JP3823323B2 - Silver electrolyzed water discharge device - Google Patents

Silver electrolyzed water discharge device Download PDF

Info

Publication number
JP3823323B2
JP3823323B2 JP2006516888A JP2006516888A JP3823323B2 JP 3823323 B2 JP3823323 B2 JP 3823323B2 JP 2006516888 A JP2006516888 A JP 2006516888A JP 2006516888 A JP2006516888 A JP 2006516888A JP 3823323 B2 JP3823323 B2 JP 3823323B2
Authority
JP
Japan
Prior art keywords
silver
water
electrode
electrolytic cell
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006516888A
Other languages
Japanese (ja)
Other versions
JPWO2005095281A1 (en
Inventor
達弘 久我
仁志 石丸
真 畠山
尚幸 小野寺
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Application granted granted Critical
Publication of JP3823323B2 publication Critical patent/JP3823323B2/en
Publication of JPWO2005095281A1 publication Critical patent/JPWO2005095281A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4606Treatment of water, waste water, or sewage by electrochemical methods for producing oligodynamic substances to disinfect the water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C1/00Domestic plumbing installations for fresh water or waste water; Sinks
    • E03C1/02Plumbing installations for fresh water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/02Devices adding a disinfecting, deodorising, or cleaning agent to the water while flushing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03CDOMESTIC PLUMBING INSTALLATIONS FOR FRESH WATER OR WASTE WATER; SINKS
    • E03C2201/00Details, devices or methods not otherwise provided for
    • E03C2201/40Arrangement of water treatment devices in domestic plumbing installations

Description

本発明は、銀電解水吐水装置に係わり、特に、水洗便器等に銀イオンを含む洗浄水を吐水する銀電解水吐水装置に関する。  The present invention relates to a silver electrolyzed water discharging apparatus, and more particularly, to a silver electrolyzed water discharging apparatus that discharges cleaning water containing silver ions to a flush toilet or the like.

水洗便器では、便器の前に人が立ったことを検出し便器の使用が終了した時点で自動的に上水又は中水を流す自動洗浄や、使用者のボタン操作等による手動洗浄により、清浄度が維持される。しかしながら、水洗便器に単に洗浄水を流すのみでは、便器や排水管に水アカやぬめりが蓄積したり臭気が発生したりするが、これらを防止することは容易ではないため、従来から問題となっている。
また、小便器においては、尿石が、配管内に付着して排水路を狭くしたり、便器の表面に付着して外観を損ねたり、細菌繁殖の温床となって臭気を放つということが問題となっている。
さらに、一旦便器の表面に付着してしまった尿石はブラシで強く擦らないと除去することができない。このため、これらの尿石の除去は、通常の清掃では難しく、専門の業者に依頼する必要があり、大きな負担となっているという問題がある。
In flush toilets, it is detected by automatic washing in which clean water or medium water is automatically flown when the use of the toilet is finished after detecting that a person has stood in front of the toilet, or by manual washing by user's button operation, etc. The degree is maintained. However, simply flushing the flush toilet with water will cause accumulation of water stains and slime in the toilet bowl and drainpipe and generate odors. However, it has not been easy to prevent these problems, which has been a problem in the past. ing.
Moreover, in urinals, urine stones adhere to the inside of the pipe and narrow the drainage channel, adhere to the surface of the toilet bowl, impair the appearance, and become a hotbed for bacterial growth and give off odors. It has become.
Furthermore, urine stones once attached to the surface of the toilet bowl cannot be removed unless they are rubbed strongly with a brush. For this reason, it is difficult to remove these urine stones by ordinary cleaning, and it is necessary to request a specialized trader, resulting in a large burden.

これらの問題を解決するために、従来から、例えば、特許文献1に記載されているように、洗浄水の水流を利用して水力発電を行い、この発電によって得られた電気エネルギーを用いて銀電解によって生成された銀イオンを洗浄水に含有させる銀電解水吐水装置が知られている。  In order to solve these problems, conventionally, as described in Patent Document 1, for example, hydroelectric power generation is performed using a water flow of washing water, and silver is generated using electric energy obtained by the power generation. A silver electrolyzed water spouting device is known in which washing water contains silver ions generated by electrolysis.

このような従来の銀電解水吐水装置は、洗浄水に含まれる銀イオンが有する殺菌作用によって、水アカ、ぬめり、尿石などの発生を抑制している。また、銀イオンを生成するための電気エネルギー源として水力発電を利用しているため、家庭用100ボルト電源などの商用電源が不要となり、停電や感電なども問題を解消し、低ランニングコストの便器殺菌装置を実現している。  Such a conventional silver electrolyzed water spouting device suppresses the generation of water stains, slime, urine stones, and the like by the bactericidal action of silver ions contained in the wash water. In addition, since hydroelectric power generation is used as an electrical energy source for generating silver ions, commercial power sources such as a 100-volt power source for home use are unnecessary, and problems such as power outages and electric shocks are eliminated, and toilets with low running costs A sterilizer is realized.

特開2000−27262号公報JP 2000-27262 A

しかしながら、上述した従来の銀電解水吐水装置では、水力発電、あるいは1次電池や2次電池などの蓄電手段を電源として用いる場合には、銀イオンの生成効率を十分に高くして、システムの消費電力を抑えなければならないという問題がある。
また、銀電極の消耗を抑制し、これらのメンテナンスフリーを長期間に亘って実現するには、銀イオンの生成効率を十分に高くする必要があるという問題がある。
そこで、本発明は、上述した従来技術の課題を解決するためになされたものであり、銀電解による銀イオンの生成効率を向上させ、銀電解に伴う消費電力を低減させる銀電解水吐水装置を提供することを目的としている。
However, in the conventional silver electrolyzed water spouting device described above, when hydroelectric power generation or power storage means such as a primary battery or a secondary battery is used as a power source, the generation efficiency of silver ions is sufficiently increased. There is a problem that power consumption must be suppressed.
In addition, there is a problem that it is necessary to sufficiently increase the generation efficiency of silver ions in order to suppress the consumption of the silver electrode and to realize such maintenance-free over a long period of time.
Therefore, the present invention has been made to solve the above-described problems of the prior art, and is a silver electrolyzed water spouting device that improves the generation efficiency of silver ions by silver electrolysis and reduces the power consumption associated with silver electrolysis. It is intended to provide.

上記の目的を達成するために、本発明は、銀イオンを含む洗浄水を吐水する銀電解水吐水装置であって、洗浄水が流入する電解槽と、この電解槽内に形成され上記洗浄水が流れる主流路と、上記電解槽内に形成され上記洗浄水が上記主流路から分流されこの分流後に上記主流路に戻るように流れる分流路と、少なくとも陽極の電極が銀イオンを生成する銀電極である一組の電極であって、これらの電極の間に上記洗浄水が流れて上記分流路を形成するように配置された上記電極と、上記電極に電力を供給する給電手段と、を有することを特徴としている。
このように構成された本発明の銀電解水吐水装置においては、電解槽内に洗浄水が流れる主流路と、洗浄水が主流路から分流されこの分流後に主流路に戻るように流れる分流路が形成され、この分流路に少なくとも陽極の電極が銀イオンを生成する銀電極である一組の電極が配置されているため、分流路内の水は、一般的に主流路内の水流に比べて流速が小さくかつ乱れの少ない流れの状態で電極の間を通過して、電極の間には境界層が形成される。この境界層により、電極で生成された銀イオンが分流路内の水中に含まれる塩素イオンと反応して塩化銀が生成されるのが抑制され、銀イオンの状態のまま維持されるため、電極における銀イオンの生成効率を向上させることができる。また、所定量の銀イオンを得るのに、電極の消費電力が抑制されるため、電極の消耗を抑えることができる。
In order to achieve the above object, the present invention provides a silver electrolyzed water spouting device for discharging cleaning water containing silver ions, an electrolytic cell into which cleaning water flows, and the cleaning water formed in the electrolytic cell. A main flow path through which the water flows, a branch flow path in which the washing water is diverted from the main flow path and returns to the main flow path after the diversion, and at least an anode electrode generates silver ions A pair of electrodes, wherein the cleaning water flows between the electrodes and the electrodes are arranged so as to form the diversion channel, and power supply means for supplying power to the electrodes. It is characterized by that.
In the silver electrolyzed water spouting device of the present invention configured as described above, there are a main channel through which the wash water flows in the electrolytic cell, and a branch channel through which the wash water flows from the main channel and returns to the main channel after the diversion. Since a pair of electrodes, which are formed and at least the anode electrode is a silver electrode that generates silver ions, are arranged in this branch channel, the water in the branch channel is generally compared to the water flow in the main channel A boundary layer is formed between the electrodes by passing between the electrodes in a state of low flow velocity and less turbulence. This boundary layer prevents silver ions generated at the electrode from reacting with chlorine ions contained in the water in the diversion channel to generate silver chloride, and maintains the state of silver ions. The production efficiency of silver ions in can be improved. Moreover, since the power consumption of the electrode is suppressed to obtain a predetermined amount of silver ions, the consumption of the electrode can be suppressed.

本発明において、更に、電解槽の上流側に形成された給水路と、下流側に形成された排水路を有し、電解槽が給水路と排水路よりも外側に突出する凹部を備え、この凹部に上記電極が配置されて分流路が形成されていることが好ましい。これにより、分流路内の水は、一般的に主流路内の水流に比べて流速が小さくかつ乱れの少ない流れの状態で電極の間を通過して、電極の間には境界層が形成される。この境界層により、電極で生成された銀イオンが分流路内の水中に含まれる塩素イオンと反応して塩化銀が生成されるのが抑制され、銀イオンの状態のまま維持されるため、電極における銀イオンの生成効率を向上させることができる。また、所定量の銀イオンを得るのに、電極の消費電力が抑制されるため、電極の消耗を抑えることができる。  In the present invention, it further has a water supply channel formed on the upstream side of the electrolytic cell and a drain channel formed on the downstream side, and the electrolytic cell includes a recess protruding outside the water supply channel and the drain channel, It is preferable that the said electrode is arrange | positioned at a recessed part and the shunt flow path is formed. As a result, the water in the diversion channel generally passes between the electrodes in a state where the flow velocity is small and the flow is less turbulent than the water flow in the main flow channel, and a boundary layer is formed between the electrodes. The This boundary layer prevents silver ions generated at the electrode from reacting with chlorine ions contained in the water in the diversion channel to generate silver chloride, and maintains the state of silver ions. The production efficiency of silver ions in can be improved. Moreover, since the power consumption of the electrode is suppressed to obtain a predetermined amount of silver ions, the consumption of the electrode can be suppressed.

本発明において、電解槽は、主流路が縦方向となるように配置され、電極は、凹部の給水路の近傍に配置されていることが好ましい。これにより、電極における銀イオンの生成効率を向上させることができる。また、電極が電解槽内の残水に浸かったまま溶けて消耗する可能性を低減できる。なお、縦方向とは、鉛直方向を示す。  In the present invention, the electrolytic cell is preferably disposed so that the main flow path is in the vertical direction, and the electrode is disposed in the vicinity of the water supply channel of the recess. Thereby, the production | generation efficiency of the silver ion in an electrode can be improved. Moreover, it is possible to reduce the possibility that the electrode is melted and consumed while immersed in the residual water in the electrolytic cell. The vertical direction indicates the vertical direction.

本発明において、更に、電解槽の上流側に形成された給水路を有し、電解槽は、主流路が縦方向となるように配置され、電解槽の側壁が給水路よりも外側に突出する拡大部を備え、この拡大部の給水路側に電極が配置され分流路が形成されていてもよい。これにより、電極における銀イオンの生成効率を向上させることができる。また、電極が電解槽内の残水に浸かったまま溶けて消耗する可能性を低減できる。  In the present invention, it further has a water supply channel formed on the upstream side of the electrolytic cell, the electrolytic cell is arranged so that the main channel is in the vertical direction, and the side wall of the electrolytic cell protrudes outside the water supply channel. An enlarged portion may be provided, and electrodes may be arranged on the water supply channel side of the enlarged portion to form a diversion channel. Thereby, the production | generation efficiency of the silver ion in an electrode can be improved. Moreover, it is possible to reduce the possibility that the electrode is melted and consumed while immersed in the residual water in the electrolytic cell.

本発明において、更に、電解槽の下流側に形成された排水路を有し、電解槽は、主流路が縦方向となるように配置され、電解槽の側壁が排水路よりも外側に突出する絞り部を備え、この絞り部の排水路側に電極が配置されて分流路が形成されていてもよい。これにより、電極における銀イオンの生成効率を向上させることができる。  In the present invention, it further has a drainage channel formed on the downstream side of the electrolytic cell, and the electrolytic cell is arranged so that the main channel is in the vertical direction, and the side wall of the electrolytic cell protrudes outside the drainage channel. A throttle part may be provided, and an electrode may be arranged on the drainage channel side of the throttle part to form a branch channel. Thereby, the production | generation efficiency of the silver ion in an electrode can be improved.

本発明において、電極は、電極保持部材によって保持され、この電極保持部材の電極を保持している側の表面は、その電極の表面と面一となっていることが好ましい。これにより、分流路内の水が電極の間に流入する際、電極保持部材の電極を保持している側の表面が助走区間として作用するため、分流路内の水は、一般的に主流路内の水流に比べて流速が小さくかつ乱れの少ない流れの状態で電極の間を通過する。また、電極の間には境界層が形成され、この境界層により、電極で生成された銀イオンが分流路内の水中に含まれる塩素イオンと反応して塩化銀が生成されるのが抑制され、銀イオンの状態のまま維持されるため、電極における銀イオンの生成効率を向上させることができる。さらに、所定量の銀イオンを得るのに、電極の消費電力が抑制されるため、電極の消耗を抑えることができる。  In the present invention, the electrode is held by an electrode holding member, and the surface of the electrode holding member on the side holding the electrode is preferably flush with the surface of the electrode. Thus, when the water in the branch channel flows between the electrodes, the surface of the electrode holding member on the side holding the electrode acts as a run-up section. Passes between the electrodes in a state of low flow velocity and less turbulence than the internal water flow. In addition, a boundary layer is formed between the electrodes, and this boundary layer suppresses the generation of silver chloride by reacting the silver ions generated at the electrode with the chlorine ions contained in the water in the distribution channel. Since it is maintained in the state of silver ions, the production efficiency of silver ions in the electrode can be improved. Furthermore, since the power consumption of the electrode is suppressed to obtain a predetermined amount of silver ions, the consumption of the electrode can be suppressed.

本発明において、電解槽の凹部は、ほぼ四角形状に突出して延びる側壁により形成され、電極は、平板状に形成され、これらの電極が上記側壁とほぼ平行に配置されていることが好ましい。これにより、分流路内の水は、電極の間に流入する際、主流路内の水流に比べて流速が小さくかつ乱れの少ない流れの状態で電極の間を通過する。また、電極の間には境界層が形成され、この境界層により、電極で生成された銀イオンが分流路内の水中に含まれる塩素イオンと反応して塩化銀が生成されるのが抑制されて銀イオンの状態のまま維持されるため、電極における銀イオンの生成効率を向上させることができる。さらに、所定量の銀イオンを得るのに、電極の消費電力が抑制されるため、電極の消耗を抑えることができる。  In the present invention, it is preferable that the concave portion of the electrolytic cell is formed by a side wall extending so as to protrude in a substantially square shape, the electrodes are formed in a flat plate shape, and these electrodes are arranged substantially parallel to the side wall. As a result, when the water in the diversion channel flows between the electrodes, the water flows between the electrodes in a flow state in which the flow velocity is smaller than that of the water flow in the main channel and is less disturbed. In addition, a boundary layer is formed between the electrodes, and this boundary layer suppresses the generation of silver chloride by reacting the silver ions generated at the electrode with the chlorine ions contained in the water in the distribution channel. Therefore, the silver ion generation efficiency in the electrode can be improved. Furthermore, since the power consumption of the electrode is suppressed to obtain a predetermined amount of silver ions, the consumption of the electrode can be suppressed.

本発明において、給電手段は、電解槽に流入又は流出する洗浄水により発電する発電手段を有することが好ましい。これにより、電解槽の上流側又は下流側の水の水流を利用して発電した電力を電極に供給する電力として有効に活用することができる。  In the present invention, it is preferable that the power supply means includes a power generation means for generating electric power with the washing water flowing into or out of the electrolytic cell. Thereby, the electric power generated using the water stream upstream or downstream of the electrolytic cell can be effectively used as the electric power supplied to the electrodes.

本発明において、給電手段は、更に、上記発電手段により発電された電力を蓄積する蓄電手段を有することが好ましい。これにより、発電手段が発電した電力を蓄積して電極に供給することができるため、発電手段の発電の負担を軽減させることができる。  In the present invention, it is preferable that the power supply means further includes a power storage means for storing the electric power generated by the power generation means. Thereby, since the electric power generated by the power generation means can be accumulated and supplied to the electrodes, it is possible to reduce the power generation load of the power generation means.

本発明において、電極保持部材は、その流入側端部が電極の間に流入する水流を整流化するように丸形状に形成されていることが好ましい。これにより、分流路内の水は、電極保持部材の流入側端部によって整流化され、電極の間を主流路内の水流に比べて流速が小さくかつ乱れの少ない流れの状態で通過する。また、電極の間には境界層が形成され、この境界層により、電極で生成された銀イオンが分流路内の水中に含まれる塩素イオンと反応して塩化銀が生成されるのが抑制されて銀イオンの状態のまま維持されるため、電極における銀イオンの生成効率を向上させることができる。さらに、所定量の銀イオンを得るのに、電極の消費電力が抑制されるため、電極の消耗を抑えることができる。  In the present invention, the electrode holding member is preferably formed in a round shape so that the inflow side end thereof rectifies the water flow flowing between the electrodes. As a result, the water in the branch flow path is rectified by the inflow side end of the electrode holding member, and passes between the electrodes in a flow state in which the flow velocity is smaller and less disturbed than the water flow in the main flow path. In addition, a boundary layer is formed between the electrodes, and this boundary layer suppresses the generation of silver chloride by reacting the silver ions generated at the electrode with the chlorine ions contained in the water in the distribution channel. Therefore, the silver ion generation efficiency in the electrode can be improved. Furthermore, since the power consumption of the electrode is suppressed to obtain a predetermined amount of silver ions, the consumption of the electrode can be suppressed.

本発明において、電極保持部材は、これらの下方に水抜き用の空間が形成されるように電解槽内の上方側に配置されていることが好ましい。これにより、電極保持部材の電極が通水路内の残水に浸かったまま溶けて消耗する可能性を低減できる。  In this invention, it is preferable that the electrode holding member is arrange | positioned at the upper side in an electrolytic cell so that the space for draining may be formed in the downward direction. Thereby, the possibility that the electrode of the electrode holding member is melted and consumed while being immersed in the remaining water in the water passage can be reduced.

本発明の銀電解水吐水装置によれば、銀電解による銀イオンの生成効率を向上させ、銀電解に伴う消費電力を低減させることができる。  According to the silver electrolyzed water discharging apparatus of the present invention, it is possible to improve the generation efficiency of silver ions by silver electrolysis and reduce the power consumption accompanying silver electrolysis.

以下、添付図面を参照して本発明の銀電解水吐水装置の実施形態について説明する。
図1は小便器洗浄装置に適用した本発明の第1実施形態による銀電解水吐水装置を示す全体構成図である。図2は本発明の第1実施形態による銀電解水吐水装置を示す正面断面斜視図であり、図3は図2のC−C線に沿って見た断面斜視図である。
図1に示すように、符号1は、本実施形態の銀電解水吐水装置1を示し、この銀電解水吐水装置1の上流側流路は、洗浄水として利用される上水や中水などの水道水Wの流路となっており、この流路には開閉弁6が設けられている。この開閉弁6は、例えば、プランジャ式ラッチング・ソレノイド・バルブのように制御装置4により自動開閉されるものであってもよいし、手動式のものであってもよい。一方、銀電解水吐水装置1の下流側流路には、水洗小便器8が設けられている。
Hereinafter, embodiments of the silver electrolyzed water spouting device of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram showing a silver electrolyzed water discharging apparatus according to a first embodiment of the present invention applied to a urinal washing apparatus. FIG. 2 is a front cross-sectional perspective view showing the silver electrolyzed water discharging apparatus according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional perspective view taken along line CC in FIG.
As shown in FIG. 1, the code | symbol 1 shows the silver electrolyzed water discharging apparatus 1 of this embodiment, and the upstream flow path of this silver electrolyzed water discharging apparatus 1 is the clean water, middle water, etc. which are utilized as a wash water. The tap water W is a flow path, and an open / close valve 6 is provided in the flow path. The on-off valve 6 may be automatically opened / closed by the control device 4 such as a plunger type latching solenoid valve, or may be a manual type. On the other hand, a flush urinal 8 is provided in the downstream channel of the silver electrolyzed water spouting device 1.

また、図1〜図3に示すように、電解槽2の上流側には、給水路3が上方に延びるように形成されている。一方、電解槽2の下流側には、排水路5がほぼ給水路3の軸方向下方に延びるように形成されている。
さらに、電解槽2内には、これら給水路3と排水路5の側壁よりも中央から外側に突出した側壁16が設けられ、この側壁16により、外側にほぼ四角形状に突出する箱形凹部を形成している。
Moreover, as shown in FIGS. 1-3, the water supply path 3 is formed in the upstream of the electrolytic cell 2 so that it may extend upwards. On the other hand, on the downstream side of the electrolytic cell 2, a drainage channel 5 is formed so as to extend substantially downward in the axial direction of the water supply channel 3.
Furthermore, a side wall 16 is provided in the electrolytic cell 2 so as to protrude outward from the center of the side walls of the water supply channel 3 and the drainage channel 5, and the side wall 16 forms a box-shaped recess protruding outward in a substantially square shape. Forming.

電解槽2の側壁16の近傍には、一組の薄い平板状の銀電極12を互いに対向させるように所定間隔を置いて保持する一組の薄板状の電極保持部材14が電解槽2の側壁16とほぼ平行に配置されている。  In the vicinity of the side wall 16 of the electrolytic cell 2, a set of thin plate-like electrode holding members 14 that hold a set of thin flat plate-like silver electrodes 12 at predetermined intervals so as to face each other are provided on the side wall of the electrolytic cell 2. 16 is arranged substantially in parallel.

電解槽2内に配置された各電極保持部材14a,14bの上端部は、給水路3の下流端から電解槽2へ拡大して形成される拡大部18から所定間隔だけ離間し、各電極保持部材14の下端部は、電解槽2から排水路5へと絞られて形成される絞り部20から所定間隔だけ離間して配置されている。  The upper end portions of the electrode holding members 14a and 14b arranged in the electrolytic cell 2 are separated from the enlarged portion 18 formed by expanding from the downstream end of the water supply channel 3 to the electrolytic cell 2 by a predetermined interval, and each electrode holding member is held. A lower end portion of the member 14 is arranged at a predetermined interval from a throttle portion 20 formed by being throttled from the electrolytic cell 2 to the drainage channel 5.

また、電極保持部材14に保持された一組の銀電極12(12a,12b)は、銀(Ag)、又は銀を含有する金属によって形成されている。また、各銀電極12a,12bは、これらの間の印加電圧の極性を適宜反転させて一方をアノード(陽極)側の銀電極に設定し、他方をカソード(陰極)側の銀電極に設定することができるように構成されている。
さらに、各銀電極12a,12bは、電解槽2の外側に延出した接続端子13に接続され、詳細は後述する制御装置4からの指令により接続端子13に電力が供給されるようになっている。
なお、本実施形態では、一組の電極は何れも、銀(Ag)、又は銀を含有する金属によって形成されているが、それに限定されず、少なくとも、アノード(陽極)の電極が、銀又は銀を含む銀電極により形成されていれば良い。また、各銀電極12a,12bの枚数は、1枚ずつでもよいし、2枚以上でもよい。
The pair of silver electrodes 12 (12a, 12b) held by the electrode holding member 14 is formed of silver (Ag) or a metal containing silver. Each of the silver electrodes 12a and 12b is appropriately reversed in the polarity of the applied voltage between them to set one as an anode (anode) side silver electrode and the other as a cathode (cathode) side silver electrode. It is configured to be able to.
Furthermore, each silver electrode 12a, 12b is connected to a connection terminal 13 extending to the outside of the electrolytic cell 2, and power is supplied to the connection terminal 13 by a command from the control device 4 described later in detail. Yes.
In this embodiment, each of the pair of electrodes is formed of silver (Ag) or a metal containing silver, but is not limited thereto, and at least the electrode of the anode (anode) is silver or What is necessary is just to be formed with the silver electrode containing silver. Further, the number of each silver electrode 12a, 12b may be one by one or two or more.

さらに、電解槽2内には、電極保持部材14が配置されたことにより、主流路2aとこの主流路2aの下流側から分岐した分流路2bの2つの流路が区画形成されている。
主流路2aは、電解槽2内において給水路3から排水路5へ向けて縦方向に延びる流路である。この主流路2aでは、開閉弁6が開放されて銀電解水吐水装置1の給水路3から電解槽2内へ流入した水道水Wによる水流W1が、電解槽2内に配置された一組の銀電極12a,12bを含む電極保持部材14a,14b同士の間を通過することなく、電極保持部材14の外部を通過して下流側の排水路5へ主流として流れるようになっている。
一方、分流路2bは、一組の銀電極12a,12bを含む電極保持部材14a,14b同士の間に形成されている流路である。この分流路2bでは、主流路2aの下流側で水流W1から分流した水流W2が、一組の銀電極12a,12bを含む電極保持部材14a,14b同士の間を主流路2aの水流W1の方向と逆方向に流れるようになっている。電圧が印加された一組の銀電極12a,12b同士の間を通過する水流W2には、陽極側の銀電極12aから銀イオンAgが放出され、この銀イオンAgを含む水流W2’が、分流路2bの下流側で再び主流路2aの水流W1に合流するようになっている。また、水流W1に合流した水流W2’は、排水路5を流れて水洗小便器8に供給されるようになっている。
Further, in the electrolytic cell 2, the electrode holding member 14 is arranged, so that two flow paths, a main flow path 2a and a branch flow path 2b branched from the downstream side of the main flow path 2a, are defined.
The main flow path 2 a is a flow path that extends in the vertical direction from the water supply path 3 to the drainage path 5 in the electrolytic cell 2. In the main flow path 2 a, a set of water flows W <b> 1 due to tap water W flowing into the electrolytic cell 2 from the water supply channel 3 of the silver electrolyzed water discharge device 1 by opening the on-off valve 6 is disposed in the electrolytic cell 2. Without passing between the electrode holding members 14 a and 14 b including the silver electrodes 12 a and 12 b, they pass through the outside of the electrode holding member 14 and flow to the drainage channel 5 on the downstream side as a main stream.
On the other hand, the branch channel 2b is a channel formed between the electrode holding members 14a and 14b including the pair of silver electrodes 12a and 12b. In the branch flow path 2b, the water flow W2 branched from the water flow W1 on the downstream side of the main flow path 2a passes between the electrode holding members 14a and 14b including the pair of silver electrodes 12a and 12b in the direction of the water flow W1 of the main flow path 2a. It is designed to flow in the opposite direction. Silver ions Ag + are released from the silver electrode 12a on the anode side into the water flow W2 passing between the pair of silver electrodes 12a and 12b to which a voltage is applied, and a water flow W2 ′ containing the silver ions Ag + is generated. The water flow W1 of the main flow path 2a is joined again on the downstream side of the branch flow path 2b. Further, the water flow W2 ′ merged with the water flow W1 flows through the drainage channel 5 and is supplied to the flush toilet 8.

つぎに、本実施形態における銀電極12及び電極保持部材14について詳細に説明する。
図4は、本発明の第1実施形態による銀電解水吐水装置の電極保持部材を示す斜視図であり、図5は、図4に示す本発明の第1実施形態による銀電解水吐水装置の電極保持部材のD−D断面図であり、図6は、図4に示す本発明の第1実施形態による銀電解水吐水装置の電極保持部材のE−E断面図である。
図4〜図6に示すように、各銀電極12a,12bは各電極保持部材14a,14bにそれぞれ埋め込まれて保持されており、各電極保持部材14a,14bの各銀電極12a,12bを保持している側の表面14cは、各銀電極12a,12bの表面12cと面一となっている。
また、各電極保持部材14a,14bの表面14cにおける銀電極12の周囲には、助走区間22が形成されている。この助走区間22は、銀電極12の上流側に位置する助走区間22a、銀電極12の下流側に位置する助走区間22b、銀電極12の側方に位置する助走区間22c,22dによって構成されている。
ここで、上述した「助走区間」とは、分流路2bの電極保持部材14a,14bの銀電極12a,12b間に洗浄水が流入する際に、銀電極12a,12bの表面12cにおける水流W2について乱れを低減させて層流のような乱れの少ない流れにさせる領域を意味する。また、助走区間22は、銀電極12a,12bが配置されている側の電極保持部材14a,14bの表面14cの領域以外にも、水流W2の流路形状が変化しないように分流路2b内において電極保持部材14a,14bの表面14cの領域から面一となるように所定方向に延びた領域も含む。
Next, the silver electrode 12 and the electrode holding member 14 in this embodiment will be described in detail.
FIG. 4 is a perspective view showing an electrode holding member of the silver electrolyzed water spouting device according to the first embodiment of the present invention, and FIG. 5 is a diagram of the silver electrolyzed water spouting device according to the first embodiment of the present invention shown in FIG. It is DD sectional drawing of an electrode holding member, FIG. 6: is EE sectional drawing of the electrode holding member of the silver electrolyzed water discharging apparatus by 1st Embodiment of this invention shown in FIG.
As shown in FIGS. 4 to 6, the silver electrodes 12a and 12b are embedded and held in the electrode holding members 14a and 14b, respectively, and hold the silver electrodes 12a and 12b of the electrode holding members 14a and 14b. The surface 14c on the side that is being used is flush with the surface 12c of each silver electrode 12a, 12b.
Further, a run-up section 22 is formed around the silver electrode 12 on the surface 14c of each electrode holding member 14a, 14b. The running section 22 includes a running section 22 a located on the upstream side of the silver electrode 12, a running section 22 b located on the downstream side of the silver electrode 12, and running sections 22 c and 22 d located on the side of the silver electrode 12. Yes.
Here, the above-mentioned “running section” refers to the water flow W2 on the surface 12c of the silver electrodes 12a and 12b when the cleaning water flows between the silver electrodes 12a and 12b of the electrode holding members 14a and 14b of the branch channel 2b. It means a region where turbulence is reduced to a flow with less turbulence such as laminar flow. Further, the run-up section 22 is located in the branch flow path 2b so that the flow path shape of the water flow W2 does not change, other than the area of the surface 14c of the electrode holding members 14a and 14b on the side where the silver electrodes 12a and 12b are disposed. It also includes a region extending in a predetermined direction so as to be flush with the region of the surface 14c of the electrode holding members 14a and 14b.

つぎに、銀電解水吐水装置1の制御装置4について具体的に説明する。
図1に示すように、本実施形態による銀電解水吐水装置1の制御装置4は、制御部24、開閉弁電磁駆動部26、電流供給部28、電源部30、及び、センサ32によって構成されている。
制御部24は、他の回路要素26,28,30,32を制御するように構成されている。
開閉弁電磁駆動部26は、例えば、開閉弁6の開度を調整する際に開閉弁6に電圧を出力することにより開閉弁6を駆動させるように構成されている。
電流供給部28は、銀電極12に電流を供給することにより、銀電極12から銀イオンAgを溶出させるように構成されている。
電源部30は、交流100ボルトや交流200ボルトなどの商用電源からの交流電力を直流電力に変換するように構成されている。
センサ32は、例えば、水洗小便器8の上方または前面などに配置され、赤外線などにより使用者の存在を検知するように構成されている。制御部24がセンサ32からの検知情報に基づいて開閉弁電磁駆動部26を作動させて、開閉弁6の開度を調整することにより、水洗小便器8に洗浄水が適宜流されるようになっている。
Below, the control apparatus 4 of the silver electrolyzed water discharging apparatus 1 is demonstrated concretely.
As shown in FIG. 1, the control device 4 of the silver electrolyzed water discharge device 1 according to the present embodiment includes a control unit 24, an on-off valve electromagnetic drive unit 26, a current supply unit 28, a power supply unit 30, and a sensor 32. ing.
The control unit 24 is configured to control the other circuit elements 26, 28, 30 and 32.
For example, the on-off valve electromagnetic drive unit 26 is configured to drive the on-off valve 6 by outputting a voltage to the on-off valve 6 when adjusting the opening degree of the on-off valve 6.
The current supply unit 28 is configured to elute silver ions Ag + from the silver electrode 12 by supplying current to the silver electrode 12.
The power supply unit 30 is configured to convert AC power from a commercial power source such as AC 100 volts or AC 200 volts into DC power.
The sensor 32 is disposed, for example, above or in front of the flush urinal 8 and configured to detect the presence of the user by infrared rays or the like. The control unit 24 operates the on-off valve electromagnetic drive unit 26 based on the detection information from the sensor 32 to adjust the opening degree of the on-off valve 6, so that flush water is appropriately flowed into the flush toilet 8. ing.

つぎに、図7は、図1に示す電流供給部28の詳細な構成を示す図である。
図7に示すように、電流供給部28は、電気伝導度検出回路34、定電流回路36、極性反転回路38によって構成されている。
洗浄水の殺菌効果を高め、同時に洗浄水による便器の変色などを防ぐためには、銀イオンAgの添加量を所定の範囲内とすることが望ましく、水道水Wの電気伝導度に応じて、銀電極12に供給する電流を調節する必要がある。このため、電気伝導度検出回路34により、水道水の電気伝導度が検出されるように構成されている。
なお、水の電気伝導度の検出は、例えば、定電流回路36により銀電極12の電極間に一定電流を流し、その時の電極間電圧を電気伝導度検出回路34で測定することによって行われるようになっている。
7 is a diagram showing a detailed configuration of the current supply unit 28 shown in FIG.
As shown in FIG. 7, the current supply unit 28 includes an electrical conductivity detection circuit 34, a constant current circuit 36, and a polarity inversion circuit 38.
In order to enhance the sterilizing effect of the washing water and at the same time prevent the toilet from being discolored by the washing water, it is desirable that the addition amount of silver ions Ag + is within a predetermined range, and depending on the electric conductivity of the tap water W, It is necessary to adjust the current supplied to the silver electrode 12. For this reason, the electrical conductivity detection circuit 34 is configured to detect the electrical conductivity of tap water.
The detection of the electrical conductivity of water is performed, for example, by passing a constant current between the electrodes of the silver electrode 12 by the constant current circuit 36 and measuring the voltage between the electrodes at that time by the electrical conductivity detection circuit 34. It has become.

また、定電流回路36は、銀イオンAgを溶出させるために最適な電流値を制御して出力するように構成されている。
さらに、極性反転回路38は、銀電極12に出力する電流の極性を適宜反転させるように構成されている。なお、極性の反転は、銀イオンAgの溶出に伴う両銀電極12a,12bの消耗が均等になるように、例えば、一回の洗浄水の生成毎に行われるようになっている。
The constant current circuit 36 is configured to control and output an optimum current value for eluting silver ions Ag + .
Further, the polarity inversion circuit 38 is configured to appropriately invert the polarity of the current output to the silver electrode 12. Note that the polarity reversal is performed, for example, every time the cleaning water is generated so that the consumption of both the silver electrodes 12a and 12b accompanying the elution of the silver ions Ag + is equalized.

また、水洗小便器8に流す洗浄水に対する銀イオンAgの添加量については、一般的には、少なすぎると十分な殺菌効果が得られず、多すぎると銀電極に関する消費電力が大きくなり、銀電極の消耗も激しくなるという問題がある。さらに、銀イオンAgの添加量が多すぎると銀イオンAgと同時に発生する塩化銀AgClが便器の陶器面に付着し、黒ずみなどの変色が生ずるという問題がある。本実施形態では、このような問題を考慮し、電解槽2内における洗浄水に対する銀イオンAgの添加量が1〜50ppbの範囲内となるように構成されている。Moreover, about the addition amount of silver ion Ag + with respect to the wash water sent to the flush toilet 8, generally, if too little, sufficient sterilization effect will not be acquired, but if too much, the power consumption regarding a silver electrode will become large, There is a problem that the consumption of the silver electrode becomes severe. Furthermore, adhering silver ions Ag + silver chloride AgCl which the amount is too large silver ions Ag + simultaneously with generation of the pottery surface of the toilet, there is a problem that discoloration such darkening occurs. In the present embodiment, in consideration of such a problem, the amount of silver ion Ag + added to the washing water in the electrolytic cell 2 is configured to be in the range of 1 to 50 ppb.

次に、本発明の第1実施形態の動作(作用)を説明する。
図8(a)は、本発明の第1実施形態による銀電解水吐水装置1の電解槽2について、銀電極12を含む電極保持部材14を電解槽2内に配置する前の状態における水の流れを示す概略断面図であり、図8(b)は、本発明の第1実施形態による銀電解水吐水装置1の電解槽2について、銀電極12を含む電極保持部材14を電解槽2内に配置した状態における水の流れを示す概略断面図である。
まず、図8(a)に示すように、銀電極12を含む電極保持部材14を電解槽2内に配置する前の状態の銀電解水吐水装置1では、電解槽2内の給水路3と排水路5との間に電解槽2を形成したことにより、この電解槽2内には、図8(a)の点線の内側に示す主流路領域S1が給水路3から排水路5にかけてわずかに広がるように形成される。この主流路領域S1では、給水路3から電解槽2内に流入した水道水Wは、速い流速を保ったまま排水路5へ流出する。
一方、主流路領域S1の外側には、主流路外領域S2が形成される。この主流路外領域S2では、流れの剥離により渦を巻いた流れ、すなわち、非常に流速の小さい流れが逆流する。
Next, the operation (action) of the first embodiment of the present invention will be described.
FIG. 8A shows water in a state before the electrode holding member 14 including the silver electrode 12 is arranged in the electrolytic cell 2 in the electrolytic cell 2 of the silver electrolyzed water discharge device 1 according to the first embodiment of the present invention. FIG. 8B is a schematic cross-sectional view showing a flow, and FIG. 8B shows an electrode holding member 14 including a silver electrode 12 in the electrolytic cell 2 in the electrolytic cell 2 of the silver electrolyzed water discharger 1 according to the first embodiment of the present invention. It is a schematic sectional drawing which shows the flow of the water in the state arrange | positioned in.
First, as shown to Fig.8 (a), in the silver electrolyzed water discharging apparatus 1 of the state before arrange | positioning the electrode holding member 14 containing the silver electrode 12 in the electrolytic cell 2, the water supply path 3 in the electrolytic cell 2, Since the electrolytic cell 2 is formed between the drainage channel 5 and the drainage channel 5, the main channel region S1 shown inside the dotted line in FIG. 8A is slightly in the electrolytic cell 2 from the water supply channel 3 to the drainage channel 5. It is formed to spread. In the main channel region S1, the tap water W that has flowed into the electrolytic cell 2 from the water supply channel 3 flows out to the drainage channel 5 while maintaining a high flow rate.
On the other hand, a main channel outer region S2 is formed outside the main channel region S1. In the main flow path outside region S2, a flow swirled by the separation of the flow, that is, a flow with a very low flow velocity flows backward.

つぎに、図8(b)に示すように、銀電極12を含む電極保持部材14が主流路外領域S2に配置された状態の銀電解水吐水装置1では、給水路3から電解槽2内に流入した水道水Wは、主流路2aを流れて排水路5へと流出する流速の速い水流W1と、主流路2aの下流側から分流路2bへ分流して、水流W1の流速に比べて非常に小さい流速で分流路2bを流れる水流W2とに分流される。
主流路2aの水流W1は、電解槽2内に配置された一組の銀電極12a,12bを含む電極保持部材14a,14b同士の間を通過することなく、電極保持部材14の外部を通過して下流側の排水路5へ主流として流れる。
一方、分流路2bの水流W2は、主流路2aの水流W1の方向と逆方向に、水流W1の流速に比べて非常に小さい流速で流れ、各電極保持部材14a,14bの助走区間22a,22c,22dを経て銀電極12a,12bの間をゆっくりと通過する。
両銀電極12a,12bの間に電圧が印加され、例えば、銀電極12aが陽極として作用し、銀電極12bが陰極として作用している場合、陽極側の銀電極12aから銀イオンAgが生成され、これら銀イオンAgが銀電極12a,12b間の水流W2に放出される(詳細は後述する)。これらの銀イオンAgを含む水流W2’は、分流路2bの下流側で再び主流路2aの水流W1に合流する。
水流W1に合流した水流W2’は、排水路5を流れて水洗小便器8に供給される。銀イオンAgを含む水流W2’の洗浄水が水洗小便器8内に流入すると、この洗浄水に含まれる銀イオンAgが水洗小便器8内の殺菌や除菌に利用される。
Next, as shown in FIG. 8B, in the silver electrolyzed water spouting device 1 in a state where the electrode holding member 14 including the silver electrode 12 is disposed in the main flow path outside region S2, the inside of the electrolytic cell 2 from the water supply channel 3 The tap water W that flows into the water flow W1 flows through the main flow path 2a and flows out to the drainage channel 5, and the water flow W1 has a high flow rate, and is divided from the downstream side of the main flow path 2a to the branch flow path 2b, compared with the flow speed of the water flow W1. The water is diverted to the water flow W2 flowing through the diversion channel 2b at a very small flow rate.
The water flow W1 of the main flow path 2a passes through the outside of the electrode holding member 14 without passing between the electrode holding members 14a and 14b including the pair of silver electrodes 12a and 12b arranged in the electrolytic cell 2. The main stream flows to the drainage channel 5 on the downstream side.
On the other hand, the water flow W2 of the branch flow path 2b flows in a direction opposite to the direction of the water flow W1 of the main flow path 2a at a very low flow rate compared to the flow rate of the water flow W1, and the running sections 22a and 22c of the electrode holding members 14a and 14b. , 22d and slowly passes between the silver electrodes 12a, 12b.
A voltage is applied between the silver electrodes 12a and 12b. For example, when the silver electrode 12a acts as an anode and the silver electrode 12b acts as a cathode, silver ions Ag + are generated from the silver electrode 12a on the anode side. Then, these silver ions Ag + are released into the water flow W2 between the silver electrodes 12a and 12b (details will be described later). The water stream W2 ′ containing these silver ions Ag + merges with the water stream W1 in the main channel 2a again on the downstream side of the branch channel 2b.
A water flow W2 ′ joined to the water flow W1 flows through the drainage channel 5 and is supplied to the flush toilet 8. When washing water of the water flow W2 ′ containing silver ions Ag + flows into the flush urinal 8, the silver ions Ag + contained in the washing water are used for sterilization and sterilization in the flush urinal 8.

つぎに、銀電極12a,12b間で生成される銀イオンAgについて詳細に説明する。
図9は、銀電極12において銀イオンAgが生成されている状態を示す概略図である。図9に示すように、分流路2bの水流W2は、各電極保持部材14a,14bの助走区間22a,22c,22dを通過して整流されることにより、少なくとも両銀電極12a,12bの間では層流のような乱れの少ない流れとなっている。このとき、陽極側の銀電極12aでは、銀電解によって銀イオンAgが溶出されている。
また、助走区間22a,22c,22dを通過した水流W2は、主流路2aの水流W1の流速よりも非常に小さい流速で両銀電極12a,12bの間に流入しているため、各銀電極12a,12bの近傍にはある程度の厚さの境界層BLが形成されている。
ここで、「境界層」とは、物体表面近くの領域であり、流速が小さく、層流域のように乱れの少ない流れの領域を意味する。
Next, the silver ions Ag + generated between the silver electrodes 12a and 12b will be described in detail.
FIG. 9 is a schematic view showing a state in which silver ions Ag + are generated in the silver electrode 12. As shown in FIG. 9, the water flow W2 in the branch flow path 2b is rectified by passing through the running sections 22a, 22c, and 22d of the electrode holding members 14a and 14b, so that at least between the silver electrodes 12a and 12b. The flow is less turbulent like laminar flow. At this time, silver ions Ag + are eluted by silver electrolysis at the silver electrode 12a on the anode side.
In addition, the water flow W2 that has passed through the run-up sections 22a, 22c, and 22d flows between the silver electrodes 12a and 12b at a flow velocity that is much smaller than the flow velocity of the water flow W1 in the main flow path 2a. , 12b, a boundary layer BL having a certain thickness is formed.
Here, the “boundary layer” is a region near the surface of the object, and means a region of a flow with a small flow velocity and a small disturbance such as a laminar flow region.

また、銀電極12a,12b間では、水流W2が乱れの少ない流れで、かつ非常に小さい流速で流入しているため、水流W2に含まれている塩素イオンClが図9の矢印Aの方向に示すように移動して銀電極12a,12b間に供給される単位時間当たりの塩素イオン供給量が抑制される。この結果、銀電極12a,12b間の水流W2において、銀イオンAgと塩素イオンClとの反応による塩化銀AgClの生成が抑制され、銀イオンAgの状態が維持される。Further, between the silver electrodes 12a and 12b, the water flow W2 flows with a low turbulence and at a very low flow rate, so that the chlorine ions Cl contained in the water flow W2 are in the direction of the arrow A in FIG. The chlorine ion supply amount per unit time that moves and is supplied between the silver electrodes 12a and 12b is suppressed as shown in FIG. As a result, in the water flow W2 between the silver electrodes 12a and 12b, the production of silver chloride AgCl due to the reaction between silver ions Ag + and chlorine ions Cl is suppressed, and the state of silver ions Ag + is maintained.

さらに、銀電極12a,12bの近傍に形成される境界層BLは、水流W2の流速が小さいほど厚く、水流W2の流速が大きく乱流に近づくほど薄くなると考えられる。
本実施形態においては、銀電極12a,12bの間では、水流W2が乱れの少ない層流のような状態で非常に小さい流速で流入しているため、境界層BLの厚さが適度に保たれている。したがって、この境界層BLによって、塩素イオンClが図9の矢印Bの方向に示すように移動して陽極の銀電極12a側へ供給されることが抑制され、銀イオンAgと塩素イオンClとの反応による塩化銀AgClの生成が抑制されるため、銀イオンAgの状態が維持される。
Further, it is considered that the boundary layer BL formed in the vicinity of the silver electrodes 12a and 12b is thicker as the flow velocity of the water flow W2 is smaller and thinner as the flow velocity of the water flow W2 is larger and approaches turbulent flow.
In the present embodiment, the water flow W2 flows between the silver electrodes 12a and 12b at a very low flow rate in a state of laminar flow with little turbulence, so that the thickness of the boundary layer BL is kept moderate. ing. Therefore, the boundary layer BL suppresses the movement of the chlorine ions Cl as shown in the direction of the arrow B in FIG. 9 to be supplied to the silver electrode 12a side of the anode, and the silver ions Ag + and the chlorine ions Cl Since the production of silver chloride AgCl due to the reaction with-is suppressed, the state of silver ions Ag + is maintained.

上述した本発明の第1実施形態による銀電解水吐水装置1によれば、電解槽2内の流速の小さい主流路外領域S2に一組の銀電極12a,12bを含む一組の電極保持部材14a,14bを配置して分流路2bを形成し、水洗小便器8に供給する前の洗浄水の一部の水流W2を分流路2bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができる。
また、本実施形態の銀電解水吐水装置1によれば、分流路2bの水流W2は、電極保持部材14の助走区間22a,22b,22c,22dにより層流のような乱れの少ない流れとなり、銀電極12a,12bの間を主流路2aの水流W1の流速に比べて非常に小さい流速で通過する。このため、塩素イオンClを含む水流W2の流量が制限される。加えて、銀電極12a,12bの近傍に形成される境界層BLにより、銀電極12a,12bの間で銀イオンAgと反応する塩素イオンClの絶対量が低下し、塩化銀AgClの生成が抑制される。したがって、陽極側の銀電極12aで銀電解によって溶出された銀イオンAgについては、塩化銀AgClの生成による損失が抑制されて銀イオンAgの状態のまま維持されるため、銀イオンAgの生成効率を向上させることができる。
さらに、本実施形態の銀電解水吐水装置1によれば、所定量の銀イオンAgの生成に伴う銀電解による消費電力を抑えることができる。また、銀電極の消耗が抑制されるため、銀電解槽の耐用期間を大幅に延ばすことができる。
また、本実施形態の銀電解水吐水装置1によれば、水洗小便器8に供給する洗浄水における銀イオンAgの添加量を適度に設定することができ、水洗小便器8やそれらの配管等に対して十分な殺菌効果を得ることができる。
さらに、本実施形態の銀電解水吐水装置1によれば、電極保持部材14が、四角形状に形成された電解槽2の側壁16とほぼ平行に配置されているため、電解槽2を円管状に形成した場合に比べ、分流路2bに流入する水流W2が均一となり、銀電極12a,12b間の水流の乱れを抑制することができる。
According to the silver electrolyzed water discharging apparatus 1 according to the first embodiment of the present invention described above, a set of electrode holding members including a set of silver electrodes 12a and 12b in the main flow path outside region S2 having a small flow velocity in the electrolytic cell 2. 14a and 14b are arranged to form a diversion channel 2b, and a portion of the wash water W2 before being supplied to the flush urinal 8 is diverted between the silver electrodes 12a and 12b of the diversion channel 2b. The generation efficiency of Ag + can be greatly improved.
Moreover, according to the silver electrolyzed water discharging apparatus 1 of this embodiment, the water flow W2 of the branch flow path 2b becomes a flow with less turbulence such as a laminar flow by the running sections 22a, 22b, 22c, and 22d of the electrode holding member 14, It passes between the silver electrodes 12a and 12b at a very small flow rate compared with the flow rate of the water flow W1 of the main flow path 2a. For this reason, the flow rate of the water flow W2 containing the chlorine ions Cl is limited. In addition, the boundary layer BL formed in the vicinity of the silver electrodes 12a and 12b reduces the absolute amount of chlorine ions Cl that react with the silver ions Ag + between the silver electrodes 12a and 12b, thereby generating silver chloride AgCl. Is suppressed. Therefore, the silver ion Ag + eluted by silver electrolysis at the silver electrode 12a on the anode side is maintained in the state of silver ion Ag + because the loss due to the generation of silver chloride AgCl is suppressed, and thus the silver ion Ag + is maintained. The production efficiency of can be improved.
Furthermore, according to the silver electrolyzed water discharging apparatus 1 of this embodiment, the power consumption by silver electrolysis accompanying the production | generation of predetermined amount of silver ion Ag + can be suppressed. Moreover, since the consumption of the silver electrode is suppressed, the useful life of the silver electrolytic cell can be greatly extended.
Moreover, according to the silver electrolyzed water discharging apparatus 1 of this embodiment, the addition amount of silver ion Ag + in the wash water supplied to the flush urinal 8 can be set appropriately, and the flush urinal 8 and their piping A sufficient bactericidal effect can be obtained.
Furthermore, according to the silver electrolyzed water discharging apparatus 1 of this embodiment, since the electrode holding member 14 is disposed substantially in parallel with the side wall 16 of the electrolytic cell 2 formed in a quadrangular shape, the electrolytic cell 2 is tubular. Compared with the case where the water flow is formed, the water flow W2 flowing into the branch channel 2b becomes uniform, and the disturbance of the water flow between the silver electrodes 12a and 12b can be suppressed.

図10は、本発明の第1実施形態の変形例による銀電解水吐水装置の銀電極を含む電極保持部材を示す断面図である。ここで、図10において、第1実施形態の銀電解水吐水装置1の電極保持部材14の部分と同一の部分については同一の符号を付し、それらの説明は省略する。
図10に示すように、本発明の第1実施形態の変形例による銀電解水吐水装置の一組の電極保持部材40においては、上流側の助走区間42aの流入側端部44が丸形状に形成されている。
このように構成された本発明の第1実施形態による銀電解水吐水装置1の変形例によれば、水流W2が電極保持部材40の上流側の助走区間42aに流入する際に、丸形状の流入端部44により水流W2を整流化して乱れを防ぐことができる。
したがって、電極保持部材40の上流側の助走区間42aと下流側の助走区間42bの距離を第1実施形態の助走区間22a,22bに比べて短く設定することができる。
FIG. 10: is sectional drawing which shows the electrode holding member containing the silver electrode of the silver electrolyzed water discharging apparatus by the modification of 1st Embodiment of this invention. Here, in FIG. 10, the same code | symbol is attached | subjected about the part same as the part of the electrode holding member 14 of the silver electrolyzed water discharging apparatus 1 of 1st Embodiment, and those description is abbreviate | omitted.
As shown in FIG. 10, in the set of electrode holding members 40 of the silver electrolyzed water discharger according to the modification of the first embodiment of the present invention, the inflow side end portion 44 of the upstream running section 42a has a round shape. Is formed.
According to the modified example of the silver electrolyzed water spouting device 1 according to the first embodiment of the present invention configured as described above, when the water flow W2 flows into the run-up section 42a on the upstream side of the electrode holding member 40, the round shape The inflow end 44 can rectify the water flow W2 to prevent turbulence.
Therefore, the distance between the upstream running section 42a and the downstream running section 42b of the electrode holding member 40 can be set shorter than the running sections 22a and 22b of the first embodiment.

図11(a)は、本発明の第2実施形態による銀電解水吐水装置の銀電極を含む電極保持部材を配置する前の状態を示す、図8(a)と同様な概略断面図である。また、図11(b)は、本発明の第2実施形態による銀電解水吐水装置の銀電極を含む電極保持部材を配置した状態を示す、図8(b)と同様な概略断面図である。ここで、図11(a)及び図11(b)において、図8(a)及び図8(b)に示す第1実施形態と同一の部分については同一の符号を付し、それらの説明は省略する。
まず、図11(a)に示すように、本発明の第2実施形態による銀電解水吐水装置50は、電解槽52の上流側に形成された給水路53と、この給水路53の下流端からその内側壁54に向かって給水路53の側壁よりも外側に突出する拡大部58を形成する電解槽52と、この電解槽52の下流側端部に形成されるこの電解槽52とほぼ同じ太さの出口55とを備えている。
図11(a)に示す銀電解水吐水装置50では、図11(a)の点線の内側に示す主流路領域S1’が電解槽52内で下流側の出口55に向かって広がるように形成され、この主流路領域S1’を水道水Wの流速の速い流れが給水路53から電解槽52の出口55に向かって主流として流れるように構成されている。
また、この主流路領域S1’の外側の領域には、電解槽52内が満水となったとき、電解槽52の下流側で流れの剥離が発生して、非常に流速の小さい流れが逆流する主流路外領域S2’が形成されるようになっている。
Fig.11 (a) is a schematic sectional drawing similar to Fig.8 (a) which shows the state before arrange | positioning the electrode holding member containing the silver electrode of the silver electrolyzed water discharging apparatus by 2nd Embodiment of this invention. . Moreover, FIG.11 (b) is a schematic sectional drawing similar to FIG.8 (b) which shows the state which has arrange | positioned the electrode holding member containing the silver electrode of the silver electrolyzed water discharging apparatus by 2nd Embodiment of this invention. . Here, in FIG. 11A and FIG. 11B, the same parts as those of the first embodiment shown in FIG. 8A and FIG. Omitted.
First, as shown in FIG. 11A, a silver electrolyzed water discharge device 50 according to a second embodiment of the present invention includes a water supply channel 53 formed on the upstream side of the electrolytic cell 52 and a downstream end of the water supply channel 53. From the side wall of the water supply channel 53 toward the inner wall 54, and an electrolytic cell 52 that forms an enlarged portion 58, and the electrolytic cell 52 that is formed at the downstream end of the electrolytic cell 52. And an outlet 55 of thickness.
In the silver electrolyzed water discharging apparatus 50 shown to Fig.11 (a), it forms so that main flow-path area | region S1 'shown inside the dotted line of Fig.11 (a) may spread toward the downstream exit 55 in the electrolytic cell 52. FIG. In the main flow path region S1 ′, the flow of tap water W having a high flow velocity is configured to flow as a main flow from the water supply channel 53 toward the outlet 55 of the electrolytic cell 52.
Further, when the inside of the electrolytic cell 52 becomes full in the region outside the main flow channel region S1 ′, flow separation occurs on the downstream side of the electrolytic cell 52, and a flow with a very low flow velocity flows backward. A main flow path outer region S2 ′ is formed.

つぎに、図11(b)に示すように、主流路外領域S2’内において、電解槽52の上流側端部の近傍には、一組の銀電極12a,12bを含む一組の電極保持部材14a,14bが、電解槽52の中央から外側に突出するように形成された側壁54とほぼ平行に延びるように配置されている。この電極保持部材14により、電解槽52内には、図11(a)に示す主流路領域S1’とほぼ同じ流路である主流路52aと、この主流路52aの下流側から分岐した分流路52bの2つの流路が区画形成されている。  Next, as shown in FIG. 11B, in the main flow path outer region S2 ′, in the vicinity of the upstream end of the electrolytic cell 52, a set of electrode holdings including a set of silver electrodes 12a and 12b. The members 14a and 14b are disposed so as to extend substantially in parallel with the side wall 54 formed so as to protrude outward from the center of the electrolytic cell 52. By this electrode holding member 14, a main channel 52a that is substantially the same channel as the main channel region S1 ′ shown in FIG. 11A and a branch channel branched from the downstream side of the main channel 52a are formed in the electrolytic cell 52. Two flow paths 52b are partitioned.

上述した本発明の第2実施形態による銀電解水吐水装置50においては、給水路53から電解槽52の主流路52aに流入した水道水Wの流速の速い流れが、主流路52aの下流側で排水路55へ流れる流速の速い水流W1と、分流路52bへ流れる流速の小さい水流W2とに分流される。
分流路52bの水流W2は、主流路52aの水流W1の方向と逆方向に、水流W1の流速よりも非常に小さい流速で流れ、各電極保持部材14a,14bの助走区間22a,22bを経て銀電極12a,12bの間を乱れが少なく非常に小さい流速で通過する。また、水流W2が銀電極12a,12bの間を通過する際、陽極側の銀電極12aで生成された銀イオンAgが水流W2に放出され、銀イオンAgを含む水流W2’となる。この水流W2’は、分流路52bの下流側で再び主流路52aの水流W1に合流する。これら合流した水流W1と水流W2’は、電解槽52の出口55から流出し水洗小便器8に供給される。銀イオンAgを含む水流W2’の洗浄水が水洗小便器8内に流入すると、この洗浄水に含まれる銀イオンAgが水洗小便器8内の殺菌や除菌に利用される。
また、分流路52bの銀電極12a,12b間では、水流W2が乱れの少ない流れで非常に小さい流速で流入することによって形成されるある程度の厚さの境界層BLにより、銀イオンAgと塩素イオンClとの反応による塩化銀AgClの生成が抑制されるため、銀イオンAgの状態が維持される。
In the above-described silver electrolyzed water spouting device 50 according to the second embodiment of the present invention, the fast flow of the tap water W flowing into the main channel 52a of the electrolytic cell 52 from the water supply channel 53 is downstream of the main channel 52a. The water flow W1 having a high flow velocity flowing to the drainage channel 55 and the water flow W2 having a small flow velocity flowing to the branch flow passage 52b are divided.
The water flow W2 in the branch flow path 52b flows in a direction opposite to the direction of the water flow W1 in the main flow path 52a at a flow velocity much smaller than the flow velocity of the water flow W1, and passes through the running sections 22a and 22b of the electrode holding members 14a and 14b. It passes between the electrodes 12a and 12b at a very small flow rate with little disturbance. Further, when the water flow W2 passes between the silver electrodes 12a and 12b, the silver ions Ag + generated by the silver electrode 12a on the anode side are released into the water flow W2 to become a water flow W2 ′ containing silver ions Ag + . This water flow W2 ′ joins the water flow W1 of the main flow path 52a again on the downstream side of the branch flow path 52b. The merged water flow W1 and water flow W2 ′ flow out from the outlet 55 of the electrolytic cell 52 and are supplied to the flush toilet 8. When washing water of the water flow W2 ′ containing silver ions Ag + flows into the flush urinal 8, the silver ions Ag + contained in the washing water are used for sterilization and sterilization in the flush urinal 8.
Further, between the silver electrodes 12a and 12b of the branch flow path 52b, the silver ion Ag + and chlorine are formed by the boundary layer BL having a certain thickness formed by the water flow W2 flowing at a very low flow rate with a less disturbed flow. Since the production of silver chloride AgCl due to the reaction with ion Cl is suppressed, the state of silver ion Ag + is maintained.

上述した本発明の第2実施形態による銀電解水吐水装置50によれば、第1実施形態と同様に、主流路外領域S2’に一組の銀電極12a,12bを含む一組の電極保持部材14a,14bを配置して電解槽52内に分流路52bを形成し、水洗小便器8に供給する前の洗浄水の一部の水流W2を主流路52aの水流W1の流速よりも非常に小さい流速で分流路52bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができる。
また、所定量の銀イオンAgの生成に伴う銀電解による消費電力を抑えることができ、銀電極の消耗が抑制されるため、銀電解槽の耐用期間を大幅に延ばすことができる。
According to the above-described silver electrolyzed water discharge device 50 according to the second embodiment of the present invention, as in the first embodiment, a set of electrode holdings including a set of silver electrodes 12a and 12b in the main flow path outside region S2 ′. Members 14a and 14b are arranged to form a diversion channel 52b in the electrolytic cell 52, and a portion of the water flow W2 before being supplied to the flush urinal 8 is much higher than the flow rate W1 of the main flow channel 52a. By splitting between the silver electrodes 12a and 12b of the branch flow path 52b at a low flow rate, the generation efficiency of silver ions Ag + can be greatly improved.
Moreover, since the power consumption by silver electrolysis accompanying the production | generation of predetermined amount of silver ion Ag + can be suppressed and consumption of a silver electrode is suppressed, the lifetime of a silver electrolytic cell can be extended significantly.

図12は、本発明の第2実施形態の変形例による銀電解水吐水装置の電解槽を示す、図11(b)と同様な概略断面図である。ここで、図12において、図11(b)に示す電解槽と同一の部分については同一の符号を付し、それらの説明は省略する。
図12に示すように、本発明の第2実施形態の変形例による銀電解水吐水装置50aにおいては、一組の銀電極12a,12bを含む一組の電極保持部材14a,14bが、その中央から外側に突出した電解槽52の主流路外領域S2’内の上流側端部の近傍に配置されて、電解槽52の側壁54に対してほぼ垂直に延びている構成が第2実施形態の構成と異なっている。
このように構成された本発明の第2実施形態の変形例による銀電解水吐水装置50aによれば、上述した第2実施形態と同様に、主流路外領域S2’に一組の銀電極12a,12bを含む一組の電極保持部材14a,14bを配置して電解槽52内に分流路52bを形成し、水洗小便器8に供給する前の洗浄水の一部の水流W2を主流路52aの水流W1の流速よりも非常に小さい流速で分流路52bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができる。
なお、この図12に示すように、本発明の第2実施形態の変形例による銀電解水吐水装置50aにおいては、主流路52aが縦方向(鉛直方向)となるように電解槽52を配置して、この電解槽52内の残水の排出を促すこともできるが、主流路52aが横方向となるように電解槽52を配置して、銀電極12a,12bの間の分流路52bが縦方向となってこの銀電極12a,12bの間の分流路52b間の残水の排出を促すことも可能である。
FIG. 12 is a schematic cross-sectional view similar to FIG. 11 (b) showing an electrolytic cell of a silver electrolyzed water spouting device according to a modification of the second embodiment of the present invention. Here, in FIG. 12, the same parts as those in the electrolytic cell shown in FIG. 11B are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 12, in the silver electrolyzed water discharging apparatus 50a according to the modified example of the second embodiment of the present invention, a set of electrode holding members 14a and 14b including a set of silver electrodes 12a and 12b is provided at the center. The configuration of the second embodiment is such that it is disposed in the vicinity of the upstream end portion in the main flow path outer region S2 ′ of the electrolytic cell 52 projecting outward from the side wall 54 and extends substantially perpendicular to the side wall 54 of the electrolytic cell 52. It is different from the configuration.
According to the silver electrolyzed water spouting device 50a according to the modification of the second embodiment of the present invention configured as described above, a set of silver electrodes 12a in the main flow path outer region S2 ′ as in the second embodiment described above. , 12b and a pair of electrode holding members 14a, 14b are arranged to form a diversion channel 52b in the electrolytic cell 52, and a part of the washing water W2 before being supplied to the flush urinal 8 is supplied to the main channel 52a. The flow efficiency of silver ions Ag + can be greatly improved by diverting between the silver electrodes 12a and 12b of the diversion channel 52b at a flow velocity much smaller than the flow velocity of the water flow W1.
As shown in FIG. 12, in the silver electrolyzed water spouting device 50a according to the modification of the second embodiment of the present invention, the electrolytic cell 52 is arranged so that the main channel 52a is in the vertical direction (vertical direction). Although the discharge of the remaining water in the electrolytic cell 52 can be promoted, the electrolytic cell 52 is arranged so that the main flow channel 52a is in the horizontal direction, and the branch flow channel 52b between the silver electrodes 12a and 12b is vertically It is also possible to promote the discharge of the remaining water between the diversion channels 52b between the silver electrodes 12a and 12b in the direction.

また、図13(a)は、本発明の第3実施形態による銀電解水吐水装置について、銀電極を含む電極保持部材を配置する前の状態を示す、図8(a)及び図11(a)と同様な概略断面図である。また、図13(b)は、本発明の第3実施形態による銀電解水吐水装置について、銀電極を含む電極保持部材を配置した状態を示す、図8(b)及び図11(b)と同様な概略断面図である。ここで、図13(a)及び図13(b)において、図8(a)及び図8(b)に示す第1実施形態による銀電解水吐水装置及び図11(a)及び図11(b)に示す第2実施形態による銀電解水吐水装置と同一の部分については同一の符号を付し、それらの説明は省略する。
まず、図13(a)に示すように、本発明の第3実施形態による銀電解水吐水装置70は、電解槽72の上流側に入口73が形成され、この入口73とほぼ同じ太さの流路を形成する電解槽72と、この電解槽72の下流側に形成された排水路75とを備え、この電解槽72の下流側端部は、排水路75の内壁76に向かって内方に絞られる絞り部78を形成している。
Moreover, Fig.13 (a) shows the state before arrange | positioning the electrode holding member containing a silver electrode about the silver electrolyzed water discharging apparatus by 3rd Embodiment of this invention, Fig.8 (a) and FIG.11 (a) ) Is a schematic sectional view similar to FIG. Moreover, FIG.13 (b) shows the state which has arrange | positioned the electrode holding member containing a silver electrode about the silver electrolyzed water discharging apparatus by 3rd Embodiment of this invention, and FIG.8 (b) and FIG.11 (b) It is the same schematic sectional drawing. Here, in FIGS. 13 (a) and 13 (b), the silver electrolyzed water spouting device according to the first embodiment shown in FIGS. 8 (a) and 8 (b) and FIGS. 11 (a) and 11 (b). The same parts as those of the silver electrolyzed water discharging apparatus according to the second embodiment shown in FIG.
First, as shown in FIG. 13A, the silver electrolyzed water discharge device 70 according to the third embodiment of the present invention has an inlet 73 formed on the upstream side of the electrolytic cell 72, and has the same thickness as the inlet 73. The electrolysis tank 72 which forms a flow path, and the drainage path 75 formed in the downstream of this electrolysis tank 72 are provided, and the downstream edge part of this electrolysis tank 72 is inward toward the inner wall 76 of the drainage path 75. An aperture portion 78 that is narrowed down is formed.

図13(a)に示す本実施形態による銀電解水吐水装置70では、図13(a)の点線の内側に示す主流路領域S1”が電解槽72の入口73から排水路75に向かって窄まるように形成され、この主流路領域S1”を水道水Wの流速の速い流れが電解槽72の入口73から排水路75に向かって主流として流れるように構成されている。
また、この主流路領域S1”の外側の領域には、上流側から下流側にかけて流速の小さい流れとなる主流路外領域S2”が形成されるようになっている。
In the silver electrolyzed water discharging apparatus 70 according to the present embodiment shown in FIG. 13A, the main channel region S1 ″ shown inside the dotted line in FIG. 13A is narrowed from the inlet 73 of the electrolytic cell 72 toward the drainage channel 75. The tap water W is configured so that a flow having a high flow velocity of the tap water W flows from the inlet 73 of the electrolytic cell 72 toward the drainage channel 75 as a main flow.
In addition, a region outside the main flow path S2 ″ that forms a flow with a small flow velocity from the upstream side to the downstream side is formed in the region outside the main flow path region S1 ″.

つぎに、図13(b)に示すように、主流路外領域S2”内において、電解槽72の絞り部78の上流側近傍には、一組の銀電極12a,12bを含む一組の電極保持部材14a,14bが、その中央から外側に突出した電解槽72の側壁80とほぼ平行に延び、かつ排水路75の内壁76よりも外側に位置するように配置されている。この電極保持部材14により、電解槽72内には、図13(a)に示す主流路領域S1”とほぼ同じ流路である主流路72aと、この主流路72aから分岐した分流路72bの2つの流路が区画形成されている。  Next, as shown in FIG. 13B, a set of electrodes including a set of silver electrodes 12a and 12b in the vicinity of the upstream side of the throttle section 78 of the electrolytic cell 72 in the main flow path outside region S2 ″. The holding members 14a and 14b are arranged so as to extend substantially parallel to the side wall 80 of the electrolytic cell 72 protruding outward from the center thereof and to be located outside the inner wall 76 of the drainage channel 75. This electrode holding member. 14, there are two flow paths in the electrolytic cell 72, a main flow path 72 a that is substantially the same flow path as the main flow path region S <b> 1 ″ shown in FIG. 13A and a branch flow path 72 b that is branched from the main flow path 72 a. A compartment is formed.

上述した本発明の第3実施形態による銀電解水吐水装置70においては、入口73から電解槽72内に流入した水道水Wの流速の速い流れが、電解槽72内に配置された電極保持部材14の上流側で主流路72aから排水路75へ流れる流速の速い水流W1と、分流路72bの電極保持部材14a,14bの銀電極12a,12bの間を水流W1と同じ方向に流れる流速の小さい水流W2とに分流される。
分流路72bの水流W2は、各電極保持部材14a,14bの助走区間22a,22bを経て銀電極12a,12bの間を乱れが少なく、水流W1の流速よりも非常に小さい流速で通過する。また、水流W2が銀電極12a,12bの間を通過する際、陽極側の銀電極12aで生成された銀イオンAgが水流W2に放出され、銀イオンAgを含む水流W2’となる。この水流W2’は、分流路72bの下流側で再び主流路72aの水流W1に合流して水洗小便器8に供給される。
また、分流路72bの銀電極12a,12b間では、水流W2が乱れの少ない流れで非常に小さい流速で流入することによって形成される境界層BLにより、銀イオンAgと塩素イオンClとの反応による塩化銀AgClの生成が抑制され、銀イオンAgの状態が維持される。
In the above-described silver electrolyzed water spouting device 70 according to the third embodiment of the present invention, the electrode holding member disposed in the electrolytic cell 72 is a rapid flow of tap water W flowing into the electrolytic cell 72 from the inlet 73. 14 between the water flow W1 having a high flow velocity flowing from the main flow path 72a to the drainage channel 75 on the upstream side of 14 and the silver electrodes 12a and 12b of the electrode holding members 14a and 14b of the branch flow path 72b. It is divided into the water stream W2.
The water flow W2 in the branch flow path 72b passes through the run-up sections 22a and 22b of the electrode holding members 14a and 14b, and is less disturbed between the silver electrodes 12a and 12b, and passes at a flow velocity much smaller than the flow velocity of the water flow W1. Further, when the water flow W2 passes between the silver electrodes 12a and 12b, the silver ions Ag + generated by the silver electrode 12a on the anode side are released into the water flow W2 to become a water flow W2 ′ containing silver ions Ag + . This water flow W2 ′ joins again with the water flow W1 of the main flow path 72a on the downstream side of the branch flow path 72b and is supplied to the flush toilet 8.
Further, between the silver electrodes 12a and 12b of the branch flow path 72b, the boundary layer BL formed by flowing the water flow W2 at a very low flow rate with a less turbulent flow causes the silver ions Ag + and chlorine ions Cl to flow. Formation of silver chloride AgCl due to the reaction is suppressed, and the state of silver ions Ag + is maintained.

上述した本発明の第3実施形態による銀電解水吐水装置70によれば、第1及び第2実施形態と同様に、主流路外領域S2’に一組の銀電極12a,12bを含む一組の電極保持部材14a,14bを配置して電解槽72内に分流路72bを形成し、水洗小便器8に供給する前の洗浄水の一部の水流W2を分流路72bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができる。また、所定量の銀イオンAgの生成に要する銀電解による消費電力を抑えることができ、銀電極の消耗が抑制されるため、銀電解槽の耐用期間を大幅に延ばすことができる。According to the silver electrolyzed water spouting device 70 according to the third embodiment of the present invention described above, a set including a set of silver electrodes 12a and 12b in the main flow path outer region S2 ′ as in the first and second embodiments. The electrode holding members 14a and 14b are arranged to form a diversion channel 72b in the electrolytic cell 72, and a portion of the washing water W2 before being supplied to the flush urinal 8 is separated from the silver electrodes 12a and 12b of the diversion channel 72b. By splitting them in between, the production efficiency of silver ions Ag + can be greatly improved. Moreover, since the power consumption by the silver electrolysis required for the production | generation of a predetermined amount of silver ion Ag + can be suppressed and consumption of a silver electrode is suppressed, the lifetime of a silver electrolytic cell can be extended significantly.

図14は、本発明の第3実施形態の変形例による銀電解水吐水装置を示す、図13(b)と同様な概略断面図である。ここで、図14において、図13(b)に示す電解槽と同一の部分については同一の符号を付し、それらの説明は省略する。
図14に示すように、本発明の第3実施形態の変形例による銀電解水吐水装置70aにおいては、一組の銀電極12a,12bを含む一組の電極保持部材14a,14bが、その中央から外側に突出した電解槽72の主流路外領域S2”内の絞り部78の上流側近傍に配置されて、電解槽72の側壁80に対してほぼ垂直に延びている構成が第3実施形態の構成と異なっている。
このように構成された本発明の第3実施形態の変形例による銀電解水吐水装置70aによれば、上述した第2実施形態と同様に、主流路外領域S2”に一組の銀電極12a,12bを含む一組の電極保持部材14a,14bを配置して電解槽72内に分流路72bを形成し、水洗小便器8に供給する前の洗浄水の一部の水流W2を分流路72bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができる。
FIG. 14: is a schematic sectional drawing similar to FIG.13 (b) which shows the silver electrolyzed water discharging apparatus by the modification of 3rd Embodiment of this invention. Here, in FIG. 14, the same parts as those in the electrolytic cell shown in FIG. 13B are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 14, in the silver electrolyzed water spouting device 70 a according to the modification of the third embodiment of the present invention, a set of electrode holding members 14 a and 14 b including a set of silver electrodes 12 a and 12 b are arranged at the center. The third embodiment is configured to be disposed in the vicinity of the upstream side of the throttle portion 78 in the main flow path outer region S2 ″ of the electrolytic cell 72 protruding outward from the vertical direction with respect to the side wall 80 of the electrolytic cell 72. The configuration is different.
According to the silver electrolyzed water spouting device 70a according to the modification of the third embodiment of the present invention configured as described above, a set of silver electrodes 12a in the main flow path outer region S2 ″ as in the second embodiment described above. , 12b including a pair of electrode holding members 14a, 14b are formed to form a diversion channel 72b in the electrolytic cell 72, and a part of the wash water W2 before being supplied to the flush toilet 8 is diverted to the diversion channel 72b. The generation efficiency of silver ions Ag + can be greatly improved by diverting between the silver electrodes 12a and 12b.

図15は、本発明の第4実施形態による銀電解水吐水装置の電解槽を示す、図3と同様な断面斜視図である。ここで、図15において、図3に示す第1実施形態の部分と同一の部分については同一の符号を付し、それらの説明は省略する。
図15に示すように、本実施形態の銀電解水吐水装置90の電解槽92では、電解槽92内に、一組の銀電極12a,12bを含む一組の電極保持部材14a,14bが配置されたことによって、上述した第1〜第3実施形態のものと同様に、主流路92aと分流路92bが形成されているが、これらの流路92a,92bの形状が第1〜第3実施形態のものと異なっている。なお、電解槽92の下流側には排水路95が形成されている。
すなわち、主流路92aの流路の断面形状については、電極保持部材14によって形成される部分以外は丸形状であり、全体的に鍵穴形状のようになっている。一方、分流路92bの流路形状については、一組の板状の電極保持部材14a,14bにより、流路断面が四角形状になっている。
FIG. 15 is a cross-sectional perspective view similar to FIG. 3, showing an electrolytic cell of a silver electrolyzed water discharging apparatus according to the fourth embodiment of the present invention. Here, in FIG. 15, the same parts as those of the first embodiment shown in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 15, in the electrolytic cell 92 of the silver electrolyzed water discharge device 90 of the present embodiment, a set of electrode holding members 14 a and 14 b including a set of silver electrodes 12 a and 12 b are arranged in the electrolytic cell 92. As a result, the main flow path 92a and the branch flow path 92b are formed as in the first to third embodiments described above, but the shapes of these flow paths 92a and 92b are the first to third embodiments. The form is different. A drainage channel 95 is formed on the downstream side of the electrolytic cell 92.
That is, the cross-sectional shape of the flow path of the main flow path 92a is round except for the portion formed by the electrode holding member 14, and has a keyhole shape as a whole. On the other hand, as for the flow path shape of the branch flow path 92b, the cross section of the flow path has a square shape due to the pair of plate-like electrode holding members 14a and 14b.

上述した本発明の第4実施形態による銀電解水吐水装置90によれば、電解槽92内の主流路92aと分流路92b内の圧損上昇を抑制することができると共に、電解槽92の大きさを小型化することができる。  According to the silver electrolyzed water discharge device 90 according to the above-described fourth embodiment of the present invention, an increase in pressure loss in the main channel 92a and the branch channel 92b in the electrolytic cell 92 can be suppressed, and the size of the electrolytic cell 92 can be reduced. Can be miniaturized.

図16は、本発明の第5実施形態による銀電解水吐水装置を小便器洗浄装置に適用した場合における、図1と同様な全体構成図である。また、図17は、本発明の第5実施形態による銀電解水吐水装置を示す斜視図であり、図18は、図17に示す本発明の第5実施形態による銀電解水吐水装置のF−F断面斜視図である。
ここで、図16〜図18において、第1実施形態の部分と同一の部分については同一の符号を付し、それらの説明は省略する。
図16〜図18に示すように、本実施形態の銀電解水吐水装置100では、電解槽2の上流側に発電装置102が配置されている構成が第1実施形態の構成と異なっている。
FIG. 16 is an overall configuration diagram similar to FIG. 1 when a silver electrolyzed water discharge device according to a fifth embodiment of the present invention is applied to a urinal cleaning device. FIG. 17 is a perspective view showing a silver electrolyzed water spouting device according to the fifth embodiment of the present invention, and FIG. 18 is an F- of the silver electrolyzed water spouting device according to the fifth embodiment of the present invention shown in FIG. It is F section perspective view.
Here, in FIGS. 16 to 18, the same reference numerals are given to the same parts as those of the first embodiment, and the description thereof is omitted.
As shown in FIGS. 16-18, in the silver electrolyzed water discharging apparatus 100 of this embodiment, the structure by which the electric power generating apparatus 102 is arrange | positioned in the upstream of the electrolytic cell 2 differs from the structure of 1st Embodiment.

また、制御装置104の制御部106には、整流部108と蓄電部110が設けられている。
整流部108は、発電装置102により発電された交流電力を整流して直流電流に変換し、この電流を制御部106及び電流供給部28に供給するように構成されている。
蓄電部110は、発電装置102により発電された電力を蓄積するように構成されており、例えば、電圧変換回路(図示せず)と蓄電手段であるキャパシタ(図示せず)などによって構成されている。
さらに、図18に示すように、発電装置102内には、電解槽2の上流側の給水路3へと通ずる通水路112が形成され、この通水路112には発電装置102の駆動軸114を回転させる水車116が設けられている。
The control unit 106 of the control device 104 is provided with a rectification unit 108 and a power storage unit 110.
The rectification unit 108 is configured to rectify the AC power generated by the power generation apparatus 102 and convert it into a DC current, and supply this current to the control unit 106 and the current supply unit 28.
The power storage unit 110 is configured to store the power generated by the power generation device 102, and is configured by, for example, a voltage conversion circuit (not shown) and a capacitor (not shown) that is power storage means. .
Further, as shown in FIG. 18, a water passage 112 is formed in the power generation apparatus 102 to communicate with the water supply path 3 on the upstream side of the electrolytic cell 2, and a drive shaft 114 of the power generation apparatus 102 is provided in the water passage 112. A rotating water wheel 116 is provided.

上述した本発明の第5実施形態の銀電解水吐水装置100においては、発電装置102の通水路112内を水道水Wが流れると、この水流により水車116が回転し、その回転運動が発電装置102の駆動軸114に伝達される。この結果、水道水Wの運動エネルギーを電気エネルギーに変換して、電力を発生させることができる。
さらに、発電装置102によって得られた電力は、制御装置104の蓄電部110に一旦蓄積され、必要に応じて、銀電極12a,12bに供給することができる。
また、発電装置102の通水路112を通過して電解槽2内に流入した水のうち、分流路2bに分流された水流W2は、銀電極12a,12bの間を流速の小さい流れで通過して銀イオンが添加されて水流W2’として主流路2aの水流W1と合流する。水流W1に合流した水流W2’は、排水路5を流れて水洗小便器8に供給され、水洗小便器8内の殺菌や除菌に利用される。
In the above-described silver electrolyzed water spouting device 100 according to the fifth embodiment of the present invention, when the tap water W flows through the water passage 112 of the power generation device 102, the water wheel 116 is rotated by this water flow, and the rotational motion thereof is the power generation device. 102 is transmitted to the drive shaft 114. As a result, electric power can be generated by converting the kinetic energy of the tap water W into electric energy.
Furthermore, the electric power obtained by the power generation device 102 is temporarily stored in the power storage unit 110 of the control device 104, and can be supplied to the silver electrodes 12a and 12b as necessary.
Of the water that has passed through the water passage 112 of the power generation device 102 and has flowed into the electrolytic cell 2, the water flow W2 that is diverted to the diversion channel 2b passes between the silver electrodes 12a and 12b with a low flow velocity. Then, silver ions are added to join the water flow W1 of the main flow path 2a as the water flow W2 ′. The water flow W2 ′ joined to the water flow W1 flows through the drainage channel 5 and is supplied to the flush toilet 8 and is used for sterilization and sterilization in the flush toilet 8.

なお、上述した本発明の第5実施形態による銀電解水吐水装置100では、銀電極12a,12bに供給される電力について、発電装置102で得られた電力を制御装置104の蓄電部110に一旦蓄積した電力を使用する形態について説明したが、このような形態に限定されず、他の形態についても適用可能である。
例えば、本発明の第5実施形態の変形例による銀電解水吐水装置として、発電装置102において得られた電力を蓄電部110に蓄電することなく、銀電極12a,12bに対して必要に応じて直接供給するような構成にしてもよい。
In the silver electrolyzed water discharge device 100 according to the fifth embodiment of the present invention described above, the power obtained by the power generation device 102 is temporarily supplied to the power storage unit 110 of the control device 104 for the power supplied to the silver electrodes 12a and 12b. Although the form which uses the stored electric power was demonstrated, it is not limited to such a form, It can apply also to another form.
For example, as a silver electrolyzed water spouting device according to a modification of the fifth embodiment of the present invention, the power obtained in the power generation device 102 is not stored in the power storage unit 110, and the silver electrodes 12a and 12b are stored as necessary. You may make it the structure which supplies directly.

このように構成された本発明の第5実施形態の変形例による銀電解水吐水装置によれば、蓄電部110において、内蔵するキャパシタなどの特性に応じて、電圧を適宜変換し、電力を蓄積する必要がない。したがって、電圧の変換やキャパシタへの電荷の蓄積、あるいは蓄積された電荷の取り出しや電圧変換などの過程である程度の損失が生ずるのを防ぐことができる。
また、発電装置102により発電された電力を蓄電部110に蓄電することなく、銀電極12に必要に応じて直接供給するため、損失が抑制され、限られた発電力を効率的に銀イオンの生成に利用することができる。
さらに、銀イオンの生成効率を大幅に向上させることができ、発電装置102から得られた電力を有効利用して十分な濃度の銀イオンAgを含有させた洗浄水を生成することができる。
According to the silver electrolyzed water spouting device according to the modification of the fifth embodiment of the present invention configured as described above, in the power storage unit 110, the voltage is appropriately converted according to the characteristics of the built-in capacitor and the like, and the electric power is stored. There is no need to do. Therefore, it is possible to prevent a certain amount of loss from occurring in the process of voltage conversion, accumulation of charge in the capacitor, extraction of accumulated charge, voltage conversion, and the like.
In addition, since the power generated by the power generation device 102 is directly supplied to the silver electrode 12 as needed without storing it in the power storage unit 110, the loss is suppressed, and the limited power generation is efficiently performed by the silver ions. Can be used for generation.
Furthermore, the generation efficiency of silver ions can be greatly improved, and washing water containing a sufficient concentration of silver ions Ag + can be generated by effectively using the electric power obtained from the power generation apparatus 102.

つぎに、図19は、本発明の第6実施形態による銀電解水吐水装置を示す、図18と同様な断面斜視図である。ここで、図19において、図18に示す第5実施形態の部分と同一の部分については同一の符号を付し、それらの説明は省略する。
図19に示すように、本実施形態の銀電解水吐水装置120では、電解槽2の下流側に発電装置102が配置されている構成が第5実施形態の構成と異なっている。
このように構成された本発明の第6実施形態による銀電解水吐水装置120によれば、電解槽2の下流側に発電装置102が配置されているため、電解槽2内に流入する水道水Wの流れは、発電装置102の水車116の回転によって乱されることなく、一様となるため、電解槽2の設定の自由度を上げることができる。
Next, FIG. 19 is a cross-sectional perspective view similar to FIG. 18, showing a silver electrolyzed water spouting device according to a sixth embodiment of the present invention. Here, in FIG. 19, parts that are the same as the parts of the fifth embodiment shown in FIG. 18 are given the same reference numerals, and descriptions thereof will be omitted.
As shown in FIG. 19, in the silver electrolyzed water discharging apparatus 120 of this embodiment, the structure by which the electric power generating apparatus 102 is arrange | positioned in the downstream of the electrolytic vessel 2 differs from the structure of 5th Embodiment.
According to the silver electrolyzed water spouting device 120 according to the sixth embodiment of the present invention configured as described above, since the power generation device 102 is disposed on the downstream side of the electrolytic cell 2, the tap water flowing into the electrolytic cell 2 is provided. Since the flow of W becomes uniform without being disturbed by the rotation of the water wheel 116 of the power generation apparatus 102, the degree of freedom in setting the electrolytic cell 2 can be increased.

図20は、本発明の第7実施形態による銀電解水吐水装置を小便器洗浄装置に適用した場合における、図1と同様な全体構成図である。ここで、図20において、図1に示す第1実施形態の部分と同一の部分については同一の符号を付し、それらの説明は省略する。
図20に示すように、本実施形態の銀電解水吐水装置130では、制御装置132の制御部134において、第1実施形態の銀電解水吐水装置1における交流電力を直流電力に変換する電源部30の代わりの手段として電池136が使用されている。この電池136は、乾電池などの1次電池でもよいし、ニッケル・カドミウム電池や燃料電池などの2次電池であってもよい。
このように構成された本発明の第7実施形態による銀電解水吐水装置130によれば、電池136により、銀電極12や制御装置132の各回路要素26,28,32に対して電力が供給される。また、第1実施形態と同様に、水洗小便器8に供給する前の洗浄水の一部の水流W2を分流路52bの銀電極12a,12b間へ分流させることにより、銀イオンAgの生成効率を大幅に向上させることができ、所定量の銀イオンAgの生成に伴う銀電解による消費電力を抑えることができる。さらに、銀電極12a,12bと電池136の寿命を大幅に伸ばすことができ、銀電極12a,12bや電池136の交換等に関するメンテナンスの負担を減らすことができるため、経済性と利便性の高い銀電解水吐水装置を提供することができる。
FIG. 20 is an entire configuration diagram similar to FIG. 1 when the silver electrolyzed water discharge device according to the seventh embodiment of the present invention is applied to a urinal cleaning device. Here, in FIG. 20, the same parts as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 20, in the silver electrolyzed water spouting device 130 of this embodiment, the control unit 134 of the control device 132 converts the AC power in the silver electrolyzed water spouting device 1 of the first embodiment into DC power. A battery 136 is used as an alternative to 30. The battery 136 may be a primary battery such as a dry battery, or a secondary battery such as a nickel-cadmium battery or a fuel cell.
According to the silver electrolyzed water spouting device 130 according to the seventh embodiment of the present invention configured as described above, the battery 136 supplies power to the circuit elements 26, 28, and 32 of the silver electrode 12 and the control device 132. Is done. Similarly to the first embodiment, a part of the water flow W2 before being supplied to the flush urinal 8 is shunted between the silver electrodes 12a and 12b of the branch channel 52b, thereby generating silver ions Ag + . Efficiency can be improved significantly and the power consumption by silver electrolysis accompanying the production | generation of a predetermined amount of silver ion Ag + can be suppressed. Further, the life of the silver electrodes 12a and 12b and the battery 136 can be greatly extended, and the burden of maintenance related to replacement of the silver electrodes 12a and 12b and the battery 136 can be reduced. An electrolyzed water discharging apparatus can be provided.

つぎに、図21は、本発明の第8実施形態による銀電解水吐水装置を示す正面断面図である。また、図21においては、一例として、電解槽の各部分の寸法が示されている。
図21に示すように、本実施形態の銀電解水吐水装置140においては、電解槽142の上流側に発電装置144が配置されている点で上述した第5実施形態の構成と共通しているが、発電装置144から電解槽142にかけて流路が折り返えして形成されるように電解槽142と発電装置144が並置されている構成が、第5実施形態の構成と異なっている。ここで、図21において、第5実施形態の部分と同一の部分については、同一の符号を付し、それらの説明は省略する。
本実施形態の銀電解水吐水装置140の発電装置144内には、その下部を上流側の流路とし、発電装置144の上部を下流側の流路として垂直方向に延びるように通水路146が形成されている。この通水路146には発電装置144の駆動軸144を回転させる水車116が設けられている。
また、発電装置144及び電解槽142の上部には、発電装置144の通水路146の下流側と電解槽142の上流側に形成された給水路143の上流側とを連通させるように、ほぼ水平方向に延びる上部通水路148が形成されている。
さらに、電解槽142は、給水路143の内面152と排水路145の内面154よりも外側に突出する箱形凹部を形成している。
Next, FIG. 21 is a front sectional view showing a silver electrolyzed water discharging apparatus according to the eighth embodiment of the present invention. Moreover, in FIG. 21, the dimension of each part of an electrolytic cell is shown as an example.
As shown in FIG. 21, in the silver electrolyzed water discharging apparatus 140 of this embodiment, it is common with the structure of 5th Embodiment mentioned above by the point by which the electric power generating apparatus 144 is arrange | positioned in the upstream of the electrolytic vessel 142. FIG. However, the configuration in which the electrolytic cell 142 and the power generation device 144 are juxtaposed so that the flow path is folded back from the power generation device 144 to the electrolytic cell 142 is different from the configuration of the fifth embodiment. Here, in FIG. 21, the same parts as those of the fifth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
In the power generation device 144 of the silver electrolyzed water discharge device 140 of the present embodiment, a water passage 146 extends in the vertical direction with the lower portion serving as an upstream flow channel and the upper portion of the power generation device 144 serving as a downstream flow channel. Is formed. A water wheel 116 for rotating the drive shaft 144 of the power generation device 144 is provided in the water passage 146.
Further, the upper portions of the power generation device 144 and the electrolytic cell 142 are substantially horizontal so that the downstream side of the water passage 146 of the power generation device 144 and the upstream side of the water supply channel 143 formed on the upstream side of the electrolytic cell 142 are communicated. An upper water passage 148 extending in the direction is formed.
Furthermore, the electrolytic cell 142 forms a box-shaped recess that protrudes outward from the inner surface 152 of the water supply channel 143 and the inner surface 154 of the drainage channel 145.

電解槽142内の外側に突出する部分には、一組の銀電極12a,12bを保持する一組の電極保持部材14a,14bが、これらの下方に水抜き用の空間が形成されるように全体的に電解槽142内の上方側に配置され、電解槽142の内壁面155とほぼ平行に延びている。すなわち、両電極保持部材14a,14bの上端は、電解槽142の上端である拡大部158の近傍に位置し、両電極保持部材14a,14bの下端と電解槽142の下端である絞り部160との間は、両電極保持部材14a,14bの上端と電解槽142の拡大部158との間の距離よりも大きくなっている。
また、電解槽142内には、これら銀電極12a,12bを含む電極保持部材14a,14bが電解槽142内に配置されたことにより、主流路142aとこの主流路142aの下流から分岐した分流路142bの2つの流路が形成されている。
さらに、各電極保持部材14a,14bにおける銀電極12a,12bの位置は、全体的にやや上方側に位置しており、各銀電極12a,12bの下端から各電極保持部材14a,14bの下端までの長さは、各銀電極12a,12bの上端から各電極保持部材14a,14bの上端までの長さよりも大きくなっている。
さらに、内側電極保持部材14aの外面156aは、給水路143の内面152とほぼ面一となっており、分流路142bが給水路143に対して外側にずれるように形成されている。一方、外側電極保持部材14bの内側の面である表面14cは、排水路145の内面154とほぼ面一となっており、両電極保持部材14a,14bの間に形成される分流路142bのほぼ真下に排水路145の一部が位置するようになっている。
A pair of electrode holding members 14a and 14b for holding a pair of silver electrodes 12a and 12b are formed in a portion protruding outward in the electrolytic cell 142 so that a water draining space is formed below them. As a whole, it is disposed on the upper side in the electrolytic cell 142 and extends substantially parallel to the inner wall surface 155 of the electrolytic cell 142. That is, the upper ends of both electrode holding members 14 a and 14 b are positioned in the vicinity of the enlarged portion 158 that is the upper end of the electrolytic cell 142, and the lower end of both electrode holding members 14 a and 14 b and the throttle portion 160 that is the lower end of the electrolytic cell 142. The distance between the upper ends of the electrode holding members 14a and 14b and the enlarged portion 158 of the electrolytic cell 142 is larger.
Further, in the electrolytic cell 142, electrode holding members 14a and 14b including these silver electrodes 12a and 12b are arranged in the electrolytic cell 142, so that the main channel 142a and a branch channel branched from the downstream side of the main channel 142a are provided. Two flow paths 142b are formed.
Further, the positions of the silver electrodes 12a and 12b in the respective electrode holding members 14a and 14b are located slightly upward as a whole, from the lower ends of the respective silver electrodes 12a and 12b to the lower ends of the respective electrode holding members 14a and 14b. Is longer than the length from the upper end of each silver electrode 12a, 12b to the upper end of each electrode holding member 14a, 14b.
Furthermore, the outer surface 156 a of the inner electrode holding member 14 a is substantially flush with the inner surface 152 of the water supply channel 143, and the diversion channel 142 b is formed so as to be shifted outward with respect to the water supply channel 143. On the other hand, the surface 14c, which is the inner surface of the outer electrode holding member 14b, is substantially flush with the inner surface 154 of the drainage channel 145, and almost the shunt channel 142b formed between the two electrode holding members 14a, 14b. A part of the drainage channel 145 is located directly below.

つぎに、図21を参照して、一例として、電解槽142に関する代表的な部分の寸法を以下に説明する。
まず、電解槽142内の幅Lは32.5mmであり、電解槽142の拡大部158と絞り部160との間の距離Hは29.5mmである。
つぎに、各電極保持部材14a,14bの諸寸法については、全長hが16mmであり、幅lが2.3mmである。各銀電極12a,12bの諸寸法については、全長h1が10mmであり、幅l1が0.8mmである。また、銀電極12a,12bの間の距離d1は3mmである。
また、電極保持部材14a,14bの上端と電解槽142の拡大部158との間の距離h2は2mmであり、電極保持部材14a,14bの下端と電解槽142の絞り部160との間の距離h3は11.5mmである。
さらに、各銀電極12a,12bの上端から各電極保持部材14a,14bの上端までの長さh4は2mmであり、各銀電極12a,12bの下端から各電極保持部材14a,14bの下端までの長さh5は4mmである。
また、槽142の内壁面155と外側電極保持部材14bの外面156bとの間の距離d2は、6.2mmである。さらに、給水路143の直径D1と排水路145の直径D2はともに16mmであり、給水路143と排水路145の中心軸間距離d3は5mmである。また、給水路143の中心軸と電極保持部材14a,14bの中間との距離d4は11.5mmである。
Next, with reference to FIG. 21, the dimension of the typical part regarding the electrolytic cell 142 is demonstrated below as an example.
First, the width L in the electrolytic cell 142 is 32.5 mm, and the distance H between the enlarged portion 158 and the throttle unit 160 of the electrolytic cell 142 is 29.5 mm.
Next, regarding the dimensions of the electrode holding members 14a and 14b, the total length h is 16 mm, and the width l is 2.3 mm. Regarding the dimensions of the silver electrodes 12a and 12b, the total length h1 is 10 mm and the width l1 is 0.8 mm. The distance d1 between the silver electrodes 12a and 12b is 3 mm.
The distance h2 between the upper ends of the electrode holding members 14a and 14b and the enlarged portion 158 of the electrolytic cell 142 is 2 mm, and the distance between the lower ends of the electrode holding members 14a and 14b and the throttle portion 160 of the electrolytic cell 142 h3 is 11.5 mm.
Further, the length h4 from the upper end of each silver electrode 12a, 12b to the upper end of each electrode holding member 14a, 14b is 2 mm, and from the lower end of each silver electrode 12a, 12b to the lower end of each electrode holding member 14a, 14b. The length h5 is 4 mm.
The distance d2 between the inner wall surface 155 of the tank 142 and the outer surface 156b of the outer electrode holding member 14b is 6.2 mm. Further, the diameter D1 of the water supply channel 143 and the diameter D2 of the drainage channel 145 are both 16 mm, and the distance d3 between the central axes of the water supply channel 143 and the drainage channel 145 is 5 mm. The distance d4 between the central axis of the water supply path 143 and the middle of the electrode holding members 14a and 14b is 11.5 mm.

このように構成された本発明の第8実施形態による銀電解水吐水装置140においては、洗浄水として使用される水道水Wは、発電装置144の通水路146を流れ、上部通水路148を経て給水路143から電解槽142内に流入する。この電解槽142内に流入した水道水Wは、主流路142aを排水路145へと流れる流速の速い水流W1と、主流路142aの下流側で分流路142bへ分流し、銀電極12a,12bの間を非常に小さい流速で逆流する水流W2との分流される。この水流W2は、銀電極12a,12bの間を通過することにより、陽極側の銀電極12aから銀イオンAgが放出されて、銀イオンAgを含む水流W2’となる。この水流W2’は、分流路142bの下流側で再び主流路142aの水流W1に合流し、水流W1と共に排水路145を流れて水洗小便器8に供給される。In the silver electrolyzed water spouting device 140 according to the eighth embodiment of the present invention configured as described above, the tap water W used as cleaning water flows through the water passage 146 of the power generation device 144 and passes through the upper water passage 148. It flows into the electrolytic cell 142 from the water supply channel 143. The tap water W that has flowed into the electrolytic cell 142 is shunted to the fast flow water W1 that flows through the main channel 142a to the drainage channel 145 and to the shunt channel 142b on the downstream side of the main channel 142a, and the silver electrodes 12a and 12b. The water stream W2 that flows backward at a very low flow rate is split. This water flow W2 passes between the silver electrodes 12a and 12b, so that silver ions Ag + are released from the silver electrode 12a on the anode side to become a water flow W2 ′ containing silver ions Ag + . This water flow W2 ′ joins again with the water flow W1 of the main flow path 142a on the downstream side of the branch flow path 142b, flows along the drainage path 145 together with the water flow W1, and is supplied to the flush toilet 8.

上述した本発明の第8実施形態による銀電解水吐水装置140によれば、一組の銀電極12a,12bを保持する一組の電極保持部材14a,14bが、両電極保持部材14a,14bの下方に水抜き用の空間が形成されるように全体的に電解槽142内の上方側に配置されている。また、外側電極保持部材14bの内側の面である表面14cは、排水路145の内面154とほぼ面一となっており、両電極保持部材14a,14bの間に形成される分流路142bのほぼ真下に排水路145の一部が位置している。したがって、通水後に電解槽142内の下部に残水が溜まり始めた場合においても、両電極保持部材14a,14bの下方の残水は排水路145から排出されるため、両電極保持部材14a,14bの銀電極12a,12bが残水に浸かったまま溶けて消耗してしまう可能性を低減できる。  According to the above-described silver electrolyzed water discharge device 140 according to the eighth embodiment of the present invention, the pair of electrode holding members 14a and 14b that hold the pair of silver electrodes 12a and 12b is formed of the both electrode holding members 14a and 14b. The whole is disposed on the upper side in the electrolytic cell 142 so as to form a space for draining water below. Further, the surface 14c, which is the inner surface of the outer electrode holding member 14b, is substantially flush with the inner surface 154 of the drainage channel 145, and almost the shunt channel 142b formed between the electrode holding members 14a, 14b. A part of the drainage channel 145 is located directly below. Therefore, even when residual water begins to accumulate in the lower part of the electrolytic cell 142 after passing water, the residual water below both the electrode holding members 14a and 14b is discharged from the drainage channel 145. The possibility that the silver electrodes 12a and 12b of 14b are melted and consumed while immersed in the remaining water can be reduced.

なお、上述した本発明の第1〜第8実施形態による銀電解水吐水装置においては、一例として、銀電解水吐水装置の下流側に水洗小便器を設け、水洗小便器の洗浄装置に適用した形態について説明したが、このような形態に限定されず、水洗大便器の洗浄装置のような他の形態についても適用可能であり、上述した実施形態と同様な作用効果が得られる。
また、上述した実施形態の銀電解水吐水装置を水洗大便器の洗浄装置として適用する場合、大便器としては、フラッシュバルブ式の大便器を使用してもよいし、ロータンク式の大便器を使用してもよい。
さらに、上述した実施形態の銀電解水吐水装置においては、便器の洗浄装置以外にも、例えば、手洗器や台所用水洗、浴室水洗などに利用される洗浄水の吐水装置に適用した場合でも、銀イオン水による殺菌効果を十分に発揮することができる。
In addition, in the silver electrolyzed water discharging apparatus by 1st-8th embodiment of this invention mentioned above, the flush toilet was provided in the downstream of the silver electrolyzed water discharging apparatus, and it applied to the washing apparatus of the flush toilet Although the embodiment has been described, the present invention is not limited to such an embodiment, and can be applied to other embodiments such as a flush toilet cleaning device, and the same effects as the above-described embodiment can be obtained.
Moreover, when applying the silver electrolyzed water discharging apparatus of embodiment mentioned above as a washing | cleaning apparatus of a flush toilet bowl, as a toilet bowl, a flush valve type toilet bowl may be used, or a low tank type toilet bowl is used. May be.
Furthermore, in the silver electrolyzed water spouting device of the above-described embodiment, in addition to the toilet bowl cleaning device, for example, when applied to a flushing water spouting device used for a hand basin, a kitchen rinsing, a bathroom rinsing, etc. The sterilizing effect by silver ion water can be sufficiently exhibited.

[図1]本発明の第1実施形態による銀電解水吐水装置を小便器洗浄装置に適用した場合における全体構成図である。
[図2]本発明の第1実施形態による銀電解水吐水装置を示す正面断面斜視図である。
[図3]図2に示す本発明の第1実施形態による銀電解水吐水装置のC−C断面斜視図である。
[図4]本発明の第1実施形態による銀電解水吐水装置の電極保持部材を示す斜視図である。
[図5]図4に示す本発明の第1実施形態による銀電解水吐水装置の電極保持部材のD−D断面図である。
[図6]図4に示す本発明の第1実施形態による銀電解水吐水装置の電極保持部材のE−E断面図である。
[図7]図1に示す電流供給部28の詳細な構成を示す図である。
[図8]図8(a)は、本発明の第1実施形態による銀電解水吐水装置1の電解槽2について、銀電極12を含む電極保持部材14を電解槽2内に配置する前の状態における水の流れを示す概略断面図であり、図8(b)は、本発明の第1実施形態による銀電解水吐水装置1の電解槽2について、銀電極12を含む電極保持部材14を電解槽2内に配置した状態における水の流れを示す概略断面図である。
[図9]銀電極間において銀イオンAgが生成されている状態を示す概略図である。
[図10]本発明の第1実施形態の変形例による銀電解水吐水装置の銀電極を含む電極保持部材を示す断面図である。
[図11]図11(a)は、本発明の第2実施形態による銀電解水吐水装置の電解槽について、銀電極を含む電極保持部材を配置する前の状態を示す、図8(a)と同様な概略断面図であり、図11(b)は、本発明の第2実施形態による銀電解水吐水装置の電解槽について、銀電極を含む電極保持部材を配置した状態を示す、図8(b)と同様な概略断面図である。
[図12]本発明の第2実施形態の変形例による銀電解水吐水装置の電解槽を示す、図11(b)と同様な概略断面図である。
[図13]図13(a)は、本発明の第3実施形態による銀電解水吐水装置の電解槽について、銀電極を含む電極保持部材を配置する前の状態を示す、図8(a)及び図11(a)と同様な概略断面図であり、図13(b)は、本発明の第3実施形態による銀電解水吐水装置の電解槽について、銀電極を含む電極保持部材を配置した状態を示す、図8(b)及び図11(b)と同様な概略断面図である。
[図14]本発明の第3実施形態の変形例による銀電解水吐水装置の電解槽を示す、図13(b)と同様な概略断面図である。
[図15]本発明の第4実施形態による銀電解水吐水装置の電解槽を示す、図3と同様な断面斜視図である。
[図16]本発明の第5実施形態による銀電解水吐水装置を小便器洗浄装置に適用した場合における、図1と同様な全体構成図である。
[図17]本発明の第5実施形態による銀電解水吐水装置を示す斜視図である。
[図18]図17に示す本発明の第5実施形態による銀電解水吐水装置のF−F断面斜視図である。
[図19]本発明の第6実施形態による銀電解水吐水装置を示す、図18と同様な断面斜視図である。
[図20]本発明の第7実施形態による銀電解水吐水装置を小便器洗浄装置に適用した場合における、図1と同様な全体構成図である。
[図21]本発明の第8実施形態による銀電解水吐水装置を示す正面断面図である。
FIG. 1 is an overall configuration diagram when a silver electrolyzed water discharge device according to a first embodiment of the present invention is applied to a urinal cleaning device.
FIG. 2 is a front sectional perspective view showing the silver electrolyzed water discharge device according to the first embodiment of the present invention.
3 is a C-C cross-sectional perspective view of the silver electrolyzed water spouting device according to the first embodiment of the present invention shown in FIG.
FIG. 4 is a perspective view showing an electrode holding member of the silver electrolyzed water discharger according to the first embodiment of the present invention.
FIG. 5 is a cross-sectional view taken along the line DD of the electrode holding member of the silver electrolyzed water discharger according to the first embodiment of the present invention shown in FIG.
6 is an EE cross-sectional view of the electrode holding member of the silver electrolyzed water spouting device according to the first embodiment of the present invention shown in FIG.
FIG. 7 is a diagram showing a detailed configuration of current supply unit 28 shown in FIG.
[FIG. 8] FIG. 8 (a) shows the electrolytic cell 2 of the silver electrolyzed water discharge device 1 according to the first embodiment of the present invention before the electrode holding member 14 including the silver electrode 12 is arranged in the electrolytic cell 2. It is a schematic sectional drawing which shows the flow of the water in a state, FIG.8 (b) shows the electrode holding member 14 containing the silver electrode 12 about the electrolytic cell 2 of the silver electrolyzed water discharging apparatus 1 by 1st Embodiment of this invention. 3 is a schematic cross-sectional view showing the flow of water in a state of being disposed in the electrolytic cell 2. FIG.
FIG. 9 is a schematic view showing a state where silver ions Ag + are generated between silver electrodes.
FIG. 10 is a cross-sectional view showing an electrode holding member including a silver electrode of a silver electrolyzed water discharger according to a modification of the first embodiment of the present invention.
[FIG. 11] FIG. 11 (a) shows a state before an electrode holding member including a silver electrode is arranged in an electrolytic cell of a silver electrolyzed water discharging apparatus according to a second embodiment of the present invention. FIG. 11 (b) shows a state in which an electrode holding member including a silver electrode is arranged in the electrolytic cell of the silver electrolyzed water discharger according to the second embodiment of the present invention, FIG. It is a schematic sectional drawing similar to (b).
FIG. 12 is a schematic cross-sectional view similar to FIG. 11B, showing an electrolytic cell of a silver electrolyzed water spouting device according to a modification of the second embodiment of the present invention.
[FIG. 13] FIG. 13 (a) shows a state before an electrode holding member including a silver electrode is arranged in an electrolytic cell of a silver electrolyzed water discharging apparatus according to a third embodiment of the present invention. FIG. 13B is a schematic cross-sectional view similar to FIG. 11A, and FIG. 13B shows an electrode holding member including a silver electrode in the electrolytic cell of the silver electrolyzed water discharger according to the third embodiment of the present invention. It is a schematic sectional drawing similar to FIG.8 (b) and FIG.11 (b) which shows a state.
FIG. 14 is a schematic cross-sectional view similar to FIG. 13B, showing an electrolytic cell of a silver electrolyzed water spouting device according to a modification of the third embodiment of the present invention.
FIG. 15 is a cross-sectional perspective view similar to FIG. 3, showing an electrolytic cell of a silver electrolyzed water discharger according to a fourth embodiment of the present invention.
FIG. 16 is an overall configuration diagram similar to FIG. 1 when a silver electrolyzed water discharge device according to a fifth embodiment of the present invention is applied to a urinal cleaning device.
FIG. 17 is a perspective view showing a silver electrolyzed water discharger according to a fifth embodiment of the present invention.
FIG. 18 is a FF cross-sectional perspective view of the silver electrolyzed water spouting device according to the fifth embodiment of the present invention shown in FIG.
FIG. 19 is a cross-sectional perspective view similar to FIG. 18, showing a silver electrolyzed water discharger according to a sixth embodiment of the present invention.
FIG. 20 is an overall configuration diagram similar to FIG. 1 when a silver electrolyzed water discharge device according to a seventh embodiment of the present invention is applied to a urinal cleaning device.
FIG. 21 is a front sectional view showing a silver electrolyzed water discharge device according to an eighth embodiment of the present invention.

符号の説明Explanation of symbols

1,50,50a,70,70a,90,100,120,130,140 銀電解水吐水装置
2,52,72,92,142 電解槽
2a,52a,72a,92a,142a 主流路
2b,52b,72b,92b,142b 分流路
3,53,143 給水路
4,104,132 制御装置
5,75,95,145 排水路
6 開閉弁
8 水洗小便器
12,12a,12b 銀電極
13 接続端子
14,14a,14b,40 電極保持部材
16,54,80 電解槽の側壁
18,58,158 拡大部
20,78,160 絞り部
22,22a,22b,22c,22d,42a,42b 助走区間
24,106,134 制御部
26 開閉弁電磁駆動部
28 電流供給部
30 電源部
32 センサ
34 電気伝導度検出回路
36 定電流回路
38 極性反転回
55 電解槽の出口
73 電解槽の入口
76 排水路の内壁
102,144 発電装置
108 整流部
110 蓄電部
112 146 通水路
114 駆動軸
116 水車
136 電池
148 上部通水路
152 給水路の内面
154 排水路の内面
155 電解槽の内壁面
156 内側電極保持部材の外面
BL 境界層
S1,S1’,S1” 主流路領域
S2,S2’,S2” 主流路外領域
1, 50, 50a, 70, 70a, 90, 100, 120, 130, 140 Silver electrolyzed water discharge device 2, 52, 72, 92, 142 Electrolyzer 2a, 52a, 72a, 92a, 142a Main flow path 2b, 52b, 72b, 92b, 142b Distribution channel 3, 53, 143 Water supply channel 4, 104, 132 Control device 5, 75, 95, 145 Drain channel 6 On-off valve 8 Flush urinal 12, 12a, 12b Silver electrode 13 Connection terminal 14, 14a , 14b, 40 Electrode holding member 16, 54, 80 Electrolyzer side wall 18, 58, 158 Enlarged part 20, 78, 160 Restricted part 22, 22a, 22b, 22c, 22d, 42a, 42b Running section 24, 106, 134 Control unit 26 On-off valve electromagnetic drive unit 28 Current supply unit 30 Power supply unit 32 Sensor 34 Electrical conductivity detection circuit 36 Constant current circuit 38 Inverting circuit 55 Electrolytic cell outlet 73 Electrolytic cell inlet 76 Drainage channel inner walls 102, 144 Power generation device 108 Rectifier 110 Power storage unit 112 146 Water channel 114 Drive shaft 116 Water wheel 136 Battery 148 Upper water channel 152 Inner surface 154 of the water channel Drainage channel inner surface 155 Electrolytic cell inner wall surface 156 Inner electrode holding member outer surface BL Boundary layer S1, S1 ', S1 "Main channel region S2, S2', S2" Main channel outer region

Claims (11)

銀イオンを含む洗浄水を吐水する銀電解水吐水装置であって、
洗浄水が流入する電解槽と、
この電解槽内に形成され上記洗浄水が流れる主流路と、
上記電解槽内に形成され上記洗浄水が上記主流路から分流されこの分流後に上記主流路に戻るように流れる分流路と、
少なくとも陽極の電極が銀イオンを生成する銀電極である一組の電極であって、これらの電極の間に上記洗浄水が流れて上記分流路を形成するように配置された上記電極と、
上記電極に電力を供給する給電手段と、
を有することを特徴とする銀電解水吐水装置。
A silver electrolyzed water discharge device for discharging cleaning water containing silver ions,
An electrolytic cell into which wash water flows;
A main channel formed in the electrolytic cell and through which the washing water flows;
A diversion channel formed in the electrolytic cell, and the wash water is diverted from the main channel and flows so as to return to the main channel after the diversion,
A pair of electrodes in which at least the electrode of the anode is a silver electrode that generates silver ions, the electrode disposed so that the washing water flows between the electrodes to form the branch channel;
Power supply means for supplying power to the electrode;
The silver electrolyzed water discharging apparatus characterized by having.
更に、上記電解槽の上流側に形成された給水路と、下流側に形成された排水路を有し、上記電解槽が上記給水路と排水路よりも外側に突出する凹部を備え、この凹部に上記電極が配置されて上記分流路が形成されている請求項1記載の銀電解水吐水装置。Furthermore, it has a water supply channel formed on the upstream side of the electrolytic cell, and a drainage channel formed on the downstream side, and the electrolytic cell includes a recess protruding outward from the water supply channel and the drainage channel. The silver electrolyzed water spouting device according to claim 1, wherein the electrode is disposed on the surface to form the branch channel. 上記電解槽は、上記主流路が縦方向となるように配置され、上記電極は、上記凹部の上記給水路の近傍に配置されている請求項2記載の銀電解水吐水装置。The silver electrolyzed water discharging apparatus according to claim 2, wherein the electrolytic cell is disposed such that the main flow path is in a vertical direction, and the electrode is disposed in the vicinity of the water supply channel of the recess. 更に、上記電解槽の上流側に形成された給水路を有し、上記電解槽は、上記主流路が縦方向となるように配置され、上記電解槽の側壁が上記給水路よりも外側に突出する拡大部を備え、この拡大部の上記給水路側に上記電極が配置され上記分流路が形成されている請求項1記載の銀電解水吐水装置。Furthermore, it has a water supply channel formed on the upstream side of the electrolytic cell, and the electrolytic cell is arranged so that the main flow channel is in the vertical direction, and the side wall of the electrolytic cell protrudes outward from the water supply channel. The silver electrolyzed water spouting device according to claim 1, further comprising: an enlarged portion, wherein the electrode is disposed on the side of the water supply channel of the enlarged portion to form the diversion channel. 更に、上記電解槽の下流側に形成された排水路を有し、上記電解槽は、上記主流路が縦方向となるように配置され、上記電解槽の側壁が上記排水路よりも外側に突出する絞り部を備え、この絞り部の上記排水路側に上記電極が配置されて上記分流路が形成されている請求項1記載の銀電解水吐水装置。Furthermore, it has a drainage channel formed on the downstream side of the electrolytic cell, the electrolytic cell is arranged so that the main channel is in the vertical direction, and the side wall of the electrolytic cell protrudes outside the drainage channel. The silver electrolyzed water spouting device according to claim 1, further comprising: a throttle portion configured to be disposed, wherein the electrode is disposed on the drainage channel side of the throttle portion to form the branch passage. 上記電極は、電極保持部材によって保持され、この電極保持部材の上記電極を保持している側の表面は、その電極の表面と面一となっている請求項1乃至5の何れか1項記載の銀電解水吐水装置。The electrode is held by an electrode holding member, and the surface of the electrode holding member on the side holding the electrode is flush with the surface of the electrode. Silver electrolyzed water discharge device. 上記電解槽の上記凹部は、ほぼ四角形状に突出して延びる側壁により形成され、上記電極は、平板状に形成され、これらの電極が上記側壁とほぼ平行に配置されている請求項2記載の銀電解水吐水装置。3. The silver according to claim 2, wherein the concave portion of the electrolytic cell is formed by a side wall projecting and extending in a substantially square shape, the electrode is formed in a flat plate shape, and the electrodes are arranged substantially parallel to the side wall. Electrolytic water discharge device. 上記給電手段は、上記電解槽に流入又は流出する洗浄水により発電する発電手段を有する請求項1乃至7の何れか1項記載の銀電解水吐水装置。The silver electrolyzed water spouting device according to any one of claims 1 to 7, wherein the power supply unit includes a power generation unit configured to generate electric power using washing water flowing into or out of the electrolytic cell. 上記給電手段は、更に、上記発電手段により発電された電力を蓄積する蓄電手段を有する請求項8記載の銀電解水吐水装置。The silver electrolyzed water spouting device according to claim 8, wherein the power supply unit further includes a power storage unit that stores electric power generated by the power generation unit. 上記電極保持部材は、その流入側端部が上記電極の間に流入する水流を整流化するように丸形状に形成されている請求項6記載の銀電解水吐水装置。The silver electrolyzed water spouting device according to claim 6, wherein the electrode holding member is formed in a round shape so that an inflow side end thereof rectifies a water flow flowing between the electrodes. 上記電極保持部材は、これらの下方に水抜き用の空間が形成されるように上記電解槽内の上方側に配置されている請求項6記載の銀電解水吐水装置。The silver electrolyzed water spouting device according to claim 6, wherein the electrode holding member is disposed on an upper side in the electrolytic cell so that a water draining space is formed below the electrode holding member.
JP2006516888A 2004-03-30 2005-03-28 Silver electrolyzed water discharge device Expired - Fee Related JP3823323B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004100335 2004-03-30
JP2004100335 2004-03-30
PCT/JP2005/005683 WO2005095281A1 (en) 2004-03-30 2005-03-28 Silver electrolytic water discharger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005302659A Division JP4827000B2 (en) 2005-10-18 2005-10-18 Silver electrolyzed water discharge device

Publications (2)

Publication Number Publication Date
JP3823323B2 true JP3823323B2 (en) 2006-09-20
JPWO2005095281A1 JPWO2005095281A1 (en) 2007-08-16

Family

ID=35063666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006516888A Expired - Fee Related JP3823323B2 (en) 2004-03-30 2005-03-28 Silver electrolyzed water discharge device

Country Status (2)

Country Link
JP (1) JP3823323B2 (en)
WO (1) WO2005095281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330844A (en) * 2011-05-01 2012-01-25 张圣坤 Silver ion water tap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125687A (en) * 2007-11-26 2009-06-11 Toto Ltd Apparatus for producing sterile water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309971A (en) * 1999-04-26 2000-11-07 Toto Ltd Sterilizing device for toilet stool
JP2001314861A (en) * 2000-03-02 2001-11-13 Toto Ltd Antimicrobial water generator, metal ion water generator, and floor cleaning method
JP2001252666A (en) * 2000-03-10 2001-09-18 Toto Ltd Continuous electrolytic cell and closet stool sterilizing device
JP4671160B2 (en) * 2001-03-05 2011-04-13 Toto株式会社 Sterilization water generator
JP2002285594A (en) * 2001-03-23 2002-10-03 Toto Ltd Waste water feeding device
JP4003757B2 (en) * 2004-04-09 2007-11-07 株式会社島津製作所 Double gear pump or motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330844A (en) * 2011-05-01 2012-01-25 张圣坤 Silver ion water tap

Also Published As

Publication number Publication date
WO2005095281A1 (en) 2005-10-13
JPWO2005095281A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP2005299092A (en) Toilet bowl flushing device
TWI655341B (en) Urinal
JP3823323B2 (en) Silver electrolyzed water discharge device
JP4525137B2 (en) Urinal washing device
JP2010121276A (en) Urinal system
JP4827000B2 (en) Silver electrolyzed water discharge device
JP4556569B2 (en) Generator and water discharge control device
JP3912412B2 (en) Silver electrolyzed water discharge device
JP2005232683A (en) Toilet bowl flushing water generating device
JP2001232369A (en) Toilet stool sterilizer and sterilizing water production device
JP4345104B2 (en) Toilet wash water generator
JP2005290795A (en) Apparatus for forming flushing water for toilet bowl
JP2000027262A5 (en)
JP4356108B2 (en) Toilet wash water generator
JP4321355B2 (en) Drain trap
JP4424483B2 (en) Toilet bowl cleaning device
JP6684468B2 (en) Drain trap cleaning system
JP4305130B2 (en) Household plumbing equipment
JP6758601B2 (en) Electrolyzed water spouting device
JP2016035196A (en) Method of supplying bactericide liquid to water circulation equipment and flush toilet
JP2017179812A (en) urinal
JP2000309971A (en) Sterilizing device for toilet stool
JP2001234578A (en) Toilet stool washing system
JPH09243588A (en) Ph sensor and ionic water forming device
JP2001252666A (en) Continuous electrolytic cell and closet stool sterilizing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140707

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees