a main component.
[0004]
The upper clad 2 is formed using a flame deposition method.
[0005]
The flame deposition method is a method of heating fine particles of SiCl 4 , BCl 4 , and PCl 4 in an oxyhydrogen flame and hydrolyzing them to produce glass particles (SiO 2 as the main component, B 2 O 3 , P 2 O 5 ) is deposited on a quartz substrate and sintered at a high temperature of 1300 ° C. or higher to form a transparent glass.
[0006]
In general, in a multicomponent glass formed by a flame deposition method, the softening temperature decreases and the viscosity at the sintering temperature decreases as the impurity concentration increases.
[0007]
Utilizing this property, for example, when an optical waveguide device 6 having an optical circuit pattern with a narrow core gap, such as the cores 1a and 1b, is produced, the multi-component glass serving as the upper cladding 2 is used to completely fill the core gap. Impurity concentration may be set high.
[0008]
However, if the impurity concentration of the multi-component glass is too high, the quartz substrate after sintering is greatly warped due to the difference in thermal expansion coefficient between the quartz substrate and the multi-component glass. This may cause peeling and the like, and there is an upper limit to the impurity concentration added to the multicomponent glass.
[0009]
On the other hand, when the silica-based optical waveguide element 6 is used in an optical communication system, connection with an optical fiber is required. As one of the connection methods, there is a fusion connection method in which the silica-based optical waveguide element 6 and the optical fiber are fused and integrated to be permanently connected. The fusion splicing method is characterized in that almost no reflected return light is generated at the connection part and there is almost no fluctuation in the coupling efficiency due to temperature changes, and its use in applications requiring high reliability has been promoted. Yes.
[0010]
FIG. 3 is a diagram showing a fusion splicing method between a general silica-based optical waveguide element 6 and an optical fiber 9. When the optical circuit formed in the silica-based optical waveguide element 6 and the optical fiber 9 are fusion-connected, the end face of the silica-based optical waveguide element 6 and the optical fiber 9 are abutted, and the abutting portion 11 is irradiated with the laser beam 10. Then, the fusion splicing is performed by heating and melting the butted portion 11.
[0011]
In this case, in addition to the conditions such as the output of the laser beam 10, the irradiation time, and the irradiation interval, the impurity concentration conditions of the upper clad 2 of the silica-based optical waveguide element 6 to be fused are determined in advance.
[0012]
[Problems to be solved by the invention]
By the way, since the multicomponent glass used as the upper clad 2 of the quartz-based optical waveguide element 6 generally has a softening temperature lowering as the impurity concentration increases, gas components such as O 2 and He dissolved in the film increase. When the butted portion 11 between the end face of the silica-based optical waveguide element 6 and the optical fiber 9 is dissolved by irradiation, gas components that cannot be completely dissolved in the clad 2 of the silica-based optical waveguide element 6 are easily generated as bubbles.
[0013]
When bubbles are generated, there is a problem that the bubbles remain in the fusion part, the connection strength of the fusion part is lowered, and the connection loss is further increased.
[0014]
For this reason, there existed a subject that a fusion splicing cannot be applied with respect to the multicomponent glass which raised the impurity concentration and lowered the softening temperature.
[0015]
Accordingly, an object of the present invention is to solve the above-mentioned problems, and a fusion splicing method capable of fusion splicing a silica-based optical waveguide element having a multi-component glass with a high impurity concentration in a clad and an optical fiber without generating bubbles. It is to provide such a device.
[0016]
[Means for Solving the Problems]
To accomplish the above object, an optical fiber silica-based optical waveguide device was placed in a pressure chamber, increasing the pressure in said pressure chamber to be higher than atmospheric pressure, the quartz the system optical waveguide element is heated by the heater, in which fused by irradiating a laser beam to the portion abutting the optical fiber and the silica-based optical waveguide device.
[0017]
The upper clad of the silica-based optical waveguide element is formed of multicomponent glass obtained by adding B 2 O 3 and P 2 O 5 to SiO 2 , and the B 2 O 3 and P 2 O 5 are used. The component ratio is preferably 8% to 10% with respect to the entire multicomponent glass.
[0018]
Fusion splicing apparatus, a pressure chamber containing a silica-based optical waveguide device and the optical fiber airtight, and a pressure means for raising the pressure higher than at least atmospheric pressure in said pressure chamber, Laser light irradiation means for irradiating laser light for fusion-connecting the silica-based optical waveguide element and the optical fiber to a heater provided in the pressure chamber for heating the silica-based optical waveguide element When, was constructed and a window for introducing provided in the pressure chamber the laser beam from the outside of the pressurized chamber. The heater may be provided in a jig that fixes the silica-based optical waveguide element and the optical fiber.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
FIG. 1 is a side sectional view of the fusion splicing device 12.
[0021]
As shown in FIG. 1, the fusion splicing device 12 includes a pressurized chamber 4 that hermetically accommodates the silica-based optical waveguide element 6 and the optical fiber 9, and the atmospheric pressure in the pressurized chamber 4 is at least higher than atmospheric pressure. And pressurizing means 13 for increasing the pressure.
[0022]
The pressurizing chamber 4 is formed in a shape in which both ends of the cylinder are hermetically closed, and a window 5 made of Zn—Se is provided on the peripheral surface of the pressurizing chamber 4.
[0023]
The window 5 is for introducing a laser beam 10 for fusion-connecting the silica-based optical waveguide element 6 and the optical fiber 9 from the outside of the pressurizing chamber 4. Is airtight.
[0024]
The laser beam 10 is irradiated from a light source (not shown) outside the pressurizing chamber 4, and specifically comprises a CO 2 laser.
[0025]
In addition, a fixing jig 8 is provided in the pressurizing chamber 4 so as to be detachable so as to keep the quartz optical waveguide element 6 and the optical fiber 9 in contact with each other.
[0026]
The fixing jig 8 is mounted at a position facing the window 5 so as not to interfere with the irradiation of the laser beam 10, that is, a position facing the window 5 on the diameter line (direct position). The waveguide element 6 has a preheating heater 7 for heating.
[0027]
The heater 7 is specifically composed of a ceramic heater 7 and is in close contact with the back side of the optical waveguide element 6. Then, under the high pressure at which the melting temperature of the silica-based optical waveguide element 6 and the optical fiber 9 becomes high, the amount of heat that is insufficient with the laser beam 10 alone is compensated.
[0028]
The pressurizing means 13 includes a compressor 15. The compressor 15 is connected to the pressurization chamber 4 via an air pipe 16 so that pressurized air can be sent into the pressurization chamber 4.
[0029]
Next, the operation will be described.
[0030]
The end face of the silica-based optical waveguide element 6 formed using multicomponent glass having a high impurity concentration and the optical fiber 9 are brought into contact with each other and placed on the fixing jig 8. The fixing jig 8 is fastened in a state where the end face of the quartz optical waveguide element 6 and the optical fiber 9 are abutted with each other.
[0031]
Thereafter, the fixing jig 8 is mounted at a predetermined position in the pressurizing chamber 4 to close the pressurizing chamber 4 in an airtight manner.
[0032]
When the compressor 15 is operated and the pressure in the pressurizing chamber 4 reaches a predetermined pressure higher than the atmospheric pressure, the quartz-based optical waveguide is heated while energizing the ceramic heater 7 to apply heat to the quartz-based optical waveguide element 6. The butted portion 11 between the element 6 and the optical fiber 9 is irradiated with the laser beam 10. The laser beam 10 is irradiated from outside the pressurizing chamber 4 through the window 5.
[0033]
At this time, since the pressure in the pressurizing chamber 4 is high, the quartz-based optical waveguide element 6 and the optical fiber 9 are not melted unless the temperature is higher than the melting temperature under atmospheric pressure. Since it is also heated, it is easily melted.
[0034]
Further, in an environment where the atmospheric pressure is high, gas components such as O 2 and He dissolved in the multicomponent glass are hardly vaporized, and bubbles are not generated in the butt portion 11 to be fusion-bonded.
[0035]
When the quartz-based optical waveguide element 6 and the optical fiber 9 are fused, the irradiation of the laser beam 10 is stopped and the energization to the ceramic heater 7 is stopped.
[0036]
By naturally cooling the silica-based optical waveguide element 6 and the optical fiber 9 while maintaining the internal pressure in the pressurizing chamber 4 at a high pressure, the silica-based optical waveguide element 6 and the optical fiber 9 are melted in a state free from bubbles. Incoming connection.
[0037]
Thus, the silica-based optical waveguide element 6 and the optical fiber 9 is installed in the pressure chamber 4 increases the pressure within the pressure chamber 4 so as to be higher than the atmospheric pressure, silica-based optical waveguide element 6 Is heated by a heater 7 and is fused by irradiating a laser beam to a portion where the quartz optical waveguide element 6 and the optical fiber 9 are abutted, so that it is formed using multicomponent glass having a high impurity concentration. The fused silica optical waveguide element 6 and the optical fiber 9 can be fusion-spliced satisfactorily without generating bubbles.
[0038]
In addition, the fusion splicing device 12 is used to raise the pressure in the pressure chamber 4 in which the silica-based optical waveguide element 6 and the optical fiber 9 are hermetically sealed and the pressure in the pressure chamber 4 to at least higher than the atmospheric pressure. A pressure unit 13, a heater 7 provided in the pressure chamber 4 for heating the silica-based optical waveguide element 6, and a laser for fusion-bonding the silica-based optical waveguide element 6 and the optical fiber 9. a light source for irradiating light 10, because the the provided et Lele laser light 10 to the pressure chamber 4 constituted by a window 5 for introducing the pressure chamber 4 outside the heavily doped multicomponent glass The silica-based optical waveguide element 6 and the optical fiber 9 formed by using them can be easily fusion-spliced.
[0039]
Since an experiment was conducted to verify the effect of the present invention, the experimental result will be described.
[0040]
As shown in FIG. 2, the silica-based optical waveguide element 6 used in the experiment is formed with a glass film serving as the waveguide cores 1a and 1b on the lower clad 3 made of a quartz substrate to a thickness of 8 μm using the EB vapor deposition method. Then, an optical circuit pattern is formed on the lower clad 3 by using a photolithography technique, and a multi-component glass to be the upper clad 2 is formed on the optical circuit pattern by using a flame deposition method. did.
[0041]
The multi-component glass formed at this time was obtained by adding B 2 O 3 and P 2 O 5 mainly composed of SiO 2 , and the respective component ratios were 8% and 8% with respect to the entire multi-component glass. It was.
[0042]
The impurity concentration of the multicomponent glass has an upper limit due to the problem of warpage due to the difference in thermal expansion coefficient between the quartz substrate and the multicomponent glass, and the upper limit is generally B 2 O 3 or P 2 O mainly composed of SiO 2. In the case of multicomponent glass to which 5 is added, B 2 O 3 and P 2 O 5 are about 10% each with respect to the entire multicomponent glass.
[0043]
The experiment was performed using the fusion splicer 12 shown in FIG.
[0044]
First, the end face of the silica-based optical waveguide device 6 manufactured by the above-described method and the optical fiber 9 were brought into contact with each other, fixed, and then installed in the pressurizing chamber 4.
[0045]
After the pressure in the pressurizing chamber 4 is set to 12000 hPa (about 12 times the atmospheric pressure), the ceramic heater 7 is energized and heated to about 500 ° C., and the laser beam (CO 2 laser) 10 is output to the optical waveguide element 6 at an output of 8 W. The butt portion 11 with the optical fiber 9 was irradiated.
[0046]
After the fusion splicing was completed in this way, the preheating ceramic heater 7 was turned off and cooling was performed for 1 hour while maintaining the pressure in the pressurizing chamber 4.
[0047]
As a result, no bubbles remained in the fusion spliced portion, the connection loss was 0.3 dB, the average tensile strength was 1000 g, and it was confirmed that the fusion spliced well.
[0048]
Then, the upper cladding 2 to form a multi-component glass comprising the addition of B 2 O 3, P 2 O 5 to SiO 2, and the B 2 O 3, a multi respectively P 2 O 5 ratio of components It was confirmed that the optical fiber 9 can be fusion-bonded very effectively to the silica-based optical waveguide element 6 having 8% to 10% of the entire component glass.
[0049]
On the other hand, fusion splicing was performed in the same manner and under the same conditions except that the pressure in the pressurizing chamber 4 was changed to atmospheric pressure (1013 hPa).
[0050]
As a result, bubbles were generated in the fusion spliced portion, the connection loss varied greatly from 0.5 dB to 1.0 dB, and the average tensile strength was 400 g.
[0051]
Thereby, it was confirmed that the fusion splicing between the silica-based optical waveguide element 6 and the optical fiber 9 is required to be performed at a pressure higher than at least atmospheric pressure.
[0052]
The window 5 is made of Zn-Se, but the present invention is not limited to this. Any other material can be used as long as it can withstand the high pressure in the pressurizing chamber and can transmit the laser beam 10 satisfactorily. Good.
[0053]
Further, the pressurizing means 13 is not limited to the compressor 15. Other things such as a gas cylinder may be used as long as the inside of the pressurizing chamber 4 can be increased to a predetermined pressure.
[0054]
In this case, the gas may be any gas such as nitrogen, air, carbon dioxide, oxygen, etc. as long as it does not hinder the fusion, such as burning at a particularly low ignition point.
[0055]
【The invention's effect】
In short, according to the present invention, the following excellent effects can be obtained.
(1) A silica-based optical waveguide device having a multicomponent glass with a high impurity concentration in the cladding and the optical fiber can be fusion-bonded without generating bubbles.
[Brief description of the drawings]
FIG. 1 is a sectional side view of a pressurized chamber showing a preferred embodiment of the present invention.
FIG. 2 is a schematic explanatory view showing a cross-sectional structure of a general silica-based optical waveguide element.
FIG. 3 is a schematic explanatory view showing a general fusion splicing method.
[Explanation of symbols]
2 Upper cladding 4 Pressurizing chamber 5 Window 6 Silica-based optical waveguide element 9 Optical fiber 10 Laser light 12 Fusion splicer 13 Pressurizing means

Claims (4)

石英系光導波路素子と光ファイバとを加圧チャンバ内に設置し、前記加圧チャンバ内の気圧を大気圧よりも高くするように上昇させ、前記石英系光導波路素子をヒータによって加熱し、前記石英系光導波路素子と前記光ファイバを突き合わせた部分にレーザ光を照射することにより融着することを特徴とする石英系光導波路素子と光ファイバとの融着接続方法。A silica-based optical waveguide device and the optical fiber was placed in a pressure chamber, the air pressure in the pressure chamber is raised to higher than the atmospheric pressure, the silica-based optical waveguide element is heated by the heater, the fusion splicing method of the silica-based optical waveguide device and the optical fiber, which comprises fusing by applying a laser beam to the butt portion of the optical fiber and the silica-based optical waveguide device. 前記石英系光導波路素子の上部クラッドを、SiO2にB23、P25を添加してなる多成分系ガラスで形成し、かつ、前記23、P25の成分比をそれぞれ前記多成分系ガラス全体に対して8%〜10%とした請求項1に記載の石英系光導波路素子と光ファイバとの融着接続方法。An upper cladding of the silica-based optical waveguide device to form a multi-component glass comprising the addition of B 2 O 3, P 2 O 5 to SiO 2, and the components of the B 2 O 3, P 2 O 5 The method for fusion splicing of a silica-based optical waveguide element and an optical fiber according to claim 1, wherein the ratio is 8% to 10% with respect to the entire multicomponent glass. 石英系光導波路素子と光ファイバとを気密に収容する加圧チャンバと、前記加圧チャンバ内の気圧を少なくとも大気圧よりも高い気圧に上昇させるための加圧手段と、前記石英系光導波路素子を加熱するために前記加圧チャンバ内に設けられたヒータと、前記石英系光導波路素子と前記光ファイバとを融着接続するためにレーザ光を照射するレーザ光照射手段と、前記加圧チャンバに設けられ前記レーザ光を前記加圧チャンバ外から導入するための窓とを備えたことを特徴とする融着接続装置。A pressure chamber containing a silica-based optical waveguide device and the optical fiber airtight, and a pressure means for raising the pressure higher than at least atmospheric pressure in said pressure chamber, said silica-based optical waveguide device A heater provided in the pressurizing chamber for heating the laser, laser light irradiation means for irradiating a laser beam for fusion-bonding the silica-based optical waveguide element and the optical fiber, and the pressurization chamber fusion splicing apparatus being characterized in that and a window for introducing the outside of the pressure chamber the laser beam provided. 前記ヒータは前記石英系光導波路素子と前記光ファイバとを固定する治具に設けられていることを特徴とする請求項3記載の融着接続装置。4. The fusion splicing apparatus according to claim 3, wherein the heater is provided in a jig for fixing the silica-based optical waveguide element and the optical fiber.
JP2001360743A 2001-11-27 2001-11-27 Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber Expired - Fee Related JP3823812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360743A JP3823812B2 (en) 2001-11-27 2001-11-27 Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001360743A JP3823812B2 (en) 2001-11-27 2001-11-27 Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber

Publications (2)

Publication Number Publication Date
JP2003161858A JP2003161858A (en) 2003-06-06
JP3823812B2 true JP3823812B2 (en) 2006-09-20

Family

ID=19171504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360743A Expired - Fee Related JP3823812B2 (en) 2001-11-27 2001-11-27 Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber

Country Status (1)

Country Link
JP (1) JP3823812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138172B2 (en) * 2005-06-30 2013-02-06 株式会社トプコン Optical component and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003161858A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP3396422B2 (en) Optical fiber connection method and connection device
JPH03504052A (en) Optical waveguide connection
US6705771B2 (en) Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
JPH01260405A (en) Optical fiber
Al-Mahrous et al. A thermal splicing method to join silica and fluoride fibers
JP3230679B2 (en) Waveguide structure
JP3823812B2 (en) Method and apparatus for fusion splicing of silica-based optical waveguide element and optical fiber
CN110716264A (en) Soft glass optical fiber welding method
JPS59189308A (en) Connecting method of optical fiber and optical waveguide
JP2697692B2 (en) Pigtails and how to make them
JP3228016B2 (en) Manufacturing method of glass waveguide device
JP2827640B2 (en) Optical component manufacturing method
CN114502520B (en) YAG ceramic joint body and method for manufacturing same
JP2902426B2 (en) Fusion splicing method between silica glass waveguide and optical fiber
JPH07261040A (en) Glass waveguide and its manufacture
JPH0875949A (en) Fusion splicing method for glass waveguide and optical fiber and fusion splicing device
JPS59202407A (en) Manufacture of light guide
JPS62111214A (en) Production of optical waveguide consisting of glass film with optical fiber
JPH07294770A (en) Method for connecting quartz waveguide to optical fiber and structure of juncture
JPH02113212A (en) Waveguide type optical module
JPS63237004A (en) Process for connecting optical fiber to optical waveguide
JP2001242337A (en) Connecting structure for optical waveguide different in mode field diameter
JP2554776B2 (en) Reinforcing method of optical fiber connection
JPH0843650A (en) Optical transmission line and converting method for mode field diameter
JP3097719B2 (en) Optical circuit manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees