JP3822844B2 - Metal complexes containing heteroatom ligands and two metals - Google Patents

Metal complexes containing heteroatom ligands and two metals Download PDF

Info

Publication number
JP3822844B2
JP3822844B2 JP2002168079A JP2002168079A JP3822844B2 JP 3822844 B2 JP3822844 B2 JP 3822844B2 JP 2002168079 A JP2002168079 A JP 2002168079A JP 2002168079 A JP2002168079 A JP 2002168079A JP 3822844 B2 JP3822844 B2 JP 3822844B2
Authority
JP
Japan
Prior art keywords
group
transition metal
metal complex
iii
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002168079A
Other languages
Japanese (ja)
Other versions
JP2004067511A (en
Inventor
英夫 永島
公紀 松原
隆志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002168079A priority Critical patent/JP3822844B2/en
Publication of JP2004067511A publication Critical patent/JP2004067511A/en
Application granted granted Critical
Publication of JP3822844B2 publication Critical patent/JP3822844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Polymerization Catalysts (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種の化学反応等に対する触媒等として使用され得る金属錯体に関し、特に、ヘテロ原子配位子と2種類の遷移金属を含む新規な金属錯体に関する。
【0002】
【従来の技術】
遷移金属錯体(遷移金属化合物)は、各種の化学反応用の均一系触媒等として有用であり、従来より多くの基礎研究および応用開発が進められている。
【0003】
例えば、オレフィン重合用触媒としては、シクロペンタジエニル誘導体を配位子として有する周期表4族の遷移金属化合物とアルミノキサンを組み合わせたものが知られている(特開昭58−19309号公報など)。さらに、ポリオレフィンの汎用プラスチックとしての要求性能が多様化しているため、より優れた均一系オレフィン重合触媒を開発する観点から、シクロペンタジエニル基を含まず、窒素原子などのへテロ原子を含有した配位子を用い窒素原子が遷移金属とシグマ結合するようにした遷移金属錯体から成る均一系オレフィン重合触媒に関する検討も活発に行なわれている(特開平8−176217号公報、特開平8−245713号公報、特開平10−327710号公報、特開2001−181333号公報など)。
【0004】
窒素原子を含む配位子を用い、配位子と金属が窒素−金属シグマ結合で結ばれている遷移金属錯体をオレフィン重合に用いた検討は、学術的観点からも多く行なわれており、D.H. MacConvilleら、J. Am. Chem. Soc., 118, 10008 (1996); R. R. Schrockら、J. Am. Chem. Soc., 119, 3830 (1997); R. R. Schrockら、Organometallics, 18, 428 (1999);J. W. Parkら、Organometallics, 19, 344 (2000)などに、その例が見出される。
【0005】
さらに、最近、窒素−リン結合をもつ有機リン化合物を配位子を用い、配位子と金属が窒素−金属シグマ結合で結ばれている遷移金属錯体をオレフィン重合に用いることが注目され、以下の例が報告されている:S. Collinsら、Organometallics, 18, 2731 (1999); D. W. Stephanら、Organometallics, 18, 2046 (1999); M. S. Eisenら、J. Organomet. Chem., 604, 116 (2000)。
【0006】
如上の遷移金属錯体は、いずれも単一種の遷移金属から構成されているものである。これに対して、異種の遷移金属、特に、元素周期表の前周期側の遷移金属と後周期側にある遷移金属とを組合せた所謂ヘテロバイメタリック錯体〔Early-Late Heterobimetallic (ELHB) Complex〕も注目され、例えば、ZrとFe、ZrとIr、あるいはTiとPtから成る異種遷移金属に窒素とリンを含有する配位子が配位したヘテロバイメタリック錯体が案出されている:J-P. Majoralら、Organometallics, 10, 45 (1991) ; R. G. Bergmanら、J. Am. Chem. Soc., 116, 3822 (1994) ; J. B. Loveら、J. Chem. Soc., Dalton Trans., 2551 (2001)。但し、これらは未だ金属化合物としての学究的興味の段階にとどまっており、具体的な用途までは検討していない。バイメタリック遷移金属錯体は、例えば、各種の化学反応において、それぞれの金属に因る相乗的な作用により優れた触媒を創製し得るものとして期待されるが、その例は未だ少なく、ZrとFeを含むフェロセニル誘導体から成るオレフィン重合用触媒[Fe(C54NC65)2ZrCl2{HN(CH3)2}2、U. Siemeling, Eur. J. Inorg. Chem., 913 (2001)],Rhを含むジルコノセン誘導体からなるオレフィン重合用触媒[(C55)Rh(CH2=CH)2Si(C52−2,4−Me2)2ZrCl2、Y. Wakatsuki, Organometallics. 18, 996-1001, (1999) ] やZrとRhを含むフォスヒド架橋錯体から成る1−ヘキセンのヒドロホルミル化反応用触媒 [(C55)Zr(μ−PPh2)RhH(CO)(PPh3), D. W. Stephan, Organometallics, 7, 849 (1988)]などに見出される程度である。
【0007】
【発明が解決しようとする課題】
本発明の目的は、オレフィンの重合など各種の化学反応に対する均一系触媒等として利用することができるような新規なヘテロバイメタリック遷移金属錯体を提供することにある。
【0008】
【課題を解決するための手段】
本発明に従えば、上記の目的を達成するものとして、下記の式(I)で表わされるか、又は式(1)の2量体で表わされることを特徴とする金属錯体が提供される。
【0009】
【化2】

Figure 0003822844
【0010】
式(1)中、M1は、原子価が3価、4価または5価の遷移金属を表わし、M2は遷移金属を表わし、Xは水素原子;ハロゲン原子;炭素数1〜20の炭化水素基もしくはアルコキシ基;またはアミノ基を表わし、nは1〜3の整数を表わし、R1は炭素数1〜20の炭化水素基またはケイ素原子を有する炭化水素基を表わし、R2は炭素数1〜20の炭化水素基、ケイ素原子を有する炭化水素基もしくはアルコキシ基;またはアミノ基を表わし、Zは、存在するときは、酸素原子、イオウ原子またはNR(Rは炭素数1〜4のアルキル基を示す)を表わし、Lはハロゲン原子;炭素数1〜20の炭化水素基もしくはアルコキシ基;カルボニル基;ホスフィン類;イソニトリル類、エーテル類またはスルフィド類を表わし、mは2〜4の整数を表わす。
【0011】
【発明の実施の形態】
本発明者らは、先に、下記の一般式(2)で表わされるようなアミノホスフィンを配位子とする遷移金属錯体(遷移金属化合物)を案出しているが(特願2002−063890)、更に検討を重ねた結果、この化合物が第2の遷移金属の金属錯体(金属化合物)と反応し得ることを見出し、本発明の金属錯体を導き出したものである。
【0012】
【化3】
Figure 0003822844
【0013】
なお、式(2)において、M1、X、n、R1、ZおよびR2は上記式(1)において定義しているものと同じである。
一般式(1)で表わされる本発明の金属錯体において、M1は、原子価が3価、4価または5価の遷移金属を表わし、この遷移金属の原子価に応じて、nの値は、それぞれ、1,2または3の整数となる。本発明の金属錯体を構成する遷移金属M1は、原子価が3価、4価または5価のものであればいずれも適用可能であり原理的には特に制限されるものではないが、一般的には、周期表の各周期の前周期側にありd0遷移金属と呼ばれるもの、すなわち、IV族であればTi(IV)、Zr(IV)、Hf(IV)、III族やランタニドであればSc(III)、Y(III)、La(III)、V族であればV(V)、Nb(V)、Ta(V)が好ましく、オレフィン重合用触媒やヒドロホルミル化反応用触媒等として、特に好ましいのは、Ti(IV)、Zr(IV)またはHf(IV)である。しかし、M1として、d1遷移金属と称されるTi(III)、Zr(III)、Hf(III)、さらには3価のスカンジウム、イットリウム、ランタノイド元素から本発明の金属錯体を構成することもできる。
【0014】
一般式(1)で表わされる本発明の金属錯体において、上述のごとき第1の遷移金属M1に結合している官能基または原子Xは、水素原子;ハロゲン原子;炭素数1〜20の炭化水素基もしくはアルコキシ基;またはアミノ基を表わす。炭化水素基は、直鎖状または分枝状のアルキル基やアルケニル基のような鎖式炭化水素基;脂環族炭化水素基または芳香族炭化水素基のいずれでもよい。Xとして好ましい例は、ハロゲン原子(特に塩素原子)および、アルキル基(特に炭素1〜4の低級アルキル基)である。既述したように、これらの原子または官能基が遷移金属M1の原子価に応じて1〜3個結合する。
【0015】
一般式(1)で表わされる本発明の遷移金属錯体において、窒素原子Nに結合している官能基R1は、炭素数1〜20の炭化水素基またはケイ素原子を有する炭化水素基を表わす。炭化水素基は、直鎖状または分枝状のアルキル基やアルケニル基のような鎖状炭化水素基;脂環族炭化水素基;または芳香族炭化水素基のいずれでもよい。R1として好ましい例は、炭素数1〜4の低級アルキル基およびフェニル基である。
【0016】
一般式(1)で表わされる本発明の遷移金属錯体において、リン原子Pに結合している官能基R2は、炭素数1〜20の炭化水素基、ケイ素原子を有する炭化水素基もしくはアルコキシ基;またはアミノ基を表わす。炭化水素基は、直鎖状または分枝状のアルキル基やアルケニル基のような鎖式炭化水素基;脂環族炭化水素基;または芳香族炭化水素基のいずれでもよい。R2として好ましい例は、炭素数1〜4のアルキル基およびフェニル基である。
【0017】
式(1)で表わされる本発明の遷移金属錯体においてリン原子Pは、一般に3価であり、この場合は式(1)においてZは存在しない。しかし、リン原子Pは5価となることもでき、P(V)の場合はZが存在し、このZは、酸素原子、イオウ原子またはNR(R炭素数1〜4のアルキル基を示す)を表わす。
【0018】
一般式(1)に従う本発明の金属錯体においてM2で表わされる遷移金属としては、原理的には全ての遷移金属が適用可能であり、また、その原子価も特に限定されるものではなく、全ての原子価について適用することができる。実用的見地からは、M2として、8族、9族または10族の遷移金属、すなわち、Fe(O)、Fe(II)、Fe(III)、Ru(O)、Ru(II)、Ru(III)、Ru(IV)、Os(O)、Os(II)、Os(IV)、Co(I)、Co(II)、Rh(I)、Rh(III)、Rh(V)、Ir(I)、Ir(III)、Ir(V)、Ni(O)、Ni(II)、Pd(O)、Pd(II)、Pd(IV)、Pt(O)、Pt(II)またはPt(IV)から選ばれるものが好ましく、オレフィン重合用触媒やヒドロホルミル化反応用触媒等として特に好ましいのは、Rh(I)、Ni(II)、Pd(II)またはPt(II)から選ばれるものである。
【0019】
一般式(1)で表わされる本発明の金属錯体において上述したような第2の遷移金属M2に配位している配位子Lはきわめて多様で、従来より遷移金属に配位し得るものとして知られた多くの原子、官能基または原子団が適用可能であり、ハロゲン原子;炭素数1〜20の炭化水素基またはアルコキシ基;カルボニル基;ホスフィン類、イソニトリル類、アミン類、エーテル類、スルフィド類などを挙げることができる。炭化水素基は、鎖式炭化水素基、脂環式炭化水素基または芳香族炭化水素基のいずれでもよい。オレフィン重合用触媒やヒドロホルミル化反応用触媒等として用いられる金属錯体におけるLとして好ましい例は、ハロゲン原子、炭素数1〜4の低級アルキル基、カルボニル基(−CO)、またはホスフィン類(PR3:Rは一般に、水素原子または炭素数1〜20の炭化水素基を表わす)である。以上のような原子、官能基または原子団が遷移金属M2の原子価に応じて2〜4個M2に結合する。
【0020】
式(1)で表わされる本発明の金属錯体において、遷移金属M1に結合しているn個のXは一般的には同一のものであるが、別異のものであってもよい。また、リン原子Pに結合している2個のR2は一般的には同一のものであるが、別異のものであってもよい。さらに、遷移金属M2に結合しているm個のLは一般的には同一のものであるが、別異のものであってもよい(後述の実施例5参照)。式(1)は、これらの態様も包含して表現しているものである。
【0021】
また、式(1)で表わされる本発明の金属錯体において、遷移金属M1と遷移金属M2とは既述の説明から理解されるように、一般的には別種の金属であるが、同一種の金属であることも可能である。さらに、本発明の金属錯体は、一般的には、式(1)で表わされるものであるが、式(1)の2量体に相当するものから成る場合も包含する(後述の実施例8参照)。
【0022】
式(1)で(またはその2量体で)表わされる本発明の金属錯体は、既述の式(2)で表わされる第1の遷移金属の金属錯体(金属化合物)と、第2の遷移金属の金属錯体(金属化合物)とを室温から50℃程度の温度下に反応させることによって合成することができる。ここで、第2の遷移金属の金属化合物は、リン原子(P)と置換し得るような配位子(例えばジエン類、エーテル類、スルフィド類)をもつものであり、これを第1の遷移金属の金属化合物と反応させることによって、第1の遷移金属の金属化合物中のリン原子が第2の遷移金属に配位した本発明の金属錯体が得られる。式(1)の2量体に相当するような本発明の金属錯体を合成する場合には、第2の遷移金属の金属化合物として、上記のような配位子に加えてハロゲン原子が配位しているものを用いればよい(後述の実施例8参照)。
【0023】
本発明の金属錯体の合成に用いられる既述の式(2)で表わされる第1の遷移金属の金属化合物の製法は、本発明者らによる先の出願(特願2002−063890)にも記述しているが、大略、以下のようになる。
式(2)で表わされる金属化合物のうち、Xがハロゲン原子、アルコキシ基、アミノ基をもつものは、アミノホスフィンのアルカリ金属塩と、下記の式(3)で表わされる遷移金属化合物との反応で合成することができる。
【0024】
【化4】
Figure 0003822844
【0025】
式(3)において、M1は、式(1)の場合と同様に原子価が3価、4価または5価の遷移金属を表わし、Xはハロゲン原子、アルコキシ基またはアミノ基であり、nは1から3の整数であり、Yはハロゲン原子である。
式(2)で表わされる金属化合物のうち、Xが水素原子をもつものは、式(2)で示す化合物のうち、Xがハロゲン原子をもつものと、典型金属水素化物の反応によって合成される。
式(2)で表わされる金属化合物のうち、Xがアルキル基、アリール基、ビニル基のような炭化水素基をもつものは、式(2)で示す化合物のうち、Xがハロゲン原子をもつものと、典型金属のアルキル、アリール、ビニル誘導体との反応によって合成される。
【0026】
以上のようにして得られる本発明の金属錯体が、式(1)で表わされる構造(またはその2量体に相当する構造)を有することは、NMRによる分析、元素分析およびX線結晶構造解析のような手段を用いて確認することができる。
かくして、本発明の金属錯体は、ヘテロ原子配位子であるアミノホスフィンを配位子とし2つの遷移金属を含む新しいタイプのヘテロバイメタリック錯体として、例えば、それぞれの遷移金属が活性を発揮するものとして知られた各種の化学反応における均一系触媒として利用できることが期待される。事実、本発明の金属錯体は、オレフィンの重合用触媒として有用であることが確認されており(後述の実施例参照)、また、ヒドロホルミル化反応の触媒としても使用できる。
【0027】
なお、本発明の遷移金属錯体は、単独でもオレフィン重合触媒として用いられ得るが、一般的には本発明の遷移金属錯体を主触媒として、助触媒の存在下でオレフィン重合を行ない、ポリオレフィンを製造する。助触媒とは、本発明の遷移金属錯体と作用あるいは反応することにより、オレフィンを重合することが可能な重合活性種を形成しうる化合物を示している。このような活性化助触媒の例として、近年、均一系オレフィン重合触媒系の助触媒成分として多く用いられているアルキルアルミノキサンや、非配位性のアニオン性化合物をあげることができるが、これに限定されるものではない。
【0028】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
遷移金属錯体(遷移金属化合物)の合成は、シュレンクテクニックもしくはグローブボックスを用いて行い、すべての操作をアルゴン雰囲気下で行った。遷移金属化合物の調製に用いた溶媒は、全て公知の方法で脱酸素、脱水を行った後、使用直前に真空下で反応容器に移送して用いた。遷移金属化合物の同定は融点測定、室温での1H, 13C, 31P NMR(JEOL Lambda 400, 600 MHz)、元素分析、X線結晶構造解析(Rigaku RAXIS-CS (図1)、Rigaku RAXIS-RAPID (図2、3)、何れもMoKα線0.71069オングストローム)を用いて行った。重合反応は、100 mLオートクレーブを用い、エチレンガスを連続的に供給しながら所定の時間、室温で行った。重合に用いた溶媒は、市販の脱水溶媒(関東化学)を公知の方法で脱酸素、脱水を行った後用いた。エチレンガスは重合グレードを用い、さらなる精製を行うことなく用いた。
それぞれの遷移金属化合物の概略の合成法とその構造式は図4に示している。なお、図4に示す化学構造式においては、慣用的な表現法に従い炭素原子や水素原子を省略している。また、Meはメチル基を表わし、r.t.とは室温のことである。
【0029】
実施例1:[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル-ジフェニルホスフィン)]プラチナム[ビス(ジクロライド)] Cl2Ti{Ph2PN(t−Bu)}2PtCl2の調製
アルゴン気流下、チタニウム[ビス(ジクロロ)ビス(N−t−ブチル-ジフェニルホスフィン)] (34 mg/0.054 mmol)とジクロロ(1, 5−シクロオクタジエニル)プラチナム (20 mg/0.054 mmol) を量りとり、塩化メチレン(5 mL)を加え、50℃で13時間の反応を行った。反応終了後、減圧乾燥しヘキサン(2 mL×2)を用い洗浄し、湯浴で暖めた塩化メチレン(3 mL)に再溶解させ−30℃での再結晶を行う事により表題化合物(39 mg/0.045 mmol/83%)を得た。
mp. 131−133℃(dec)。
1H NMR (CD2Cl2): δ1.42 (s, 18H, t−Bu), 7.07−7.15 (m, 8H, ortho), 7.21−7.41 (m, 4H, para), 7.42−7.57 (m, 8H, meta)。
13C{1H} NMR (CD2Cl2): δ32.9 (t−Bu), 70.2 (4o of t−Bu), 125.2 (meta of PPh2), 127.5 (para of PPh2), 130.5 (4o of PPh2), 131.2 (ortho of PPh2)。
31P{1H} NMR (CD2Cl2): δ6.80 (s, JPtP = 1348 Hz)。
Anal.Calcd. for C32H38N2P2Cl4TiPt: H, 4.27; C, 42.83; N, 3.12. Found: H, 4.30; C,42.81; N, 3.08.
上記方法で得た[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル-ジフェニルホスフィン)]プラチナム[ビス(ジクロライド)]のX線結晶構造解析の結果(ORTEP図)を図1に示す。
【0030】
実施例2:錯体溶液Aの調製
アルゴン気流下、実施例1で得た[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル-ジフェニルホスフィン)]プラチナム[ビス(ジクロライド)] (9.0 mg/10 μmol)にメチルアルミノキサン(東ソー・アクゾ(株)製PMAO, アルミニウム原子換算で10 mmol)のトルエン溶液(50 mL)を加え、室温で12時間の攪拌を行ない錯体溶液Aを調製した。
エチレン重合:100 mLのオートクレーブに、上記方法で調製した錯体溶液Aを加え、10 kg/cm2Gのエチレン圧になるようにエチレンを供給しながら室温で30分間重合を行った。得られたポリマーをメタノール/塩酸で洗浄した後、減圧下、一昼夜乾燥を行い38 mgのポリマーを得た。
【0031】
実施例3[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル-ジフェニルホスフィン)]パラジウム[ビス(ジクロライド)] Cl2Ti{Ph2PN(t−Bu)}2PdCl2の調製
アルゴン気流下、チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)] (30 mg/0.048 mmol)とジクロロ(1, 5−シクロオクタジエニル)パラジウム (14 mg/0.048 mmol) を量りとり、塩化メチレン(5 mL)を加えた。その後、室温で一分間攪拌し、50℃に昇温後、静置し13時間の反応を行った。反応終了後、溶媒除去を行うことにより暗赤色結晶状の表題化合物(34 mg/0.042 mmol/87%)を得た。
mp. 128 − 130℃(dec.)
Anal.Calcd. for C323822Cl4TiPd:H, 4.74; C, 46.53; N, 3.46. Found: H, 4.85; C,45.86; N, 3.35.
上記方法で得た[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)]パラジウム[ビス(ジクロライド)]のX線結晶構造解析の結果(ORTEP図)を図2に示す。
【0032】
実施例4:錯体溶液Bの調製
アルゴン気流下、実施例3で得た[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)]パラジウム[ビス(ジクロライド)] (8.1 mg/10μmol)にメチルアルミノキサン(東ソー・アクゾ(株)製PMAO, アルミニウム原子換算で10 mmol)のトルエン溶液(50 mL)を加え、室温で12時間の攪拌を行ない錯体溶液Bを調製した。
エチレン重合:100 mLのオートクレーブに、上記方法で調製した錯体溶液Bを加え、10 kg/cm2Gのエチレン圧になるようにエチレンを供給しながら室温で30分間重合を行った。得られたポリマーをメタノール/塩酸で洗浄した後、減圧下、一昼夜乾燥を行い122 mgのポリマーを得た。
【0033】
実施例5:[チタニウム[モノ(クロロ)モノ(ブロモ)ビス(N−t−ブチル−ジフェニルホスフィン)]ニッケル[モノ(クロロ)モノ(ブロモ)] BrClTi {Ph2PN(t−Bu)}2NiBrClの調整アルゴン気流下、チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)] (70 mg/0.11 mmol)とジブロモ(ジメトキシエタン)ニッケル (34 mg/0.11 mmol) を量りとり、塩化メチレン(30 mL)を加えた。その後、50℃で14時間攪拌し、放冷後、セライトろ過を行った。減圧乾燥後、茶褐色組成生物を塩化メチレン/ヘキサン(3/1)混合溶液を用い洗浄し、赤褐色の表題化合物(64 mg/0.075 mmol/69%)を得た。
mp. 135 − 138 ℃ (dec)。
1H NMR (CD2Cl2): δ1.36 (s, 9H, t-Bu), 1.37 (s, 9H, t−Bu), 7.15−7.45 (m, 14H, ortho), 7.46−7.57 (m, 4H, para), 7.61−7.72 (m, 2H, meta)。
31P{1H} NMR (CD2Cl2): δ-16.0 (s), -16.9 (s)。
【0034】
実施例6:錯体溶液Cの調製
アルゴン気流下、実施例5で得た[チタニウム[モノ(クロロ)モノ(ブロモ)ビス(N−t−ブチル−ジフェニルホスフィン)]ニッケル[モノ(クロロ)モノ(ブロモ)] (8.5 mg/10μmol)にメチルアルミノキサン(東ソー・アクゾ(株)製PMAO, アルミニウム原子換算で10 mmol)のトルエン溶液(50 mL)を加え、室温で12時間の攪拌を行ない錯体溶液Cを調整した。
エチレン重合:100 mLのオートクレーブに、上記方法で調整した錯体溶液Cを加え、10 kg/cm2Gのエチレン圧になるようにエチレンを供給しながら室温で30分間重合を行った。得られたポリマーをメタノール/塩酸で洗浄した後、減圧下、一昼夜乾燥を行い143 mgのポリマーを得た。
【0035】
実施例7: [チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)]プラチナム[ビス(ジメチル)] Cl2Ti{Ph2PN(t−Bu)}2Pt(CH32の調製
アルゴン気流下、チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)] (50 mg/0.079 mmol)とビス{ジメチル(μ−ジメチルスルフィド)プラチナム} (23 mg/0.039 mmol) を量りとり、塩化メチレン(15 mL)を加え、室温で30分の反応を行った。反応終了後、減圧乾燥しエーテル(7 mL)を用い洗浄し、塩化メチレン/エーテル(1/1)混合溶媒を用い-30℃での再結晶を行う事により表題化合物(54 mg/0.063 mmol/81%)を得た。
mp. 147 − 148oC (dec.)。
1H NMR (CD2Cl2): δ0.75 (d, JPH = 4.8 Hz, JPtH = 18.0 Hz, 3H, Me), 0.77 (d, JPH = 4.8 Hz, JPtH = 18.0 Hz, 3H, Me), 1.38 (s, 18H, t-Bu), 7.21−7.41 (m, 4H, para), 7.42−7.57 (m, 8H, meta). 13C{1H} NMR (CD2Cl2): δ14.8 (d, JPt-C = 6.5 Hz, CH3), 15.3 (d, JPt-C = 6.5 Hz, CH3), 32.9 (t-Bu), 70.2 (4o of t-Bu), 125.2 (meta of PPh2), 127.5 (para of PPh2), 130.5 (4o of PPh2), 131.2 (ortho of PPh2)。
31P{1H} NMR (CD2Cl2): δ6.80 (s, JPtP = 1348 Hz)。
Anal.Calcd. for C32H38N2P2Cl4TiPd: H, 5.18; C, 47.68; N, 3.27. Found: H, 5.21; C,47.71; N, 3.24。
上記方法で得た[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)]プラチナム[ビス(ジメチル)]のX線結晶構造解析の結果(ORTEP図)を図3に示す。
【0036】
実施例8: {[チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)]ロジウムクロライド]ダイマー [Cl2Ti{Ph2PN(t−Bu)}2RhCl]2の調製
アルゴン気流下、チタニウム[ビス(ジクロロ)ビス(N−t−ブチル−ジフェニルホスフィン)] (50 mg/0.079 mmol)とクロロ(1, 5−シクロオクタジエニル)ロジウム(I)ダイマー (19 mg/0.039 mmol) を量りとり、塩化メチレン(15 mL)を加え、超音波洗浄器にて溶解させる。その後、室温で一昼夜放置し溶媒除去後、ヘキサン(3 mL)を用い洗浄し、減圧乾燥を行う事により、表題化合物(49 mg/0.063 mmol/81%)を得た。
mp. 143−145℃(dec.)。
Anal.Calcd. for C32H38N2P2Cl3TiRh: H, 4.98; C, 49.93; N, 3.64. Found: H, 4.68; C,50.21; N, 3.54。
エチレン重合の結果を下記の表1にまとめて示す。
【0037】
【表1】
Figure 0003822844

【図面の簡単な説明】
【図1】本発明の1例として実施例1の遷移金属錯体のX線結晶構造解析の結果を示すORTEP図であり、(A)は全体図、(B)は横図である。
【図2】本発明の1例として実施例3の遷移金属錯体のX線結晶構造解析の結果を示すORTEP図であり、(A)は全体図、(B)は横図である。
【図3】本発明の1例として実施例7の遷移金属錯体のX線結晶構造解析の結果を示すORTEP図であり、(A)は全体図、(B)は横図である。
【図4】本発明に従う遷移金属錯体の幾つかの実施例について合成法とその構造式を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal complex that can be used as a catalyst for various chemical reactions and the like, and more particularly to a novel metal complex containing a heteroatom ligand and two kinds of transition metals.
[0002]
[Prior art]
Transition metal complexes (transition metal compounds) are useful as homogeneous catalysts for various chemical reactions, and much basic research and application development have been promoted.
[0003]
For example, as an olefin polymerization catalyst, a combination of a transition metal compound of Group 4 of the periodic table having a cyclopentadienyl derivative as a ligand and an aluminoxane is known (Japanese Patent Laid-Open No. 58-19309). . Furthermore, since the required performance of polyolefin as a general-purpose plastic is diversified, from the viewpoint of developing a better homogeneous olefin polymerization catalyst, it does not contain a cyclopentadienyl group but contains a heteroatom such as a nitrogen atom. Studies on homogeneous olefin polymerization catalysts comprising a transition metal complex in which a nitrogen atom is sigma-bonded to a transition metal using a ligand are also actively conducted (Japanese Patent Laid-Open Nos. 8-176217 and 8-245713). No., JP-A-10-327710, JP-A-2001-181333, etc.).
[0004]
Many studies have been carried out from an academic viewpoint using transition metal complexes in which ligands containing nitrogen atoms are used and ligands and metals are connected by nitrogen-metal sigma bonds. MacConville et al., J. Am. Chem. Soc., 118, 10008 (1996); RR Schrock et al., J. Am. Chem. Soc., 119, 3830 (1997); RR Schrock et al., Organometallics, 18, 428 (1999) Examples are found in JW Park et al., Organometallics, 19, 344 (2000).
[0005]
Furthermore, recently, it has been noticed that an organic phosphorus compound having a nitrogen-phosphorus bond is used for a ligand, and a transition metal complex in which a ligand and a metal are connected by a nitrogen-metal sigma bond is used for olefin polymerization. Examples have been reported: S. Collins et al., Organometallics, 18, 2731 (1999); DW Stephan et al., Organanometallics, 18, 2046 (1999); MS Eisen et al., J. Organomet. Chem., 604, 116 ( 2000).
[0006]
Each of the above transition metal complexes is composed of a single kind of transition metal. In contrast, the so-called heterobimetallic complex (ELHB) complex, which is a combination of different kinds of transition metals, in particular, transition metals on the first period side of the periodic table and transition metals on the second period side, is also available. For example, a heterobimetallic complex has been devised in which a ligand containing nitrogen and phosphorus is coordinated to a heterogeneous transition metal composed of Zr and Fe, Zr and Ir, or Ti and Pt: JP. Majoral Organometallics, 10, 45 (1991); RG Bergman et al., J. Am. Chem. Soc., 116, 3822 (1994); JB Love et al., J. Chem. Soc., Dalton Trans., 2551 (2001). . However, these are still at the stage of academic interest as metal compounds and have not been studied for specific uses. Bimetallic transition metal complexes are expected, for example, to be able to create excellent catalysts due to the synergistic action due to each metal in various chemical reactions, but there are still few examples, and Zr and Fe are used. olefin polymerization catalyst [Fe (C 5 H 4 NC 6 H 5) 2 ZrCl 2 {HN (CH 3) 2} 2 consisting ferrocenyl derivatives including, U. Siemeling, Eur. J. Inorg. Chem., 913 (2001 )], the olefin polymerization catalyst [(C 5 H 5 consisting of zirconocene derivatives including Rh) Rh (CH 2 = CH ) 2 Si (C 5 H 2 -2,4-Me 2) 2 ZrCl 2, Y. Wakatsuki , Organometallics. 18, 996-1001, (1999)] or a catalyst for hydroformylation of 1-hexene comprising a phosphine bridged complex containing Zr and Rh [(C 5 H 5 ) Zr (μ-PPh 2 ) RhH (CO ) (PPh 3 ), DW Stephan, Organometallics, 7, 849 (1988)].
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel heterobimetallic transition metal complex that can be used as a homogeneous catalyst for various chemical reactions such as olefin polymerization.
[0008]
[Means for Solving the Problems]
According to the present invention, there is provided a metal complex represented by the following formula (I) or represented by the dimer of the formula (1) to achieve the above object.
[0009]
[Chemical 2]
Figure 0003822844
[0010]
In formula (1), M 1 represents a trivalent, tetravalent or pentavalent transition metal, M 2 represents a transition metal, X represents a hydrogen atom; a halogen atom; a carbon atom having 1 to 20 carbon atoms. A hydrogen group or an alkoxy group; or an amino group, n represents an integer of 1 to 3, R 1 represents a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a silicon atom, and R 2 represents a carbon number 1 represents a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group or alkoxy group having a silicon atom; or an amino group, and Z, when present, represents an oxygen atom, a sulfur atom or NR (where R is an alkyl having 1 to 4 carbon atoms). L represents a halogen atom; a hydrocarbon group or alkoxy group having 1 to 20 carbon atoms; a carbonyl group; a phosphine; an isonitrile, an ether or a sulfide; m represents an integer of 2 to 4; Wath.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have previously devised a transition metal complex (transition metal compound) having an aminophosphine as a ligand represented by the following general formula (2) (Japanese Patent Application No. 2002-063890). As a result of further studies, it was found that this compound can react with the metal complex (metal compound) of the second transition metal, and the metal complex of the present invention was derived.
[0012]
[Chemical 3]
Figure 0003822844
[0013]
In the formula (2), M 1 , X, n, R 1 , Z and R 2 are the same as those defined in the above formula (1).
In the metal complex of the present invention represented by the general formula (1), M 1 represents a trivalent, tetravalent or pentavalent transition metal, and the value of n depends on the valence of the transition metal. , Are integers of 1, 2 or 3, respectively. As the transition metal M 1 constituting the metal complex of the present invention, any metal having a valence of trivalent, tetravalent, or pentavalent is applicable and not limited in principle. Specifically, it is on the previous period side of each period of the periodic table and is called a d 0 transition metal, that is, in the case of group IV, Ti (IV), Zr (IV), Hf (IV), group III or lanthanide. If present, Sc (III), Y (III), La (III), V group, V (V), Nb (V), Ta (V) are preferable. Examples include olefin polymerization catalysts and hydroformylation reaction catalysts. Particularly preferred is Ti (IV), Zr (IV) or Hf (IV). However, the metal complex of the present invention is composed of Ti (III), Zr (III), Hf (III), which are called d 1 transition metals, and trivalent scandium, yttrium and lanthanoid elements as M 1. You can also.
[0014]
In the metal complex of the present invention represented by the general formula (1), the functional group or atom X bonded to the first transition metal M 1 as described above is a hydrogen atom; a halogen atom; a carbon atom having 1 to 20 carbon atoms. Represents a hydrogen group or an alkoxy group; or an amino group. The hydrocarbon group may be any of a linear or branched alkyl group or a chain hydrocarbon group such as an alkenyl group; an alicyclic hydrocarbon group or an aromatic hydrocarbon group. Preferred examples of X are a halogen atom (particularly a chlorine atom) and an alkyl group (particularly a lower alkyl group having 1 to 4 carbon atoms). As described above, 1 to 3 of these atoms or functional groups are bonded depending on the valence of the transition metal M 1 .
[0015]
In the transition metal complex of the present invention represented by the general formula (1), the functional group R 1 bonded to the nitrogen atom N represents a hydrocarbon group having 1 to 20 carbon atoms or a silicon group. The hydrocarbon group may be a linear hydrocarbon group such as a linear or branched alkyl group or an alkenyl group; an alicyclic hydrocarbon group; or an aromatic hydrocarbon group. Preferred examples of R 1 are a lower alkyl group having 1 to 4 carbon atoms and a phenyl group.
[0016]
In the transition metal complex of the present invention represented by the general formula (1), the functional group R 2 bonded to the phosphorus atom P is a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group or an alkoxy group having a silicon atom. Or represents an amino group. The hydrocarbon group may be any of a straight chain or branched chain hydrocarbon group such as an alkyl group or an alkenyl group; an alicyclic hydrocarbon group; or an aromatic hydrocarbon group. Preferred examples of R 2 are an alkyl group having 1 to 4 carbon atoms and a phenyl group.
[0017]
In the transition metal complex of the present invention represented by the formula (1), the phosphorus atom P is generally trivalent. In this case, Z does not exist in the formula (1). However, the phosphorus atom P can also be pentavalent, and in the case of P (V), Z exists, and this Z is an oxygen atom, a sulfur atom or NR (R represents an alkyl group having 1 to 4 carbon atoms). Represents.
[0018]
As the transition metal represented by M 2 in the metal complex of the present invention according to the general formula (1), in principle, all transition metals can be applied, and the valence is not particularly limited, It can be applied to all valences. From a practical point of view, M 2 represents a group 8, 9, or 10 transition metal, that is, Fe (O), Fe (II), Fe (III), Ru (O), Ru (II), Ru. (III), Ru (IV), Os (O), Os (II), Os (IV), Co (I), Co (II), Rh (I), Rh (III), Rh (V), Ir (I), Ir (III), Ir (V), Ni (O), Ni (II), Pd (O), Pd (II), Pd (IV), Pt (O), Pt (II) or Pt Those selected from (IV) are preferable, and those selected from Rh (I), Ni (II), Pd (II) or Pt (II) are particularly preferable as olefin polymerization catalysts and hydroformylation reaction catalysts. It is.
[0019]
In the metal complex of the present invention represented by the general formula (1), the ligand L coordinated to the second transition metal M 2 as described above is extremely diverse, and can be coordinated to the transition metal conventionally. Many atoms, functional groups or atomic groups known as are applicable, halogen atoms; hydrocarbon groups or alkoxy groups having 1 to 20 carbon atoms; carbonyl groups; phosphines, isonitriles, amines, ethers, Examples thereof include sulfides. The hydrocarbon group may be a chain hydrocarbon group, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group. Preferable examples of L in the metal complex used as an olefin polymerization catalyst, a hydroformylation reaction catalyst, and the like are a halogen atom, a lower alkyl group having 1 to 4 carbon atoms, a carbonyl group (—CO), or a phosphine (PR 3 : R generally represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms). The above atoms, functional groups or atomic groups are bonded to 2 to 4 M 2 according to the valence of the transition metal M 2 .
[0020]
In the metal complex of the present invention represented by the formula (1), n Xs bonded to the transition metal M 1 are generally the same, but may be different. Further, the two R 2 bonded to the phosphorus atom P are generally the same, but they may be different. Further, m Ls bonded to the transition metal M 2 are generally the same, but may be different (see Example 5 described later). Formula (1) includes these aspects.
[0021]
In the metal complex of the present invention represented by the formula (1), the transition metal M 1 and the transition metal M 2 are generally different types of metals as understood from the above description. It can also be a kind of metal. Furthermore, the metal complex of the present invention is generally represented by the formula (1), but also includes a case corresponding to a dimer of the formula (1) (Example 8 described later). reference).
[0022]
The metal complex of the present invention represented by the formula (1) (or a dimer thereof) includes a metal complex (metal compound) of the first transition metal represented by the formula (2) and the second transition. It can be synthesized by reacting a metal complex (metal compound) with a metal at a temperature of about room temperature to 50 ° C. Here, the metal compound of the second transition metal has a ligand (for example, dienes, ethers, sulfides) that can be substituted with the phosphorus atom (P), and this is used as the first transition metal. By reacting with the metal compound of the metal, the metal complex of the present invention in which the phosphorus atom in the metal compound of the first transition metal is coordinated to the second transition metal is obtained. When synthesizing the metal complex of the present invention corresponding to the dimer of the formula (1), a halogen atom is coordinated as the second transition metal metal compound in addition to the ligand as described above. What is necessary is just to use what is doing (refer Example 8 mentioned later).
[0023]
The method for producing the metal compound of the first transition metal represented by the above-described formula (2) used for the synthesis of the metal complex of the present invention is also described in the previous application (Japanese Patent Application No. 2002-063890) by the present inventors. However, it is roughly as follows.
Among the metal compounds represented by the formula (2), those in which X has a halogen atom, an alkoxy group or an amino group are a reaction between an alkali metal salt of aminophosphine and a transition metal compound represented by the following formula (3) Can be synthesized.
[0024]
[Formula 4]
Figure 0003822844
[0025]
In Formula (3), M1 represents a trivalent, tetravalent or pentavalent transition metal as in Formula (1), X is a halogen atom, an alkoxy group or an amino group, and n is It is an integer of 1 to 3, and Y is a halogen atom.
Among the metal compounds represented by formula (2), those in which X has a hydrogen atom are synthesized by the reaction of typical metal hydrides with compounds in which X has a halogen atom among the compounds represented by formula (2). .
Among the metal compounds represented by the formula (2), those in which X has a hydrocarbon group such as an alkyl group, an aryl group, or a vinyl group are those in which the compound in the formula (2) has a halogen atom. And a typical metal alkyl, aryl or vinyl derivative.
[0026]
The fact that the metal complex of the present invention obtained as described above has a structure represented by the formula (1) (or a structure corresponding to the dimer thereof) is analyzed by NMR, elemental analysis and X-ray crystal structure analysis. It is possible to confirm using such means.
Thus, the metal complex of the present invention is a new type of heterobimetallic complex containing aminophosphine, which is a heteroatom ligand, and containing two transition metals. For example, each transition metal exhibits activity. It can be used as a homogeneous catalyst in various chemical reactions known as In fact, the metal complex of the present invention has been confirmed to be useful as a catalyst for olefin polymerization (see Examples below), and can also be used as a catalyst for hydroformylation reaction.
[0027]
Although the transition metal complex of the present invention can be used alone as an olefin polymerization catalyst, generally, the transition metal complex of the present invention is used as a main catalyst to carry out olefin polymerization in the presence of a promoter to produce a polyolefin. To do. The co-catalyst refers to a compound that can form a polymerization active species capable of polymerizing an olefin by acting or reacting with the transition metal complex of the present invention. Examples of such activation cocatalysts include alkylaluminoxanes and non-coordinating anionic compounds that have been widely used as cocatalyst components in homogeneous olefin polymerization catalyst systems in recent years. It is not limited.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited only to these Examples.
The synthesis of the transition metal complex (transition metal compound) was performed using a Schlenk technique or a glove box, and all operations were performed under an argon atmosphere. All the solvents used for the preparation of the transition metal compound were deoxygenated and dehydrated by a known method, and then transferred to a reaction vessel under vacuum immediately before use. Transition metal compounds are identified by melting point measurement, 1 H, 13 C, 31 P NMR (JEOL Lambda 400, 600 MHz) at room temperature, elemental analysis, X-ray crystal structure analysis (Rigaku RAXIS-CS (Fig. 1), Rigaku RAXIS -RAPID (FIGS. 2 and 3), all using MoKα radiation (0.71069 Å). The polymerization reaction was performed at room temperature for a predetermined time while continuously supplying ethylene gas using a 100 mL autoclave. As the solvent used for the polymerization, a commercially available dehydrated solvent (Kanto Chemical) was used after deoxygenation and dehydration by a known method. Ethylene gas was used in polymerization grade and without further purification.
A schematic synthesis method and structural formula of each transition metal compound are shown in FIG. In the chemical structural formula shown in FIG. 4, carbon atoms and hydrogen atoms are omitted in accordance with a conventional expression. Me represents a methyl group, and rt is room temperature.
[0029]
Example 1: Preparation of [titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] platinum [bis (dichloride)] Cl 2 Ti {Ph 2 PN (t-Bu)} 2 PtCl 2 Below, we measure titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] (34 mg / 0.054 mmol) and dichloro (1,5-cyclooctadienyl) platinum (20 mg / 0.054 mmol). Then, methylene chloride (5 mL) was added, and the reaction was carried out at 50 ° C. for 13 hours. After completion of the reaction, the title compound (39 mg) was dried under reduced pressure, washed with hexane (2 mL × 2), redissolved in methylene chloride (3 mL) warmed in a hot water bath and recrystallized at −30 ° C. /0.045 mmol / 83%).
mp. 131-133 ° C (dec).
1 H NMR (CD 2 Cl 2 ): δ1.42 (s, 18H, t−Bu), 7.07−7.15 (m, 8H, ortho), 7.21−7.41 (m, 4H, para), 7.42−7.57 (m , 8H, meta).
13 C { 1 H} NMR (CD 2 Cl 2 ): δ32.9 (t−Bu), 70.2 (4 o of t−Bu), 125.2 (meta of PPh 2 ), 127.5 (para of PPh 2 ), 130.5 (4 o of PPh 2 ), 131.2 (ortho of PPh 2 ).
31 P { 1 H} NMR (CD 2 Cl 2 ): δ 6.80 (s, J PtP = 1348 Hz).
Anal.Calcd.for C 32 H 38 N 2 P 2 Cl 4 TiPt: H, 4.27; C, 42.83; N, 3.12. Found: H, 4.30; C, 42.81; N, 3.08.
FIG. 1 shows the result (ORTEP diagram) of the X-ray crystal structure analysis of [titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] platinum [bis (dichloride)] obtained by the above method.
[0030]
Example 2: Preparation of complex solution A [Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] platinum [bis (dichloride)] obtained in Example 1 under an argon stream (9.0 mg / 10 Toluene solution (50 mL) of methylaluminoxane (PMAO manufactured by Tosoh Akzo Co., Ltd., 10 mmol in terms of aluminum atoms) was added to (mol), and stirred at room temperature for 12 hours to prepare complex solution A.
Ethylene polymerization: The complex solution A prepared by the above method was added to a 100 mL autoclave, and polymerization was performed at room temperature for 30 minutes while supplying ethylene so that the ethylene pressure was 10 kg / cm 2 G. The obtained polymer was washed with methanol / hydrochloric acid and then dried under reduced pressure for 24 hours to obtain 38 mg of polymer.
[0031]
Example 3 Preparation of [titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] palladium [bis (dichloride)] Cl 2 Ti {Ph 2 PN (t-Bu)} 2 PdCl 2 under an argon stream , Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] (30 mg / 0.048 mmol) and dichloro (1,5-cyclooctadienyl) palladium (14 mg / 0.048 mmol) were weighed, Methylene chloride (5 mL) was added. Thereafter, the mixture was stirred at room temperature for 1 minute, heated to 50 ° C., allowed to stand and reacted for 13 hours. After completion of the reaction, the solvent was removed to obtain the title compound (34 mg / 0.042 mmol / 87%) as dark red crystals.
mp. 128−130 ℃ (dec.)
. Anal.Calcd for C 32 H 38 N 2 P 2 Cl 4 TiPd:. H, 4.74; C, 46.53; N, 3.46 Found: H, 4.85; C, 45.86; N, 3.35.
FIG. 2 shows the result (ORTEP diagram) of the X-ray crystal structure analysis of [titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] palladium [bis (dichloride)] obtained by the above method.
[0032]
Example 4: Preparation of complex solution B [Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] palladium [bis (dichloride)] obtained in Example 3 under an argon stream (8.1 mg / 10 μmol) ) Was added to a toluene solution (50 mL) of methylaluminoxane (PMAO manufactured by Tosoh Akzo Co., Ltd., 10 mmol in terms of aluminum atoms) and stirred at room temperature for 12 hours to prepare a complex solution B.
Ethylene polymerization: Complex solution B prepared by the above method was added to a 100 mL autoclave, and polymerization was performed at room temperature for 30 minutes while supplying ethylene so that the ethylene pressure was 10 kg / cm 2 G. The obtained polymer was washed with methanol / hydrochloric acid and then dried under reduced pressure for 24 hours to obtain 122 mg of polymer.
[0033]
Example 5: [Titanium [mono (chloro) mono (bromo) bis (Nt-butyl-diphenylphosphine)] nickel [mono (chloro) mono (bromo)] BrClTi {Ph 2 PN (t-Bu)} 2 NiBrCl adjustment Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] (70 mg / 0.11 mmol) and dibromo (dimethoxyethane) nickel under argon flow (34 mg / 0.11 mmol) was weighed and methylene chloride (30 mL) was added. Thereafter, the mixture was stirred at 50 ° C. for 14 hours, allowed to cool, and then filtered through celite. After drying under reduced pressure, the brown composition product was washed with a mixed solution of methylene chloride / hexane (3/1) to obtain a reddish brown title compound (64 mg / 0.075 mmol / 69%).
mp. 135 −138 ° C. (dec).
1 H NMR (CD 2 Cl 2 ): δ1.36 (s, 9H, t-Bu), 1.37 (s, 9H, t-Bu), 7.15-7.45 (m, 14H, ortho), 7.46-7.57 (m , 4H, para), 7.61-7.72 (m, 2H, meta).
31 P { 1 H} NMR (CD 2 Cl 2 ): δ-16.0 (s), -16.9 (s).
[0034]
Example 6: Preparation of Complex Solution C [Titanium [mono (chloro) mono (bromo) bis (Nt-butyl-diphenylphosphine)] nickel [mono (chloro) mono ( Bromo)] (8.5 mg / 10μmol) was added to a toluene solution (50 mL) of methylaluminoxane (PMAO manufactured by Tosoh Akzo Co., Ltd., 10 mmol in terms of aluminum atoms) and stirred at room temperature for 12 hours to complex solution C Adjusted.
Ethylene polymerization: Complex solution C prepared by the above method was added to a 100 mL autoclave, and polymerization was performed at room temperature for 30 minutes while supplying ethylene so that the ethylene pressure was 10 kg / cm 2 G. The obtained polymer was washed with methanol / hydrochloric acid and then dried under reduced pressure all day and night to obtain 143 mg of polymer.
[0035]
Example 7: [Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] platinum [bis (dimethyl)] Cl 2 Ti {Ph 2 PN (t-Bu)} 2 Pt (CH 3 ) 2 Preparation of Titanium [Bis (dichloro) bis (Nt-butyl-diphenylphosphine)] (50 mg / 0.079 mmol) and bis {dimethyl (μ-dimethylsulfide) platinum} (23 mg / 0.039 mmol) Weighed and added methylene chloride (15 mL), and reacted at room temperature for 30 minutes. After completion of the reaction, it was dried under reduced pressure, washed with ether (7 mL), and recrystallized at −30 ° C. using a mixed solvent of methylene chloride / ether (1/1) to give the title compound (54 mg / 0.063 mmol / 81%).
mp. 147 − 148 o C (dec.).
1 H NMR (CD 2 Cl 2 ): δ0.75 (d, J PH = 4.8 Hz, J PtH = 18.0 Hz, 3H, Me), 0.77 (d, J PH = 4.8 Hz, J PtH = 18.0 Hz, 3H , Me), 1.38 (s, 18H, t-Bu), 7.21-7.41 (m, 4H, para), 7.42-7.57 (m, 8H, meta). 13 C {1 H} NMR (CD 2 Cl 2) : δ14.8 (d, J Pt-C = 6.5 Hz, CH 3 ), 15.3 (d, J Pt-C = 6.5 Hz, CH 3 ), 32.9 (t-Bu), 70.2 (4 o of t-Bu ), 125.2 (meta of PPh 2 ), 127.5 (para of PPh 2 ), 130.5 (4 o of PPh 2 ), 131.2 (ortho of PPh 2 ).
31 P { 1 H} NMR (CD 2 Cl 2 ): δ 6.80 (s, J PtP = 1348 Hz).
Anal.Calcd. For C 32 H 38 N 2 P 2 Cl 4 TiPd: H, 5.18; C, 47.68; N, 3.27. Found: H, 5.21; C, 47.71; N, 3.24.
FIG. 3 shows the result (ORTEP diagram) of the X-ray crystal structure analysis of [titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] platinum [bis (dimethyl)] obtained by the above method.
[0036]
Example 8: Preparation of {[Titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] rhodium chloride] dimer [Cl 2 Ti {Ph 2 PN (t-Bu)} 2 RhCl] 2 Below, titanium [bis (dichloro) bis (Nt-butyl-diphenylphosphine)] (50 mg / 0.079 mmol) and chloro (1,5-cyclooctadienyl) rhodium (I) dimer (19 mg / 0.039 mmol) ), Add methylene chloride (15 mL), and dissolve with an ultrasonic cleaner. Thereafter, the mixture was allowed to stand at room temperature for 24 hours, washed with hexane (3 mL) and dried under reduced pressure to obtain the title compound (49 mg / 0.063 mmol / 81%).
mp. 143-145 ° C (dec.).
. Anal.Calcd for C 32 H 38 N 2 P 2 Cl 3 TiRh:. H, 4.98; C, 49.93; N, 3.64 Found: H, 4.68; C, 50.21; N, 3.54.
The results of ethylene polymerization are summarized in Table 1 below.
[0037]
[Table 1]
Figure 0003822844

[Brief description of the drawings]
1 is an ORTEP diagram showing the results of X-ray crystal structure analysis of a transition metal complex of Example 1 as an example of the present invention, (A) is an overall view, and (B) is a horizontal view. FIG.
2 is an ORTEP diagram showing the results of X-ray crystal structure analysis of the transition metal complex of Example 3 as an example of the present invention, (A) is an overall view, and (B) is a horizontal view. FIG.
3 is an ORTEP diagram showing the results of X-ray crystal structure analysis of the transition metal complex of Example 7 as an example of the present invention, (A) is an overall view and (B) is a horizontal view. FIG.
FIG. 4 shows the synthesis method and the structural formula for several examples of transition metal complexes according to the present invention.

Claims (5)

下記の式(1)で表わされるか、又は式(1)の2量体で表わされることを特徴する金属錯体。
Figure 0003822844
〔式(1)中、M1は、原子価が3価、4価または5価の遷移金属を表わし、
2は遷移金属を表わし、Xは水素原子;ハロゲン原子;炭素数1〜20の炭化水素基もしくはアルコキシ基;またはアミノ基を表わし、nは1〜3の整数を表わし、R1は炭素数1〜20の炭化水素基またはケイ素原子を有する炭化水素基を表わし、R2は炭素数1〜20の炭化水素基、ケイ素原子を有する炭化水素基もしくはアルコキシ基;またはアミノ基を表わし、Zは、存在するときは、酸素原子、イオウ原子またはNR(Rは炭素数1〜4のアルキル基を示す)を表わし、Lはハロゲン原子;炭素数1〜20の炭化水素基もしくはアルコキシ基;カルボニル基;ホスフィン類;イソニトリル類、エーテル類またはスルフィド類を表わし、mは2〜4の整数を表わす。〕
A metal complex represented by the following formula (1) or represented by a dimer of the formula (1):
Figure 0003822844
[In Formula (1), M 1 represents a trivalent, tetravalent or pentavalent transition metal,
M 2 represents a transition metal, X represents a hydrogen atom; a halogen atom; a hydrocarbon group or alkoxy group having 1 to 20 carbon atoms; or an amino group, n represents an integer of 1 to 3, and R 1 represents a carbon number. Represents a hydrocarbon group having 1 to 20 hydrocarbon groups or a silicon atom, R 2 represents a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group or an alkoxy group having a silicon atom; or an amino group, and Z represents , When present, represents an oxygen atom, a sulfur atom or NR (R represents an alkyl group having 1 to 4 carbon atoms), L is a halogen atom; a hydrocarbon group or alkoxy group having 1 to 20 carbon atoms; a carbonyl group Phosphines; isonitriles, ethers or sulfides; m represents an integer of 2 to 4; ]
1がTi(IV)、Zr(IV)、Hf(IV)、Sc(III)、Y(III)、La(III)、V(V)、Nb(V)またはTa(V)から選ばれ、M2がFe(O)、Fe(II)、Fe(III)、Ru(O)、Ru(II)、Ru(III)、Ru(IV)、Os(O)、Os(II)、Os(IV)、Co(I)、Co(II)、Rh(I)、Rh(III)、Rh(V)、Ir(I)、Ir(III)、Ir(V)、Ni(O)、Ni(I)、Ni(II)、Pd(O)、Pd(II)、Pd(IV)、Pt(O)、Pt(II)またはPt(IV)から選ばれることを特徴とする請求項1に記載の金属錯体。M 1 is selected from Ti (IV), Zr (IV), Hf (IV), Sc (III), Y (III), La (III), V (V), Nb (V) or Ta (V) M 2 is Fe (O), Fe (II), Fe (III), Ru (O), Ru (II), Ru (III), Ru (IV), Os (O), Os (II), Os (IV), Co (I), Co (II), Rh (I), Rh (III), Rh (V), Ir (I), Ir (III), Ir (V), Ni (O), Ni 2. It is selected from (I), Ni (II), Pd (O), Pd (II), Pd (IV), Pt (O), Pt (II) or Pt (IV) The metal complex described. 1がTi(IV)、Zr(IV)またはHf(IV)から選ばれ、M2がRh(I)、Ni(II)、Pd(II)またはPt(II)から選ばれることを特徴とする金属錯体。M 1 is selected from Ti (IV), Zr (IV) or Hf (IV), and M 2 is selected from Rh (I), Ni (II), Pd (II) or Pt (II) Metal complex. 請求項3の金属錯体から成るオレフィン重合用触媒。An olefin polymerization catalyst comprising the metal complex according to claim 3. 請求項3の金属錯体から成るヒドロホルミル化反応用触媒。A catalyst for hydroformylation reaction comprising the metal complex of claim 3.
JP2002168079A 2002-06-10 2002-06-10 Metal complexes containing heteroatom ligands and two metals Expired - Lifetime JP3822844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168079A JP3822844B2 (en) 2002-06-10 2002-06-10 Metal complexes containing heteroatom ligands and two metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168079A JP3822844B2 (en) 2002-06-10 2002-06-10 Metal complexes containing heteroatom ligands and two metals

Publications (2)

Publication Number Publication Date
JP2004067511A JP2004067511A (en) 2004-03-04
JP3822844B2 true JP3822844B2 (en) 2006-09-20

Family

ID=32012272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168079A Expired - Lifetime JP3822844B2 (en) 2002-06-10 2002-06-10 Metal complexes containing heteroatom ligands and two metals

Country Status (1)

Country Link
JP (1) JP3822844B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5844636B2 (en) * 2011-12-27 2016-01-20 出光興産株式会社 Method for producing α-olefin

Also Published As

Publication number Publication date
JP2004067511A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Álvarez-Rodríguez et al. The transition-metal chemistry of amidinatosilylenes,-germylenes and-stannylenes
Nagashima et al. Dynamic titanium phosphinoamides as unique bidentate phosphorus ligands for platinum
Sivaramakrishna et al. Hydrocarbon (π-and σ-) complexes of nickel, palladium and platinum: Synthesis, reactivity and applications
Downie et al. The first ring-expanded NHC–copper (i) phosphides as catalysts in the highly selective hydrophosphination of isocyanates
Bennett et al. Bis {(2-diphenylphosphino) phenyl} mercury: A P-Donor Ligand and Precursor to Mixed Metal− Mercury (d8− d10) Cyclometalated Complexes Containing 2-C6H4PPh2
Wong-Foy et al. Intramolecular C H activation by dicationic Pt (II) complexes
Bailey et al. Guanidine anions as chelating ligands; syntheses and crystal structures of [Rh (η-C 5 Me 5){η 2-(NPh) 2 CNHPh} Cl] and [Ru (η-MeC 6 H 4 Pr i-p)-{η 2-(NPh) 2 CNHPh} Cl]
JP2004533487A (en) Non-metallocenes, their production process and their use for the polymerization of olefins
Allgeier et al. [Rh (. eta. 4-((. eta. 5-C5H4) OCH2CH2P (C6H5) 2) 2Fe)] BF4: An Olefin Hydrogenation Catalyst and the First Rhodium (I) cis-Phosphine-cis-Ether Complex Characterized by Single-Crystal X-ray Diffraction Methods
Ganter et al. New P, N‐Chelate Ligands Based on Pyridyl‐Substituted Phosphaferrocenes
JP2002541152A (en) Metal compound containing neutral polydentate azacyclo ligand, catalyst using the metal compound, method for polymerizing olefin using the metal compound
JP3822844B2 (en) Metal complexes containing heteroatom ligands and two metals
JP4138417B2 (en) Method for synthesizing organometallic compounds
Laskar et al. Tantallacyclopentadiene as a unique metal-containing diene ligand coordinated to nickel for preparing tantalum–nickel heterobimetallic complexes
Werner et al. Synthesis and reactivity of bis (ethene) rhodium (I) and iridium (I) carboxylato complexes
Colacot et al. Organometallic sandwich compounds in homogeneous catalysis: An overview
Wu et al. Synthesis and structures of o-phenylene-bridged Cp/phosphinoamide titanium complexes
Agostinho et al. Palladium (II) complexes with the new P, N-type ligand (2-oxazoline-2-ylmethyl) di-isopropylphosphine as intermediates in CO/ethylene or CO/methyl acrylate insertion
JPH0753442A (en) Carbonylation of methanol or its reactive derivative
Havlík et al. Highly substituted zirconium and hafnium cyclopentadienyl bifunctional β-diketiminate complexes–Synthesis, structure, and catalytic activity towards ethylene polymerization
Le Gendre et al. Synthesis and structural studies of Ti Ru polymetallic systems
WO2018232503A1 (en) Rigid non-cyclopentadienyl group 4 transition metal and rare earth metal catalysts for olefin polymerization
Hashimoto et al. Synthesis of η2-cyclooctene iridium and rhodium complexes supported by a novel P, N-chelate ligand and their reactivity toward hydrosilanes: facile Cl migration from metal to silicon via silylene complex intermediates and formation of a base-stabilised silylene complex
JP3798327B2 (en) Transition metal complexes used for olefin polymerization
JP4092448B2 (en) Method for producing organic compound using organic bismuth compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020610

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4