JP3823177B2 - Method for producing cubic silicon carbide single crystal thin film - Google Patents

Method for producing cubic silicon carbide single crystal thin film Download PDF

Info

Publication number
JP3823177B2
JP3823177B2 JP02798098A JP2798098A JP3823177B2 JP 3823177 B2 JP3823177 B2 JP 3823177B2 JP 02798098 A JP02798098 A JP 02798098A JP 2798098 A JP2798098 A JP 2798098A JP 3823177 B2 JP3823177 B2 JP 3823177B2
Authority
JP
Japan
Prior art keywords
substrate
sic
single crystal
thin film
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02798098A
Other languages
Japanese (ja)
Other versions
JPH11228297A (en
Inventor
一聡 児島
正人 吉川
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP02798098A priority Critical patent/JP3823177B2/en
Publication of JPH11228297A publication Critical patent/JPH11228297A/en
Application granted granted Critical
Publication of JP3823177B2 publication Critical patent/JP3823177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は3C−SiCの結晶性の向上に係り、高品質の立方晶炭化珪素(3C−SiC)単結晶薄膜を得んとするものである。
【0002】
【従来の技術】
従来のSi基板上への3C−SiCのヘテロエピタキシヤル成長では、1300℃〜1400℃の高温で炭素源のみを供給する事によりSi基板表面を炭化し、薄いSiC層を形成させる。その後、炭素及び珪素源からなるソースガスを供給することにより3C−SiCのエピタキシヤル成長を行う。
【0003】
【発明が解決しようとする課題】
Si基板のSiと3C−SiCとの間には約20%の格子定数の差が存在し、それが結晶の歪み、転位、格子欠陥等の発生原因となり、3C−SiCの結晶性、電気特性、光学特性等の物性を著しく低下させ、エピタキシヤル膜の品質を悪化させる。本発明は、Siと3C−SiCの格子定数の違いによる3C−SiC単結晶薄膜の品質の低下を改善するためになされたものである。
【0004】
【課題を解決するための手段】
本発明は、基板とエピタキシヤル膜との界面をVan der Waals力で弱く結合させることにより、格子定数の違いによる結晶の歪み、転位、格子欠陥等の発生を抑制し、3C−SiC単結晶薄膜の品質を改善するものである。
【0005】
即ち、本発明の立方晶型炭化珪素(3C−SiC)単結晶薄膜の作製方法は、
(1) Si基板表面に存在する活性なダングリングボンドを不活性化してSi基板と3C−SiCの成長エピタキシヤル膜との界面をVan der Waals力で結合させるようにするために、その表面を有機溶剤処理、化学的エッチング処理、及び超純水中での煮沸処理することにより、上記ダングリングボンドを水素原子で終端させてSi基板表面を不活性化させ、
(2) この不活性処理されたSi基板をCVD装置の反応炉中に搬入し、基板温度が、その終端水素原子の脱離温度の600℃以下で、ソースガスを反応炉内へ導入して立方晶炭化珪素(3C−SiC)単結晶薄膜の作製を開始することからなるものである。
【0006】
【発明の実施の形態】
(ダングリングボンドについて)
SiやGaAs等の共有結合物質は、原子は、最接近の原子と互いに最外殻電子を共有する事で結晶し、結晶を構成するが、この電子を共有した結合手をボンドといい、理想的な結晶の場合、結晶中の原子は、その最接近の原子がすべて存在するために、最外殻の電子はすべて互いに共有され、ボンドを構成している。
【0007】
しかし、実際の結晶の場合、格子欠陥が存在するので、その部分では、最接近の原子がすべて存在せず、そのために原子の最外殻電子がすべて共有されなくなる。この共有されなくなった電子の結合手がダングリングボンドといわれる。
【0008】
結晶表面では、原子は、片側が空間に接しているために、結晶中の原子に比べて最接近の原子が少なく、最外殻電子がすべて共有されないために、必ずダングリングボンドが存在する。
【0009】
結晶成長においては、結晶表面に供給された原子が、このダングリングボンドの電子を共有することで、互いに結合し、結晶が成長する。
【0010】
(本発明におけるダングリングボンドについて)
Si基板の表面に3C−SiCのような異なる物質を成長させる場合にも、Si基板表面のダングリングボンドの電子がC原子によって共有されることによりSiCの結晶成長が始まる。しかし、Siの表面にSiが結合して電子を共有する場合と、Cが結合して電子を共有する場合とは、その結合距離が異なる。その結果、このような状態で原子が結合しようとすると、歪みが入り、それが転位や格子欠陥の原因となって結晶性を悪化させることになる。これは、即ち、Si基板表面で、CがSiのダングリングボンドと結合しようとすることによるものである。
【0011】
そこで、CがSi基板表面のSiのダングリングボンドと結合しないように、予め、水素原子で終端することにより、歪みが入りにくくなるために、3C−SiCの結晶性が改善される。
【0012】
即ち、本発明においては、基板とエピタキシヤル膜との界面をVan derWaals力で結合させるには、基板表面を不活性な状態にしなければならない。Si基板では、その表面に活性なダングリングボンドが存在するので、基板を超純水中で煮沸することによりダングリングボンドを水素原子で終端し、Si基板表面を不活性化させる。この基板を用いて、終端水素上に3C−SiCをエピタキシヤル成長させる。
【0013】
このとき、Si基板の水素終端を維持した状態で成長を行うために、ソースガスの反応炉内への導入開始温度を水素の脱離温度以下とする。
【0014】
(本発明におけるソースガスについて)
本発明のソースガスとしては、プロパン、シランが用いられる。この他にアセチレン、テトラメチルシラン、モノメチルシラン、ジメチルシラン等も用いられる。
【0015】
【実施例】
Si基板は面方位(111)の基板を使用した。この基板の水素終端は、次のように行った。Si基板はアセトン、エタノールの順に2分間超音波洗浄を行うことにより脱脂を行った。次に、この基板を濃度1%のHF水溶液中で1分間エッチングを行い、表面酸化膜を除去した。超純水でリンス後、沸騰超純水中で2分間煮沸することにより、水素終端を行った。
【0016】
この基板をCVD装置に搬入後、図1に示す様な温度プログラムで結晶成長を行った。具体的には、CVD装置の反応炉中に水素ガスを導入しながら、Si基板を20分間で500℃まで加熱し、その状態を10分間維持した。その後、水素ガスに加えてソースガスであるプロパンガス及びシランガスを導入しながら、Si基板を1060℃まで急速に加熱し、基板の表面に立方晶炭化珪素(3C−SiC)単結晶薄膜を作製した。
【0017】
即ち、終端水素は、約600℃で脱離するため、図1に示すようにソースガスは基板温度500℃で導入を開始し、その直後に基板温度を1060℃まで急速昇温することで成長を行った。本実施例ではソースガスとしてプロパンとシランを使用し、キャリアーガスとして水素を使用した。成長条件は次の通りであった。
【0018】
【表1】

Figure 0003823177
【0019】
この条件で作製した3C−SiCのX線回折測定の結果を図2に示す。図2から明らかなように、上記の条件で得られた3C−SiCは面方位(111)の単結晶である。なお、上記の実施例のうち、成長条件については本発明で使用したCVD装置における最適条件であり、CVD装置自体に依存するものである。
【0020】
【発明の効果】
この単結晶の結晶性及び歪みについて、膜厚が同程度の従来技術で作製した面方位(001)、(111)の3C−SiC単結晶との比較を行った。比較を容易にするために厚さ約0.5μmの薄い3C−SiCを用いた。結晶性についてはX線回折ピークの半値幅、歪みについては、そのピーク位置から歪みの大きさを見積もった。ここで用いたピークは、面方位(111)については(111)面の回折ピーク、面方位(001)については(002)面の回折ピークである。その結果を次に示す。
【0021】
【表2】
Figure 0003823177
【0022】
この表から明らかなように、本発明で使用した方法を用いると、従来技術で作製した3C−SiCに比べ、半値幅、歪み共に減少している。このことから、本発明で使用した方法を用いることにより、従来よりも結晶性を向上させた良質の3C−SiCを作製することができる。
【図面の簡単な説明】
【図1】 CVD装置を使用して本発明の方法により3C−SiCを成長させる工程を示す図である。
【図2】 本発明の方法により作製した3C−SiCのX線回折測定の結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvement of crystallinity of 3C—SiC, and is intended to obtain a high-quality cubic silicon carbide (3C—SiC) single crystal thin film.
[0002]
[Prior art]
In the conventional heteroepitaxial growth of 3C—SiC on a Si substrate, the surface of the Si substrate is carbonized by supplying only a carbon source at a high temperature of 1300 ° C. to 1400 ° C. to form a thin SiC layer. Thereafter, epitaxial growth of 3C—SiC is performed by supplying a source gas composed of carbon and silicon sources.
[0003]
[Problems to be solved by the invention]
There is a lattice constant difference of about 20% between Si and 3C-SiC on the Si substrate, which causes crystal distortion, dislocation, lattice defects, etc., and the crystallinity and electrical properties of 3C-SiC. , Remarkably deteriorates the physical properties such as optical characteristics, and deteriorates the quality of the epitaxial film. The present invention has been made to improve the deterioration of the quality of a 3C-SiC single crystal thin film due to the difference in lattice constant between Si and 3C-SiC.
[0004]
[Means for Solving the Problems]
In the present invention, the interface between the substrate and the epitaxial film is weakly bonded by the Van der Waals force, thereby suppressing the occurrence of crystal distortion, dislocation, lattice defect, etc. due to the difference in lattice constant, and the 3C-SiC single crystal thin film Is to improve the quality.
[0005]
That is, the method for producing a cubic silicon carbide (3C—SiC) single crystal thin film of the present invention is as follows.
(1) In order to inactivate active dangling bonds existing on the surface of the Si substrate and to bond the interface between the Si substrate and the growth epitaxial film of 3C-SiC with Van der Waals force, By performing boiling treatment in organic solvent treatment, chemical etching treatment, and ultrapure water, the dangling bonds are terminated with hydrogen atoms to inactivate the Si substrate surface,
(2) This inactivated Si substrate is carried into the reactor of the CVD apparatus, the substrate temperature is 600 ° C. or less of the desorption temperature of the terminal hydrogen atom, and the source gas is introduced into the reactor. This is to start production of a cubic silicon carbide (3C—SiC) single crystal thin film.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
(About dangling bonds)
Covalently bonding substances such as Si and GaAs crystallize by sharing the outermost electrons with the closest atoms, and the crystal forms a crystal. The bond that shares these electrons is called a bond. In the case of a typical crystal, the atoms in the crystal all have the closest atoms, so all the electrons in the outermost shell are shared with each other to form a bond.
[0007]
However, in the case of an actual crystal, since there are lattice defects, all the atoms that are closest to each other do not exist in that portion, and therefore, all the outermost electrons of the atoms are not shared. This bond of electrons that are no longer shared is called a dangling bond.
[0008]
On the crystal surface, since one side is in contact with the space, there are few closest atoms compared to atoms in the crystal, and all outermost electrons are not shared, so there is always a dangling bond.
[0009]
In crystal growth, atoms supplied to the crystal surface share the dangling bond electrons to bond with each other to grow a crystal.
[0010]
(Dangling bond in the present invention)
Even when different materials such as 3C-SiC are grown on the surface of the Si substrate, the crystal growth of SiC starts when the electrons of the dangling bonds on the surface of the Si substrate are shared by C atoms. However, the bonding distance differs between the case where Si is bonded to the surface of Si to share electrons and the case where C is bonded to share electrons. As a result, when atoms try to bond in such a state, distortion occurs, which causes dislocations and lattice defects and deteriorates crystallinity. This is due to the fact that C tries to bond with Si dangling bonds on the Si substrate surface.
[0011]
Therefore, since the C is not bonded to the Si dangling bond on the surface of the Si substrate, it is difficult to be strained by terminating in advance with hydrogen atoms, so that the crystallinity of 3C—SiC is improved.
[0012]
That is, in the present invention, in order to bond the interface between the substrate and the epitaxial film with the Van der Waals force, the substrate surface must be in an inactive state. Since an active dangling bond exists on the surface of the Si substrate, the dangling bond is terminated with hydrogen atoms by boiling the substrate in ultrapure water, thereby inactivating the surface of the Si substrate. Using this substrate, 3C—SiC is epitaxially grown on the terminal hydrogen.
[0013]
At this time, in order to perform growth while maintaining the hydrogen termination of the Si substrate, the introduction start temperature of the source gas into the reaction furnace is set to be equal to or lower than the desorption temperature of hydrogen.
[0014]
(About the source gas in the present invention)
Propane and silane are used as the source gas of the present invention. In addition, acetylene, tetramethylsilane, monomethylsilane, dimethylsilane and the like are also used.
[0015]
【Example】
As the Si substrate, a substrate having a plane orientation (111) was used. The hydrogen termination of this substrate was performed as follows. The Si substrate was degreased by ultrasonic cleaning for 2 minutes in the order of acetone and ethanol. Next, this substrate was etched in an aqueous HF solution having a concentration of 1% for 1 minute to remove the surface oxide film. After rinsing with ultrapure water, hydrogen termination was performed by boiling in boiling ultrapure water for 2 minutes.
[0016]
After carrying this substrate into the CVD apparatus, crystal growth was performed with a temperature program as shown in FIG. Specifically, the Si substrate was heated to 500 ° C. in 20 minutes while introducing hydrogen gas into the reaction furnace of the CVD apparatus, and the state was maintained for 10 minutes. Thereafter, while introducing propane gas and silane gas which are source gases in addition to hydrogen gas, the Si substrate was rapidly heated to 1060 ° C. to produce a cubic silicon carbide (3C—SiC) single crystal thin film on the surface of the substrate. .
[0017]
That is, since terminal hydrogen is desorbed at about 600 ° C., the source gas starts to be introduced at a substrate temperature of 500 ° C. as shown in FIG. 1, and immediately after that, the substrate temperature is rapidly raised to 1060 ° C. Went. In this example, propane and silane were used as the source gas, and hydrogen was used as the carrier gas. The growth conditions were as follows.
[0018]
[Table 1]
Figure 0003823177
[0019]
The result of the X-ray diffraction measurement of 3C-SiC produced under these conditions is shown in FIG. As is clear from FIG. 2, 3C—SiC obtained under the above conditions is a single crystal with a plane orientation (111). Of the above embodiments, the growth conditions are optimum conditions for the CVD apparatus used in the present invention, and depend on the CVD apparatus itself.
[0020]
【The invention's effect】
The crystallinity and strain of this single crystal were compared with those of 3C-SiC single crystals with plane orientations (001) and (111) produced by a conventional technique having the same film thickness. In order to facilitate comparison, thin 3C—SiC having a thickness of about 0.5 μm was used. For crystallinity, the half-value width of the X-ray diffraction peak, and for strain, the magnitude of strain was estimated from the peak position. The peak used here is the diffraction peak of the (111) plane for the plane orientation (111) and the diffraction peak of the (002) plane for the plane orientation (001). The results are shown below.
[0021]
[Table 2]
Figure 0003823177
[0022]
As is apparent from this table, when the method used in the present invention is used, both the half width and the strain are reduced as compared with 3C-SiC produced by the prior art. From this, by using the method used in the present invention, it is possible to produce a high-quality 3C—SiC with improved crystallinity compared to the prior art.
[Brief description of the drawings]
FIG. 1 is a diagram showing a process of growing 3C—SiC by a method of the present invention using a CVD apparatus.
FIG. 2 is a diagram showing the results of X-ray diffraction measurement of 3C—SiC produced by the method of the present invention.

Claims (1)

Si基板を、アセトン、エタノールの順で洗浄して脱脂処理を行い、次にHF水溶液中でエッチング処理して表面酸化膜を除去し、更に沸騰超純水中で煮沸することによりSi基板表面のダングリングボンドを水素原子で終端処理して不活性化した後、その基板を反応炉中で水素ガスの存在下で終端水素の脱離温度以下の500℃まで加熱し、その後水素ガスに加えてソースガスであるプロパンガス及びシランガスを反応炉に導入してSi基板を1060℃まで昇温することを特徴とする、Si基板の表面に立方晶型炭化珪素単結晶薄膜を作製する方法。  The Si substrate is washed with acetone and ethanol in this order and degreased, and then etched in an aqueous HF solution to remove the surface oxide film, and further boiled in boiling ultrapure water to form a surface of the Si substrate. After dangling bonds are terminated with hydrogen atoms and deactivated, the substrate is heated in a reaction furnace to 500 ° C. below the desorption temperature of terminal hydrogen in the presence of hydrogen gas, and then added to the hydrogen gas. A method for producing a cubic silicon carbide single crystal thin film on the surface of a Si substrate, wherein propane gas and silane gas as source gases are introduced into a reaction furnace to raise the temperature of the Si substrate to 1060 ° C.
JP02798098A 1998-02-10 1998-02-10 Method for producing cubic silicon carbide single crystal thin film Expired - Fee Related JP3823177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02798098A JP3823177B2 (en) 1998-02-10 1998-02-10 Method for producing cubic silicon carbide single crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02798098A JP3823177B2 (en) 1998-02-10 1998-02-10 Method for producing cubic silicon carbide single crystal thin film

Publications (2)

Publication Number Publication Date
JPH11228297A JPH11228297A (en) 1999-08-24
JP3823177B2 true JP3823177B2 (en) 2006-09-20

Family

ID=12236017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02798098A Expired - Fee Related JP3823177B2 (en) 1998-02-10 1998-02-10 Method for producing cubic silicon carbide single crystal thin film

Country Status (1)

Country Link
JP (1) JP3823177B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253617A (en) * 2005-02-14 2006-09-21 Toshiba Ceramics Co Ltd SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
JP6889133B2 (en) * 2018-08-31 2021-06-18 株式会社フェローテックホールディングス Heat conduction anisotropic SiC material
JP7218832B1 (en) * 2022-06-14 2023-02-07 信越半導体株式会社 Manufacturing method of heteroepitaxial wafer

Also Published As

Publication number Publication date
JPH11228297A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
JP5152435B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method
JP5896038B2 (en) Method for producing nanocarbon film
US20150267320A1 (en) Method for manufacturing silicon carbide semiconductor device
JP7290135B2 (en) Semiconductor substrate manufacturing method and SOI wafer manufacturing method
TW201724178A (en) Method for manufacturing silicon carbide composite substrate
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
CN106169497B (en) Silicon carbide substrate and method for producing silicon carbide substrate
JP2015078093A (en) 3C-SiC EPITAXIAL LAYER MANUFACTURING METHOD, 3C-SiC EPITAXIAL SUBSTRATE, AND SEMICONDUCTOR DEVICE
JP3508356B2 (en) Semiconductor crystal growth method and semiconductor thin film
JP3508519B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP3823177B2 (en) Method for producing cubic silicon carbide single crystal thin film
WO2008013032A1 (en) Method for manufacturing semiconductor substrate
JP4916479B2 (en) Manufacturing method of silicon carbide epitaxial substrate
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
CN111933518A (en) Based on SiC substrate and LiCoO2Preparation method of AlN single crystal material of buffer layer
JPH11268995A (en) Production of silicon carbide single crystal
JP3909690B2 (en) Method for producing SiC film by epitaxial growth
JP4766642B2 (en) SiC semiconductor and SiC epitaxial growth method
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
JP7218832B1 (en) Manufacturing method of heteroepitaxial wafer
JPS62279625A (en) Epitaxial growth method
JPH04182386A (en) Substrate susceptor for epitaxial growth
JPH0427116A (en) Method of forming semiconductor heterojunction
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
JP2000306915A (en) Manufacture of silicon wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees