JP3821019B2 - Ceramic hollow fiber membrane module - Google Patents

Ceramic hollow fiber membrane module Download PDF

Info

Publication number
JP3821019B2
JP3821019B2 JP2002059667A JP2002059667A JP3821019B2 JP 3821019 B2 JP3821019 B2 JP 3821019B2 JP 2002059667 A JP2002059667 A JP 2002059667A JP 2002059667 A JP2002059667 A JP 2002059667A JP 3821019 B2 JP3821019 B2 JP 3821019B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
tube
membrane module
bundled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002059667A
Other languages
Japanese (ja)
Other versions
JP2003251164A (en
Inventor
佳宏 赤澤
智行 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2002059667A priority Critical patent/JP3821019B2/en
Publication of JP2003251164A publication Critical patent/JP2003251164A/en
Application granted granted Critical
Publication of JP3821019B2 publication Critical patent/JP3821019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歪曲な熱変形による破損等を有効に防止し得るセラミックス中空糸膜モジュールに関する。
【0002】
【従来の技術】
膜形成性を有する高分子物質の有機溶媒溶液中にAl2O3、SiO2、ZrO2などのセラミックス粉末を高充填した紡糸原液を用いて乾湿式紡糸を行い、得られた複合中空糸膜を焼成することにより、孔径が約0.1〜6.0μm、外径約0.5〜4.0mmの多孔質セラミックス中空糸膜を製造する技術は周知である(特公平5−66343号公報等)。
【0003】
そうした多孔質セラミックスによる中空糸膜は、単体でも水処理などのろ過膜として用いることができるが、それを支持体に用いて中空糸膜の表面にPd膜層、シリカ層などの機能性分離層を複合させて形成することにより、ガス分離膜として機能させる利用法も可能である。その場合、中空糸膜は1本から数百本程度を束ねて長い筒体であるアルミナやジルコニア製の束着管の内部に収容した状態で中空糸膜モジュールを形成させる。
【0004】
かかる中空糸膜モジュールにおいて、中空糸膜25を多数本収容した束着管21に、その中央部分に束着材充填用の切欠部分27を1個所設けた構造をとることができる(図6)。中空糸膜群の束着管への収容は、中空糸膜群端部を貫通孔26を有する平板23(以下、単に「目皿」という)を介して束着することによって行われ、その際束着管21に設けられる切欠部分27は、束着材を内側から目皿部分に充填するために設けられる。このような中空糸膜モジュールをガス分離膜として用いる場合、束着管の一端側から分離ガスを供給して給気し、他端側から排気して流通させることにより、中空糸膜群に分離ガスを接触させて透過後は回収するようにしている。
【0005】
ところで、かかる束着管にあっては、円筒形の長手方向中央部において管体の半周部分を1個所切除しているために管体が中心軸から非対称形となり、高温雰囲気で使用すると束着管がその切除部を上にして凸状に撓んだり歪んだりし、束着管末端部とそこに嵌挿された目皿との間で位置ずれが生じたり、また熱膨張率の差で発生する熱応力による変形で目皿などの部材に局所的に応力が集中し、モジュールが破損に至る場合がある。
【0006】
また、中空糸膜群の両端部を目皿に封止状態で固定するために、束着材としてガラスシール材を用いているが、このガラスシール材を焼成するのに一般には900℃以上の熱処理温度が必要とされている。中空糸膜モジュールを使用する温度条件は通常300〜350℃であるから、この300〜350℃という温度を基準にしてモジュール構成部材の熱膨張率を設定すると、ガラスシール材の焼成温度が900℃という高温では、各部材間の熱膨張率の差が大きくなってしまう。
【0007】
その結果、ガラスシール材の焼成工程で束着管と中空糸群との間に熱膨張率の差だけ位置ずれが生じ、冷却が進行して位置ずれが生じたまま固定されると、双方に応力が働いて残留応力の発生原因となる。残留応力を生じたまま製造完了した中空糸膜モジュールを実使用に提供すると、モジュール使用温度である300〜350℃の範囲内であっても、加熱によってモジュールが破損する場合がある。
【0008】
【発明が解決しようとする課題】
本発明の目的は、多孔質セラミックス中空糸膜の多数を束ねて収容する束着管を構造的に改良することにより高温雰囲気で使用中の熱変形を抑え、破損等に対して耐久性を向上させたセラミックス中空糸膜モジュールを提供することにある。
【0009】
【課題を解決するための手段】
本発明にかかる請求項1記載のセラミックス中空糸膜モジュールは、多孔質セラミックスによる中空糸膜の多数を束ねて、長筒状の束着管に収容してなるものであって、束着管の管中心軸に対して両側の対称な等配位置の部分をそれぞれ対称形に切除してガス給排気用の開口部を設け、多数束ねられた多孔質セラミックス中空糸膜の長筒状束着管への収容が、中空糸膜保持用貫通孔穿設平板によって行われたことを特徴とする。ここで、対称な等配位置とは、開口数を限定せず、2等配、3等配、4等配など束着管の円周方向に等間隔に開口部を設置することを意味している。
【0010】
また、請求項2に記載のセラミックス中空糸膜モジュールは、前記束着管の両端部近傍でそれぞれ両側に等配の開口部を短孔形状に設けた場合であり、一端側がガス給気用で他端側がガス排気用となっている。
【0011】
この場合、束着管の両端部近傍にガス給気用とガス排気用の短孔形状の開口部を最小限必要なサイズで設ければよいから、管全体の剛性を維持できたり、熱変形を最小限に抑えることができる他、目皿と呼ぶモジュール構成部材である中空糸膜保持用貫通孔穿設平板を組み込んで製作する際の作業性を配慮して設定することができる。
【0012】
さらに、請求項3記載のセラミックス中空糸膜モジュールは、束着管のほぼ管全長に亘って開口部を等配の長孔形状に設けた場合であり、その一端側からガスを給気して他端側から排気できるようになっている。
【0013】
この場合、束着管に設けた開口部を長孔形状とすることで、それだけの範囲の管肉厚が抜けるのでモジュール全体の軽量化が図られると同時に、ガス吸排気が効率アップし、またモジュール構成部材である中空糸膜保持平板の目皿を組み込む作業がはかどる。
【0014】
【発明の実施の形態】
本発明にかかるセラミックス中空糸膜モジュールの実施の形態について、図面を参照して詳細に説明する。
図1に示すように、中空糸膜モジュール1は、細長い筒体である束着管2の内部に多孔質セラミックスによる中空糸膜3の1〜500本程度を束ねたものを収容している。中空糸膜3の束群は、束着管2の両端部4で円板形の目皿5に結合して保持されている。
【0015】
図2(a)〜(c)に示すように、束着管2は細長い直管状の筒体であり、両端部のそれぞれ近傍において管中心軸から両側の対称位置の部分を切除して楕円形または短孔形状の開口部2aが左右対称形で計4つが設けられている。但し、そうした開口部2aの設置数は4つということに限定されるものではない。その場合、短孔形状の開口部2aの長さ寸法としては、好ましくは15mm以上である。束着管2の材質としては、気密性を有し、束着材で封止できれば任意であり、例えばアルミナ管、ジルコニア管、チタニア管、シリカ管、そしてガラス管などを用いることができる。
【0016】
また、図3(a)〜(c)に示すように、束着管2としては図2に示す構造の他、やはり管中心軸から両側の対称位置の部分をこの場合ほぼ管全長に亘って長孔形状の開口部2bが左右対称形で2つ設けられている。そのように短孔形状の開口部2aや長孔形状の開口部2bを設ける理由は、中空糸膜3の束群に分離ガスを接触させて透過させるためのガス給排気用であると同時に、目皿5を組み入れて封着する際の作業性を高めたりするためである。図4(a),(b)は、長孔形状の開口部2bを設けた場合の束着管2に中空糸膜3の束群を収容した状態を示す一例である。
【0017】
このように、束着管2にガス給排気用の開口部2aまたは2bを管体両側の対称な等配位置に対称形に設けたことで、非対称形に設けた構造のような不均衡な熱膨張で撓みや歪みが発生するのを極力抑えることができる。すなわち、束着管2の熱変形を抑えることで、中空糸膜3など他の部材に影響して応力集中が生じるのを防げ、モジュールの破損といった事態を避けるのに有効である。
【0018】
一方、中空糸膜3と両端の目皿5、この目皿5と束着管端部4といったそれぞれ部材間の接合は、ガラスシール材でもって互いに封止状態で接合されている。ガラスシール材としては、束着管2、中空糸膜3および目皿5の各部材の熱膨張率の差が±0.5×10-6/℃の範囲内に納まる焼成温度の範囲600〜700℃で熱処理が可能な材質のものが用いられる。
【0019】
したがって、中空糸膜モジュール1としては、上記各部材で構成されるモジュール全体の熱膨張が均一となり、熱膨張差でもって熱応力が発生するのを極力抑えることができる。また、ガラスシール材の焼成工程でも通常は前述したように900℃以上の熱処理温度が必要とされるが、ここではそれよりもかなり低く600〜700℃で焼成可能な材質のものを選定しているから、ガラスシール焼成時の部材間の熱膨張差を最小限に抑えられる。それにより、部材間で位置ずれが生じないように工夫され、冷却後の残留応力の発生を最小限に抑えている。
【0020】
具体例:
束着管2として例えば図3(a)〜(c)と図4(a),(b)で示された長孔形状のガス吸排気用開口部2bを設けたものを使用し、束着管端部4内を塞ぐように接合される目皿5にはアルミナ製のものを使用した。この目皿5に貫通して設けた孔径3.6mmの孔に外径3mmの中空糸膜3の19本を両端で挿通させ、束着管2の内部にそれら19本の中空糸膜3の束群を固定して収容しセットする。束着管2の端部4と目皿5の接合個所にはガラスシール材を塗布して700℃で焼成することにより部材間の封止を行い、中空糸膜モジュール1を作製した。
【0021】
束着管2、中空糸膜3および目皿5の各部材の材質は、50〜600℃の焼成温度において熱膨張係数が7.4×10-6/℃から7.6×10-6/℃の範囲に納まる純度95.0%以上のアルミナを使用した。
【0022】
つぎに、図5に示すように、かかる中空糸膜モジュール1をリーク評価試験装置10にセットし、高温雰囲気中でのガス漏洩試験を行った。本試験装置10は、中空糸膜モジュール1を収容するSUS製で円筒容器形のハウジング11が備わり、このハウジング胴部の両端側において分離ガスを供給する吸気管12と排気管13が突出して設けられている。吸気管12は、図示されていないがガス供給源に連通しており、排気管13を一時封止した状態で真空ポンプで減圧することにより、バルブを閉じ、圧力計で圧力変化を測定するようになっている。また、そうしたハウジング11の胴部両端開口部はフランジ11aとなっており、それぞれ蓋部材のカバー14,15をボルト16で結合して閉塞されている。両端のそれらカバー14,15には中心から外方へ突出して透過ガス排気管14a,15aが設けられ、中空糸膜3の束群を透過してきたガスを系外の装置に送るための配管に連通させている。
【0023】
なお、かかる装置において所要の気密性を確保するために、ハウジング11とこれに収容された中空糸膜モジュール1側の端部4との間にシール材としてO−リング17が装着され、またハウジング胴部フランジ11aとカバー14,15との間にもO−リング18が装着されている。
【0024】
ガス漏れ試験は、吸気管12から窒素ガス(N 2 )をハウジング11内部に供給し、束着管2内に開口部2bの一端側から導入して中空糸膜3の束群に接触させて透過させる。その際、排気管13側の圧力は0.49MPaに調整し、ハウジング片側の透過ガス排気管14aを封止し、もう一方のハウジング片側の透過ガス排気管15aから流出する窒素ガス量を流量計で測定する。温度は装置全体と窒素ガスをそれぞれ350℃で加熱して行った。
【0025】
評価:
その結果、1時間の加熱試験後、ガス漏れは発生せず、極めて気密性の高い中空糸膜モジュール1であることが確認された。また、本発明の主旨である束着管2の熱変形防止という問題に関しても、不均衡な熱膨張によって撓んだり歪んだりする傾向は全く見られず、中空糸膜モジュール1の構成部材である束着管や目皿などにも何ら変化はなく、部材同士の間の位置ずれも発生することなく、極めて耐熱性と熱変形抑止性に優れた中空糸膜モジュール1であることが確認された。
【0026】
【発明の効果】
本発明にかかるセラミックス中空糸膜モジュールは、束着管の管体両側にガス給排気用の開口部を対称形に設けたことで熱膨張が均衡化され、管体片側だけ非対称位置に開口部を設けたもののように、束着管が熱影響を不均衡に受けて生じる熱応力でもって撓んだり、歪んだりして熱変形することで、モジュールが破損するといった問題を払拭できる。
【図面の簡単な説明】
【図1】束着管内にセラミックス中空糸膜の多数を束ねて収容して構成される中空糸膜モジュールを示す断面図である。
【図2】束着管の第1実施の形態を示す斜視図(a)、側面図(b)およびY1−Y1線からの縦断面図(c)である。
【図3】束着管の第2実施の形態を示す斜視図(a)、側面図(b)およびY2−Y2線からの縦断面図(c)である。
【図4】第2実施の形態の束着管に中空糸膜の束群を収容した状態を示す側面図(a)およびY3−Y3線からの縦断面図(b)である。
【図5】本実施の形態の中空糸膜モジュールをリーク評価試験装置にセットしてガス漏れ試験を行う態様を示す断面図である。
【図6】束着管中央部分に1個所の切欠部分を設けた中空糸膜モジュールの斜視図である。
【符号の説明】
1 中空糸膜モジュール
2 束着管
2a 短孔形状の開口部
2b 長孔形状の開口部
3 中空糸膜
4 束着管端部
5 中空糸膜保持用平板の目皿
10 リーク評価試験装置
11 ハウジング
12 吸気管
13 排気管
14,15 ハウジングカバー
14a、15a 透過ガス排気管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic hollow fiber membrane module that can effectively prevent breakage due to distorted thermal deformation.
[0002]
[Prior art]
Composite hollow fiber membrane obtained by dry-wet spinning using a spinning stock solution in which ceramic powder such as Al 2 O 3 , SiO 2 , ZrO 2 is highly filled in an organic solvent solution of a polymer material having film-forming properties. A technique for producing a porous ceramic hollow fiber membrane having a pore diameter of about 0.1 to 6.0 μm and an outer diameter of about 0.5 to 4.0 mm by firing is known (Japanese Patent Publication No. 5-66343).
[0003]
Such a hollow fiber membrane made of porous ceramics can be used alone or as a filtration membrane for water treatment, etc., but it can be used as a support and a functional separation layer such as a Pd membrane layer or a silica layer on the surface of the hollow fiber membrane. It is also possible to use them by combining them so as to function as a gas separation membrane. In that case, a hollow fiber membrane module is formed in a state where about 1 to several hundreds of hollow fiber membranes are bundled and accommodated inside a bundled tube made of alumina or zirconia which is a long cylinder.
[0004]
In such a hollow fiber membrane module, it is possible to adopt a structure in which a bundling tube 21 containing a large number of hollow fiber membranes 25 is provided with one notch portion 27 for filling a bundling material at the center thereof (FIG. 6). . The hollow fiber membrane group is accommodated in the bundled tube by bundling the end portion of the hollow fiber membrane group through a flat plate 23 having a through hole 26 (hereinafter simply referred to as “eye plate”). The cutout portion 27 provided in the bundling tube 21 is provided to fill the baffle material into the eye plate portion from the inside. When such a hollow fiber membrane module is used as a gas separation membrane, the separation gas is supplied from one end side of the bundled tube, supplied, and exhausted from the other end side to circulate to separate into the hollow fiber membrane group. The gas is contacted and recovered after permeation.
[0005]
By the way, in such a bundling tube, the tube body is asymmetrical from the central axis because one half circumferential portion of the tubular body is cut out at the central portion in the longitudinal direction of the cylindrical shape. The tube bends or distorts in a convex shape with its cut-out part facing up, causing a misalignment between the end of the bundled tube and the eyepiece inserted therein, or due to a difference in thermal expansion coefficient. Due to the deformation caused by the generated thermal stress, the stress is locally concentrated on the member such as the eye plate and the module may be damaged.
[0006]
Further, in order to fix both ends of the hollow fiber membrane group in a sealed state to the eye plate, a glass sealing material is used as a bundling material. Generally, the glass sealing material is baked at 900 ° C. or higher. A heat treatment temperature is required. Since the temperature condition for using the hollow fiber membrane module is usually 300 to 350 ° C., when the coefficient of thermal expansion of the module component is set based on the temperature of 300 to 350 ° C., the firing temperature of the glass sealing material is 900 ° C. At such a high temperature, the difference in coefficient of thermal expansion between the members becomes large.
[0007]
As a result, in the firing process of the glass seal material, a positional shift occurs between the bundled tube and the hollow fiber group due to the difference in the coefficient of thermal expansion. Will cause residual stress. When a hollow fiber membrane module that has been manufactured with residual stress produced is provided for actual use, the module may be damaged by heating even within the module operating temperature range of 300 to 350 ° C.
[0008]
[Problems to be solved by the invention]
The purpose of the present invention is to structurally improve the bundled tube that bundles and accommodates a large number of porous ceramic hollow fiber membranes, thereby suppressing thermal deformation during use in a high temperature atmosphere and improving durability against breakage, etc. An object of the present invention is to provide a ceramic hollow fiber membrane module.
[0009]
[Means for Solving the Problems]
A ceramic hollow fiber membrane module according to claim 1 of the present invention is a bundle of a large number of hollow fiber membranes made of porous ceramics and accommodated in a long cylindrical bundled tube. Long cylindrical bundled tubes of porous ceramic hollow fiber membranes that are bundled in large numbers by providing gas supply / exhaust openings by cutting symmetrically equidistant portions on both sides with respect to the tube center axis. It is characterized in that the housing is carried out by a flat plate with a through hole for holding a hollow fiber membrane . Here, the symmetric equidistant position means that the openings are installed at equal intervals in the circumferential direction of the bundled tube, such as two, three, four, etc., without limiting the numerical aperture. ing.
[0010]
Moreover, the ceramic hollow fiber membrane module according to claim 2 is a case in which equidistant openings are provided on both sides in the vicinity of both ends of the bundled tube, and one end side is for gas supply. The other end side is for gas exhaust.
[0011]
In this case, it is only necessary to provide short hole openings for gas supply and gas exhaust in the vicinity of both ends of the bundled tube, so that the rigidity of the entire tube can be maintained or thermal deformation can be maintained. In addition, it can be set in consideration of workability when a hollow fiber membrane-holding through-hole flat plate that is a module constituent member called an eye plate is incorporated.
[0012]
Furthermore, the ceramic hollow fiber membrane module according to claim 3 is a case where openings are provided in a uniform long hole shape over substantially the entire length of the bundled tube, and gas is supplied from one end side thereof. It is possible to exhaust from the other end.
[0013]
In this case, by making the opening provided in the bundled tube into a long hole shape, the tube thickness in that range can be removed, so that the entire module can be reduced in weight, and at the same time, the efficiency of gas intake and exhaust can be improved, and The work of incorporating the hollow fiber membrane holding flat plate, which is a module component, is quick.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a ceramic hollow fiber membrane module according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the hollow fiber membrane module 1 accommodates a bundle of about 1 to 500 hollow fiber membranes 3 made of porous ceramics in a bundled tube 2 that is an elongated cylindrical body. A bundle group of the hollow fiber membranes 3 is held by being joined to a disc-shaped eye plate 5 at both ends 4 of the bundled tube 2.
[0015]
As shown in FIGS. 2 (a) to 2 (c), the bundling tube 2 is an elongated straight tube, and an elliptical shape is formed by cutting off symmetrical portions on both sides from the tube center axis in the vicinity of both ends. Or the short hole-shaped opening part 2a is bilaterally symmetrical, and a total of four are provided. However, the number of such openings 2a is not limited to four. In that case, the length of the short hole-shaped opening 2a is preferably 15 mm or more. The material of the bundling tube 2 is arbitrary as long as it is airtight and can be sealed with a bundling material. For example, an alumina tube, a zirconia tube, a titania tube, a silica tube, and a glass tube can be used.
[0016]
As shown in FIGS. 3 (a) to 3 (c), the bundled tube 2 has a structure shown in FIG. 2 as well as a symmetrical portion on both sides from the tube center axis in this case almost over the entire length of the tube. Two long hole-shaped openings 2b are provided symmetrically. The reason for providing the short hole-shaped opening 2a and the long hole-shaped opening 2b in this way is for gas supply / exhaust for bringing the separation gas into contact with and passing through the bundle group of the hollow fiber membranes 3, and at the same time, This is to improve workability when the eye plate 5 is incorporated and sealed. FIGS. 4A and 4B are examples showing a state in which a bundle group of the hollow fiber membranes 3 is accommodated in the bundled tube 2 in the case where the long hole-shaped opening 2b is provided.
[0017]
As described above, the gas supply / exhaust openings 2a or 2b are provided symmetrically at the symmetrical equidistant positions on both sides of the tube body in the bundled tube 2, thereby providing an unbalanced structure such as an asymmetric structure. It is possible to suppress the occurrence of bending and distortion due to thermal expansion as much as possible. That is, by suppressing the thermal deformation of the bundled tube 2, it is possible to prevent stress concentration from affecting other members such as the hollow fiber membrane 3, and to avoid a situation such as breakage of the module.
[0018]
On the other hand, the hollow fiber membrane 3 and the countersunks 5 at both ends, and the joints between these members such as the countersink 5 and the bundled tube end 4 are joined in a sealed state with a glass sealing material. As the glass sealing material, a firing temperature range of 600 to 700 ° C. in which the difference in coefficient of thermal expansion among the members of the bundling tube 2, the hollow fiber membrane 3 and the eye plate 5 falls within the range of ± 0.5 × 10 −6 / ° C. A material that can be heat-treated is used.
[0019]
Therefore, as the hollow fiber membrane module 1, the thermal expansion of the entire module composed of each of the above members becomes uniform, and the generation of thermal stress due to the thermal expansion difference can be suppressed as much as possible. In addition, the glass sealing material firing process usually requires a heat treatment temperature of 900 ° C. or higher as described above. Here, a material that can be fired at 600 to 700 ° C. is selected. Therefore, the difference in thermal expansion between the members at the time of firing the glass seal can be minimized. Thereby, it is devised not to cause a positional shift between members, and the generation of residual stress after cooling is minimized.
[0020]
Concrete example:
As the bundling tube 2, for example, a tube provided with a long hole-shaped gas intake / exhaust opening 2 b shown in FIGS. 3A to 3C and FIGS. 4A and 4B is used. A piece made of alumina was used for the eye plate 5 joined so as to close the inside of the tube end 4. Nineteen hollow fiber membranes 3 with an outer diameter of 3 mm are inserted at both ends into a hole with a hole diameter of 3.6 mm provided through the eye plate 5, and a bundle of the 19 hollow fiber membranes 3 is bundled inside the bundled tube 2. Hold and set the group securely. A glass sealing material was applied to the joining portion between the end 4 of the bundled tube 2 and the eye plate 5 and fired at 700 ° C. to seal between the members, whereby the hollow fiber membrane module 1 was produced.
[0021]
The material of each member of the bundle tube 2, the hollow fiber membrane 3 and the eye plate 5 has a thermal expansion coefficient in the range of 7.4 × 10 −6 / ° C. to 7.6 × 10 −6 / ° C. at a firing temperature of 50 to 600 ° C. Alumina with a purity of more than 95.0% was used.
[0022]
Next, as shown in FIG. 5, this hollow fiber membrane module 1 was set in the leak evaluation test apparatus 10, and the gas leak test in the high temperature atmosphere was done. This test apparatus 10 is provided with a cylindrical container-shaped housing 11 made of SUS that accommodates the hollow fiber membrane module 1, and an intake pipe 12 and an exhaust pipe 13 that supply a separation gas project from both ends of the housing body. It has been. Although not shown, the intake pipe 12 communicates with a gas supply source. The exhaust pipe 13 is temporarily sealed, and the pressure is reduced by a vacuum pump so that the valve is closed and the pressure change is measured by a pressure gauge. It has become. Further, the opening portions at both ends of the body portion of the housing 11 are flanges 11a, which are closed by connecting the covers 14 and 15 of the lid members with bolts 16, respectively. The covers 14 and 15 at both ends are provided with permeate gas exhaust pipes 14a and 15a protruding outward from the center, and are used for piping for sending the gas that has permeated through the bundle group of the hollow fiber membranes 3 to a device outside the system. Communicate.
[0023]
In order to ensure the required airtightness in such an apparatus, an O-ring 17 is mounted as a seal material between the housing 11 and the end 4 on the hollow fiber membrane module 1 side accommodated therein, and the housing An O-ring 18 is also mounted between the body flange 11 a and the covers 14 and 15.
[0024]
In the gas leakage test, nitrogen gas ( N 2 ) is supplied from the intake pipe 12 into the housing 11, introduced into the bundled pipe 2 from one end of the opening 2 b, and brought into contact with the bundle group of the hollow fiber membranes 3. Make it transparent. At that time, the pressure on the exhaust pipe 13 side is adjusted to 0.49 MPa, the permeate gas exhaust pipe 14a on one side of the housing is sealed, and the amount of nitrogen gas flowing out from the permeate gas exhaust pipe 15a on the other side of the housing is measured with a flow meter. taking measurement. The temperature was determined by heating the entire apparatus and nitrogen gas at 350 ° C., respectively.
[0025]
Rating:
As a result, it was confirmed that the hollow fiber membrane module 1 did not cause gas leakage after the heating test for 1 hour and was extremely airtight. In addition, regarding the problem of preventing thermal deformation of the bundled tube 2 which is the gist of the present invention, there is no tendency to bend or distort due to unbalanced thermal expansion, and it is a constituent member of the hollow fiber membrane module 1. It was confirmed that the hollow fiber membrane module 1 was excellent in heat resistance and thermal deformation suppression without any change in the bundled tube, the eye plate, etc., and without any positional displacement between the members. .
[0026]
【The invention's effect】
The ceramic hollow fiber membrane module according to the present invention has a gas supply / exhaust opening symmetrically provided on both sides of a bundled tube so that thermal expansion is balanced, and the opening is provided at an asymmetric position only on one side of the tube. As in the case where the module is provided, it is possible to eliminate the problem that the module is damaged by bending or distorting the bundled tube due to thermal stress caused by imbalanced thermal effects.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a hollow fiber membrane module configured by bundling and housing a large number of ceramic hollow fiber membranes in a bundled tube.
FIG. 2 is a perspective view (a), a side view (b), and a longitudinal sectional view (c) taken along line Y 1 -Y 1 showing a first embodiment of a bundled tube.
FIG. 3 is a perspective view (a), a side view (b), and a longitudinal sectional view (c) taken along line Y 2 -Y 2 showing a second embodiment of a bundled tube.
FIG. 4 is a side view (a) showing a state in which a bundle group of hollow fiber membranes is accommodated in a bundled tube of a second embodiment, and a longitudinal sectional view (b) taken from line Y 3 -Y 3 .
FIG. 5 is a cross-sectional view showing a mode in which a gas leak test is performed by setting the hollow fiber membrane module of the present embodiment in a leak evaluation test apparatus.
FIG. 6 is a perspective view of a hollow fiber membrane module in which a notch portion is provided at a central portion of a bundled tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane module 2 Bundled tube 2a Short hole-shaped opening 2b Long hole-shaped opening 3 Hollow fiber membrane 4 Bundled tube edge part 5 Flat plate for hollow fiber membrane holding | maintenance 10 Leak evaluation test apparatus 11 Housing 12 Intake pipe 13 Exhaust pipes 14, 15 Housing cover
14a, 15a Permeate gas exhaust pipe

Claims (3)

多孔質セラミックスによる中空糸膜の多数を束ねて、長筒状の束着管に収容してなるセラミックス中空糸膜モジュールであって、束着管の管中心軸に対して両側の対称な等配位置の部分をそれぞれ対称形に切除して開口部を設け、多数束ねられた多孔質セラミックス中空糸膜の長筒状束着管への収容が、中空糸膜保持用貫通孔穿設平板によって行われたことを特徴とするセラミックス中空糸膜モジュール。A ceramic hollow fiber membrane module in which a number of hollow fiber membranes made of porous ceramics are bundled and accommodated in a long cylindrical bundled tube, and is symmetrically arranged on both sides with respect to the tube central axis of the bundled tube. Each part of the position is cut symmetrically to provide an opening , and a large number of bundled porous ceramic hollow fiber membranes are accommodated in a long tubular bundled tube by a hollow fiber holding through hole flat plate. ceramic hollow fiber membrane module, characterized in that cracking. 束着管の両端部近傍でそれぞれ両側に開口部を等配の短孔形状に設けている請求項1記載のセラミックス中空糸膜モジュール。  The ceramic hollow fiber membrane module according to claim 1, wherein openings are provided in a short hole shape with an equal distribution near both ends of the bundled tube. 束着管のほぼ管全長に亘って開口部を等配の長孔形状に設けている請求項1記載のセラミックス中空糸膜モジュール。  2. The ceramic hollow fiber membrane module according to claim 1, wherein openings are provided in a uniform long hole shape over substantially the entire length of the bundled tube.
JP2002059667A 2002-03-06 2002-03-06 Ceramic hollow fiber membrane module Expired - Fee Related JP3821019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059667A JP3821019B2 (en) 2002-03-06 2002-03-06 Ceramic hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059667A JP3821019B2 (en) 2002-03-06 2002-03-06 Ceramic hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2003251164A JP2003251164A (en) 2003-09-09
JP3821019B2 true JP3821019B2 (en) 2006-09-13

Family

ID=28669257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059667A Expired - Fee Related JP3821019B2 (en) 2002-03-06 2002-03-06 Ceramic hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP3821019B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857538B2 (en) * 2004-08-25 2012-01-18 Nok株式会社 Hollow fiber membrane module
JP5109567B2 (en) * 2007-10-11 2012-12-26 Nok株式会社 Porous ceramic hollow fiber membrane module
JP5494720B2 (en) * 2012-05-14 2014-05-21 Nok株式会社 Hollow fiber membrane module
CN110475603B (en) 2017-04-07 2022-10-04 曼·胡默尔有限公司 Fluid filter capable of being thermally sterilized and use of fluid filter capable of being thermally sterilized

Also Published As

Publication number Publication date
JP2003251164A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
JP3933907B2 (en) Gas separator fixing structure and gas separator using the same
JP4490383B2 (en) Hydrogen gas separator fixing structure and hydrogen gas separator using the same
US9822917B2 (en) Tube end connector and zeolite separation membrane element
JP3821019B2 (en) Ceramic hollow fiber membrane module
US20200001229A1 (en) Method for inspecting separation membrane module and method for manufacturing separation membrane module
JP5135844B2 (en) Hollow fiber membrane module
KR20180049598A (en) Nitrogen seperator for nitrogen generator
JP2016052959A (en) Glass coating alumina structure, separation membrane element, and glass bonding agent
EP2669657B1 (en) Holding jig and pressure loss measuring apparatus
JPH10225628A (en) Crossed filter
JP5109567B2 (en) Porous ceramic hollow fiber membrane module
JP4961641B2 (en) Ceramic hollow fiber membrane module
JP2007216106A (en) Manufacturing method of ceramic membrane for gas separation
JP3134524U (en) Gas separator
WO2009060766A9 (en) Heating apparatus
JP4857538B2 (en) Hollow fiber membrane module
JP2002219340A (en) Filter module
JP4013794B2 (en) Porous ceramic hollow fiber membrane module
JP3134525U (en) Gas separator
KR101672506B1 (en) Hollow fiber membrane module
JP2002292251A (en) Filter module
JP2008259928A (en) Housing-mounted hollow fiber membrane module
WO2020022506A1 (en) Hollow fibre membrane module and method for manufacturing hollow fibre membrane module
SE464773B (en) INSULATION OF TURBINE EQUIPMENT IN THE ENVIRONMENT OF WATER ENVIRONMENT
JP2020040030A (en) Gas separator and membrane reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees