JP3134525U - Gas separator - Google Patents

Gas separator Download PDF

Info

Publication number
JP3134525U
JP3134525U JP2007004236U JP2007004236U JP3134525U JP 3134525 U JP3134525 U JP 3134525U JP 2007004236 U JP2007004236 U JP 2007004236U JP 2007004236 U JP2007004236 U JP 2007004236U JP 3134525 U JP3134525 U JP 3134525U
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
gas separation
gas
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007004236U
Other languages
Japanese (ja)
Inventor
雄介 井川
穣 幸田
小島 隆二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2007004236U priority Critical patent/JP3134525U/en
Application granted granted Critical
Publication of JP3134525U publication Critical patent/JP3134525U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】ガス分離膜として無機系多孔質中空糸膜モジュールを密閉容器内に収容したガス分離装置であって、高温で行われるガス分離処理時においてもガス分離膜に破損を生ぜしめないものを提供する。
【解決手段】無機系多孔質中空糸膜、好ましくは多孔質セラミックス製中空糸膜よりなるモジュールを形成し、一方の中空糸膜端部を被処理ガス導入口に、また他方の中空糸膜端部を分離残ガス排出口にそれぞれ連結するように密閉容器内に収容し、分離したガスを密閉容器の回収口から取り出すように構成したガス分離装置において、無機系多孔質中空糸膜をスプリングコイル形状に構成して密閉容器内に収容したガス分離装置。
【選択図】 図4
A gas separation apparatus in which an inorganic porous hollow fiber membrane module is housed in a hermetically sealed container as a gas separation membrane, which does not cause damage to the gas separation membrane even at the time of gas separation processing performed at a high temperature. provide.
A module made of an inorganic porous hollow fiber membrane, preferably a porous ceramic hollow fiber membrane, is formed, with one end of the hollow fiber membrane serving as the gas inlet and the other end of the hollow fiber membrane. In the gas separation apparatus configured to receive the separated gas from the recovery port of the sealed container, the inorganic porous hollow fiber membrane is made to be a spring coil. A gas separation device configured in a shape and housed in an airtight container.
[Selection] Figure 4

Description

本考案は、ガス分離装置に関する。更に詳しくは、ガス分離膜を用いたガス分離装置に関する。   The present invention relates to a gas separation device. More specifically, the present invention relates to a gas separation apparatus using a gas separation membrane.

各種のガス分離膜を用いるガス分離法は、蒸発法や深冷分離法などとは異なり、分離に際して相変化を伴わず、省エネルギーであるなどの特徴を有しており、この方法が適用されるガス分離装置は、被処理ガス導入口、分離残ガス排出口および分離ガス回収口からなる密閉容器内にガス分離膜を収容した構成をとっている。   The gas separation method using various gas separation membranes has characteristics such as energy saving without phase change at the time of separation, unlike the evaporation method and the cryogenic separation method, and this method is applied. The gas separation device has a configuration in which a gas separation membrane is accommodated in a sealed container including a gas to be treated inlet, a separation residual gas discharge port, and a separation gas recovery port.

密閉容器用材料としては、種々の材料が適用可能であるが、一般にはステンレス鋼等の金属が用いられることが多い。一方、ガス分離膜としては、緻密金属管、高分子膜、無機系多孔質膜に機能層を担持させたもの等が用いられている。   Various materials can be applied as the material for the sealed container, but generally a metal such as stainless steel is often used. On the other hand, as the gas separation membrane, a dense metal tube, a polymer membrane, an inorganic porous membrane carrying a functional layer, or the like is used.

この内、無機質多孔質膜に機能層を担持させたガス分離膜は、担持させる機能層の厚さを薄くすることができるため、透過速度や耐熱性を高め、また分離性能を任意に設計できるなどといった特徴を有している。しかるに、直管のガス分離膜の両端を密閉容器に固定したガス分離装置を高温で用いると、ガス分離膜と密閉容器との熱膨張係数の差から生ずる応力によって、ガス分離膜が破損するおそれがある。   Among them, the gas separation membrane in which the functional layer is supported on the inorganic porous membrane can reduce the thickness of the functional layer to be supported, so that the permeation speed and heat resistance can be increased, and the separation performance can be arbitrarily designed. And so on. However, if a gas separation device in which both ends of the gas separation membrane of the straight pipe are fixed to a closed vessel is used at a high temperature, the gas separation membrane may be damaged due to a stress caused by a difference in thermal expansion coefficient between the gas separation membrane and the closed vessel. There is.

ガス分離膜の一端側のみを固定し、吊り下げ状に支持するものなども提案されているが、この場合にあっては、非固定側のガス分離膜端面を無機系接着剤およびロウ材等で封止する必要があり、工程が煩雑になるばかりではなく、封止部が高温に曝されるため信頼性に欠けるなどの問題がみられる。特に、中空糸膜の径を細くし、モジュール1本当りの中空糸膜の使用本数を増した場合、無機系接着剤の粘度が高いため作業性が悪く、さらに接着剤の熱硬化時に接着剤層にクラックを発生するという問題がみられる。
特開平6−191802号公報 特開2003−144861号公報
A gas separation membrane that only supports one end side of the gas separation membrane and is supported in a suspended manner has been proposed. In this case, the end surface of the gas separation membrane on the non-fixed side is covered with an inorganic adhesive, brazing material, etc. Not only makes the process complicated, but also causes problems such as lack of reliability because the sealing portion is exposed to high temperatures. In particular, when the hollow fiber membrane diameter is reduced and the number of hollow fiber membranes used per module is increased, the workability is poor due to the high viscosity of the inorganic adhesive, and the adhesive is further cured when the adhesive is thermally cured. There is a problem of cracking in the layer.
JP-A-6-191802 Japanese Patent Laid-Open No. 2003-144861

また、多孔質セラミックス製中空糸膜のモジュール化において、中空糸膜、接着剤、モジュールケースの相互間に熱膨張係数に差がみられる場合、ケースの熱膨張および熱収縮により多孔質セラミックス製中空糸膜に応力がかかり、中空糸膜に破損を生ずることがある。   Also, in the modularization of porous ceramic hollow fiber membranes, if there is a difference in the thermal expansion coefficient between the hollow fiber membrane, adhesive, and module case, the porous ceramic hollow fiber membrane is Stress may be applied to the yarn membrane, and the hollow fiber membrane may be damaged.

さらに、モジュールケースのみをセラミックス製としかつ熱膨張係数の小さなものを用いた場合には、接着剤の熱膨張に耐えられず、ケースが割れてしまうという場合もみられる。したがって、細径多孔質中空糸膜のモジュール化においては、ケース、多孔質中空糸膜、接着剤各部材の熱膨張係数を同一のものとすることもしくは熱膨張係数の違いによって発生する応力を緩衝することが不可欠となる。   Furthermore, when only the module case is made of ceramics and has a small thermal expansion coefficient, the case may not be able to withstand the thermal expansion of the adhesive and the case may be broken. Therefore, in the modularization of small-diameter porous hollow fiber membranes, the case, porous hollow fiber membrane, and adhesive members have the same thermal expansion coefficient, or the stress generated by the difference in thermal expansion coefficient is buffered. It is essential to do.

本出願人は先に、ガス分離膜として無機系多孔質中空糸膜モジュールを密閉容器内に収容したガス分離装置であって、高温で行われるガス分離処理時においてもガス分離膜に破損を生ぜしめないものとして、膜表面に機能層を担持させたU字形無機系多孔質中空糸膜よりなるモジュールを形成し、一方の中空糸膜端部を被処理ガス導入口に、また他方の中空糸膜端部を分離残ガス排出口にそれぞれ連結するように密閉容器内に収容し、分離したガスを密閉容器の回収口から取り出すように構成したガス分離装置を提案している。
特開2001−212422号公報
The present applicant has previously described a gas separation apparatus in which an inorganic porous hollow fiber membrane module is housed in a sealed container as a gas separation membrane, and the gas separation membrane is damaged even at the time of gas separation processing performed at a high temperature. A module composed of a U-shaped inorganic porous hollow fiber membrane having a functional layer supported on the membrane surface is formed as one that is not squeezed, and one end of the hollow fiber membrane is used as a gas inlet for treatment and the other hollow fiber is provided. A gas separation device has been proposed in which the end of the membrane is accommodated in a sealed container so as to be connected to the separation residual gas discharge port, and the separated gas is taken out from the recovery port of the sealed container.
JP 2001-212422 A

しかしながら、この提案された構成では、片支持タイプとすることにより、熱応力が多孔質セラミックス製中空糸膜にかからない構造がとられてはいるものの、片側にガス導入口と排出口とがあるため、取り合いが難しく、シール構造を複雑なものとしている。   However, in this proposed configuration, the single-support type structure has a structure in which thermal stress is not applied to the porous ceramic hollow fiber membrane, but there is a gas inlet and outlet on one side. , The connection is difficult and the seal structure is complicated.

本考案の目的は、ガス分離膜として無機系多孔質中空糸膜モジュールを密閉容器内に収容したガス分離装置であって、高温で行われるガス分離処理時においてもガス分離膜に破損を生ぜしめないものを提供することにある。   The object of the present invention is a gas separation apparatus in which an inorganic porous hollow fiber membrane module is housed in a sealed container as a gas separation membrane, and causes damage to the gas separation membrane even at the time of gas separation processing performed at a high temperature. To provide something not.

かかる本考案の目的は、無機系多孔質中空糸膜よりなるモジュールを形成し、一方の中空糸膜端部を被処理ガス導入口に、また他方の中空糸膜端部を分離残ガス排出口にそれぞれ連結するように密閉容器内に収容し、分離したガスを密閉容器の回収口から取り出すように構成したガス分離装置において、無機系多孔質中空糸膜をスプリングコイル形状に構成して密閉容器内に収容したガス分離装置によって達成される。   An object of the present invention is to form a module composed of an inorganic porous hollow fiber membrane, one end of the hollow fiber membrane being used as a gas inlet, and the other end of the hollow fiber membrane being a separation residual gas outlet. In the gas separation device configured to be housed in a sealed container so as to be connected to each other and to take out the separated gas from the recovery port of the sealed container, the inorganic porous hollow fiber membrane is configured in a spring coil shape and the sealed container This is achieved by a gas separation device housed inside.

本考案に係るガス分離膜装置は、細径の多孔質セラミックス製中空糸膜を用いたモジュールにおいても、中空糸膜をスプリングコイル形状に形成させた状態でモジュールケースとなる密閉容器内に収容しているので、それを高温でガス分離処理に用いた場合にあっても、容器と中空糸膜との熱膨張係数の差による応力が緩和され、中空糸膜の熱衝撃による破損を有効に防止することができる。また、用途に応じたモジュールケース材および接着剤の選定を可能とする。   The gas separation membrane device according to the present invention is housed in a sealed container serving as a module case with a hollow fiber membrane formed in a spring coil shape even in a module using a hollow ceramic hollow fiber membrane having a small diameter. Therefore, even when it is used for gas separation treatment at high temperature, the stress due to the difference in thermal expansion coefficient between the container and the hollow fiber membrane is relieved, and the hollow fiber membrane is effectively prevented from being damaged by thermal shock. can do. In addition, the module case material and the adhesive can be selected according to the application.

スプリングコイル形状の無機系多孔質中空糸膜、好ましくは多孔質セラミックス製中空糸膜は、例えば図1〜2に示されるような方法によって製造される。多孔質セラミックス製中空糸膜は、高分子物質の有機溶媒溶液中にセラミックス粉末を高充填した紡糸原液(ドープ液)を乾湿式紡糸して製膜した後焼成して得られるが、乾湿式紡糸して製膜された中空糸膜11を、図1に示されるように両端部側を細径部12,12′とし、その中央部を太径部13とした棒状支持治具14にスプリングコイル状に巻き付け、室温で一昼夜程度乾燥させ、形状の仮固定化が行われる。仮固定されたスプリングコイル形状の中空糸膜15は、図2の正面図(a)および平面図(b)に示される如く、そのスプリングコイル形状にマッチした形状の焼成台16に載せ、所定温度で焼成することにより、多孔質セラミックス製中空糸膜が形成される。   A spring coil-shaped inorganic porous hollow fiber membrane, preferably a porous ceramic hollow fiber membrane, is manufactured by a method as shown in FIGS. Porous ceramic hollow fiber membranes are obtained by dry-wet spinning of a spinning stock solution (dope solution) filled with ceramic powder in an organic solvent solution of a polymer material, followed by firing, and dry-wet spinning. As shown in FIG. 1, the hollow fiber membrane 11 formed in this way is attached to a rod-like support jig 14 having narrow diameter portions 12 and 12 'at both ends and a large diameter portion 13 at the center, and a spring coil. The shape is wound and dried at room temperature for about a day and night, and the shape is temporarily fixed. As shown in the front view (a) and plan view (b) of FIG. 2, the temporarily fixed spring coil-shaped hollow fiber membrane 15 is placed on a firing table 16 having a shape that matches the spring coil shape, and is heated to a predetermined temperature. By firing with a porous ceramic hollow fiber membrane is formed.

このようにして作製されたスプリングコイル形状の無機系多孔質中空糸膜1を用いたガス分離装置の斜視図は図3に、また中心線縦断面図は図4に示される。スプリング形状の無機系多孔質中空糸膜1は、その両端部分の間隙が接着剤層2,2′によって封止され、モジュールケースとなる密閉容器10内に収容されてモジュール3を形成する。モジュール化された一方および他方の中空糸膜端部は、それぞれモジュールケース10の上部および下部に設けられた被処理ガス導入口4および分離残ガス排出口5にそれぞれ連結するように、上部および下部ヘッド7,7′で覆われている。また、下部ヘッド7′には、分離したガスの回収口6が設けられている。なお、上部ヘッド7と下部ヘッド7′とは、ボルト9によるボルト締めで上下が連結されており、モジュール3を固定している。さらに、それぞれのガス流路は、Oリング8,8′で気密化されている。   A perspective view of the gas separation apparatus using the inorganic porous hollow fiber membrane 1 having the spring coil shape thus produced is shown in FIG. 3, and a longitudinal sectional view of the center line is shown in FIG. The spring-shaped inorganic porous hollow fiber membrane 1 has a gap between both end portions thereof sealed by the adhesive layers 2 and 2 ′ and is accommodated in a sealed container 10 that becomes a module case to form a module 3. The one and the other hollow fiber membrane end portions that are modularized are connected to the gas inlet 4 and the separation residual gas outlet 5 provided at the upper and lower portions of the module case 10, respectively. Covered with heads 7, 7 '. The lower head 7 'is provided with a separated gas recovery port 6. The upper head 7 and the lower head 7 ′ are connected to each other by bolting with bolts 9, and fix the module 3. Further, each gas flow path is hermetically sealed by O-rings 8 and 8 '.

多孔質セラミックス製中空糸膜としては、一般にAl2O3、Y2O3、MgO、SiO2、Si3N4、ZrO2等の粉末を分散させた高分子物質の有機溶媒溶液を用い、それを乾湿式紡糸して得られる孔径が約0.1〜6μm、好ましくは約0.2〜2mm、外径が約0.5〜4mm、好ましくは約1〜3mm程度、その膜厚が約0.1〜0.5mm、好ましくは約0.15〜0.3mm程度のものが用いられる。その膜表面には機能層を担持させることができ、例えばPdやPd合金あるいはシリカ膜を担持させたものは水素ガス分離膜として、またゼオライトを担持させたものは二酸化炭素分離膜として用いられる。 As a porous ceramic hollow fiber membrane, generally used is an organic solvent solution of a polymer material in which powders of Al 2 O 3 , Y 2 O 3 , MgO, SiO 2 , Si 3 N 4 , ZrO 2 and the like are dispersed, The pore diameter obtained by dry and wet spinning is about 0.1 to 6 μm, preferably about 0.2 to 2 mm, the outer diameter is about 0.5 to 4 mm, preferably about 1 to 3 mm, and the film thickness is about 0.1 to 0.5 mm, preferably Is about 0.15 to 0.3 mm. A functional layer can be supported on the surface of the membrane. For example, a material supporting Pd, Pd alloy or silica is used as a hydrogen gas separation membrane, and a material supporting zeolite is used as a carbon dioxide separation membrane.

密閉容器であるモジュールケースとしては、アルミナ、ジルコニア、チタニア等の無機セラミックス製のものも用いられるが、加工性や価格面から、好ましくはアクリル樹脂、ポリスルホン樹脂等の硬質樹脂製ケースまたは石英ガラス等のガラス製ケースが用いられる。スプリングコイル形状の無機系多孔質中空糸膜は、その両端部分の間隙がエポキシ樹脂、ウレタン樹脂等の低粘度でかつ耐熱、耐久性にすぐれた接着剤2によって、一般に約15〜25mm程度の厚さで封止され、モジュール3を形成する。   As the module case which is a sealed container, those made of inorganic ceramics such as alumina, zirconia and titania are also used, but from the viewpoint of processability and price, a case made of hard resin such as acrylic resin or polysulfone resin or quartz glass, etc. The glass case is used. Spring coil-shaped inorganic porous hollow fiber membranes generally have a thickness of about 15 to 25 mm due to the adhesive 2 having a low viscosity, such as epoxy resin and urethane resin, and excellent heat resistance and durability. The module 3 is formed by sealing.

ガスの分離は、例えば膜表面にPd金属を担持させたセラミックス多孔質中空糸膜を用いた水素ガス分離装置の場合には、被処理ガスがガス導入口から各多孔質中空糸膜の内管部に導入され、被処理ガス中の水素ガスは、水素ガス分離中空糸膜を選択的に透過して密閉容器内に集められ、ガス回収口から回収されると共に、被処理ガスからの残存水素ガスおよび水素ガス以外のガスからなる分離残ガスはガス排水口から排出される。   For gas separation, for example, in the case of a hydrogen gas separation device using a ceramic porous hollow fiber membrane in which Pd metal is supported on the membrane surface, the gas to be treated is fed from the gas inlet to the inner tube of each porous hollow fiber membrane. The hydrogen gas contained in the gas to be treated is selectively permeated through the hydrogen gas separation hollow fiber membrane and collected in a sealed container, collected from the gas recovery port, and residual hydrogen from the gas to be treated. Separation residual gas consisting of gas other than gas and hydrogen gas is discharged from the gas outlet.

水素ガスの分離処理中は、密閉容器および水素ガス分離中空糸膜は約300〜500℃の高温に加熱されるが、水素ガス分離中空糸膜がスプリングコイル形状であるため、容器と水素ガス分離中空糸膜との熱膨張係数の差による応力が緩和され、これによって高温処理時における水素ガス分離中空糸膜の破損が抑制される。   During the hydrogen gas separation process, the sealed container and the hydrogen gas separation hollow fiber membrane are heated to a high temperature of about 300-500 ° C. However, since the hydrogen gas separation hollow fiber membrane has a spring coil shape, the vessel and the hydrogen gas separation are separated. The stress due to the difference in thermal expansion coefficient with the hollow fiber membrane is relieved, and this prevents the hydrogen gas separation hollow fiber membrane from being damaged during the high temperature treatment.

次に、実施例について本考案を説明する。   Next, this invention is demonstrated about an Example.

実施例
内径25mm、外径30mm、長さ180mmのポリスルホン樹脂製ケース内に、スプリングコイル形状の内径2.2mm、外径3.0mmの多孔質アルミナ製中空糸膜を収容し、ケース両端部に厚みが20mm程度となるようにエポキシ樹脂を流し込み、スプリングコイル形状中空糸膜の両端部をそれぞれ固定した。作製されたモジュールについて、
-20℃で1時間
-20℃〜100℃に2分間かけて昇温
100℃で1時間
100℃〜-20℃に2分間かけて降温
を1サイクルとする熱衝撃試験を10サイクル行ったが、多孔質アルミナ製中空糸膜に割れはみられなかった。
Example: A polysulfone resin case with an inner diameter of 25 mm, an outer diameter of 30 mm, and a length of 180 mm contains a spring-coiled porous alumina hollow fiber membrane with an inner diameter of 2.2 mm and an outer diameter of 3.0 mm. Epoxy resin was poured so as to be about 20 mm, and both ends of the spring coil-shaped hollow fiber membrane were fixed. About the produced module,
1 hour at -20 ℃
Temperature rise from -20 ℃ to 100 ℃ over 2 minutes
1 hour at 100 ℃
Ten cycles of thermal shock tests were performed in which the temperature was lowered to 1 cycle over 2 minutes from 100 ° C. to −20 ° C., but no crack was observed in the porous alumina hollow fiber membrane.

比較例
実施例において、スプリングコイル形状中空糸膜の代りに、直線形状中空糸膜の両端部をそれぞれ固定し、作製されたモジュールについて同様の熱衝撃試験を行ったところ、1サイクル行った時点で多孔質アルミナ製中空糸膜に割れがみられた。
Comparative Example In the example, instead of the spring coil-shaped hollow fiber membrane, both ends of the linear hollow fiber membrane were fixed, and a similar thermal shock test was performed on the manufactured module. Cracks were found in the porous alumina hollow fiber membrane.

スプリングコイル形状の乾湿式紡糸中空糸膜を形成させた状態を示す斜視図である。It is a perspective view which shows the state in which the dry-wet spinning hollow fiber membrane of the spring coil shape was formed. スプリングコイル形状の乾湿式紡糸中空糸膜を焼成する状態を示す正面図(a)および平面図(b)である。FIG. 2 is a front view (a) and a plan view (b) showing a state in which a spring coil-shaped dry and wet spun hollow fiber membrane is fired. スプリングコイル状の無機系多孔質中空糸をモジュールケース内に収容した状態を示す斜視図である。It is a perspective view which shows the state which accommodated the spring coil-shaped inorganic type porous hollow fiber in the module case. 本考案に係るガス分離装置の一態様の中心線断面図である。It is a center line sectional view of one mode of a gas separation device concerning the present invention.

符号の説明Explanation of symbols

1 無機系多孔質中空糸膜
2 接着剤
3 モジュール
4 被処理ガス導入口
5 分離残ガス排出口
6 分離ガス回収口
7 ヘッド
8 Oリング
9 ボルト
10 密閉容器(モジュールケース)
DESCRIPTION OF SYMBOLS 1 Inorganic porous hollow fiber membrane 2 Adhesive 3 Module 4 Processed gas introduction port 5 Separation residual gas discharge port 6 Separation gas collection port 7 Head 8 O-ring 9 Bolt 10 Airtight container (module case)

Claims (3)

無機系多孔質中空糸膜よりなるモジュールを形成し、一方の中空糸膜端部を被処理ガス導入口に、また他方の中空糸膜端部を分離残ガス排出口にそれぞれ連結するように密閉容器内に収容し、分離したガスを密閉容器の回収口から取り出すように構成したガス分離装置において、無機系多孔質中空糸膜をスプリングコイル形状に構成して密閉容器内に収容したガス分離装置。   A module comprising an inorganic porous hollow fiber membrane is formed and sealed so that one end of the hollow fiber membrane is connected to the treated gas inlet and the other end of the hollow fiber membrane is connected to the separation residual gas outlet. In a gas separation apparatus configured to take out separated gas from a recovery port of a sealed container, and accommodated in the container, an inorganic porous hollow fiber membrane is formed in a spring coil shape and stored in the sealed container . 無機系多孔質中空糸膜が多孔質セラミックス製中空糸膜である請求項1記載のガス分離膜装置。   The gas separation membrane device according to claim 1, wherein the inorganic porous hollow fiber membrane is a porous ceramic hollow fiber membrane. 膜表面に機能層を担持させたスプリングコイル形状無機系多孔質中空糸膜が用いられた請求項1または2記載のガス分離装置。   The gas separator according to claim 1 or 2, wherein a spring coil-shaped inorganic porous hollow fiber membrane having a functional layer supported on the membrane surface is used.
JP2007004236U 2007-06-06 2007-06-06 Gas separator Expired - Fee Related JP3134525U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004236U JP3134525U (en) 2007-06-06 2007-06-06 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004236U JP3134525U (en) 2007-06-06 2007-06-06 Gas separator

Publications (1)

Publication Number Publication Date
JP3134525U true JP3134525U (en) 2007-08-16

Family

ID=43285096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004236U Expired - Fee Related JP3134525U (en) 2007-06-06 2007-06-06 Gas separator

Country Status (1)

Country Link
JP (1) JP3134525U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430766B1 (en) * 2008-12-26 2014-08-18 코오롱글로벌 주식회사 Immersed module of hollow fibers-membrane
JP2016064343A (en) * 2014-09-24 2016-04-28 日機装株式会社 Hollow fiber membrane module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430766B1 (en) * 2008-12-26 2014-08-18 코오롱글로벌 주식회사 Immersed module of hollow fibers-membrane
JP2016064343A (en) * 2014-09-24 2016-04-28 日機装株式会社 Hollow fiber membrane module

Similar Documents

Publication Publication Date Title
US5611931A (en) High temperature fluid separations using ceramic membrane device
Yoshino et al. Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature
US10843126B2 (en) Separation membrane structure and nitrogen concentration reduction method
JP3933907B2 (en) Gas separator fixing structure and gas separator using the same
JP4490383B2 (en) Hydrogen gas separator fixing structure and hydrogen gas separator using the same
US6174490B1 (en) Method for producing an exchanger
JP3134525U (en) Gas separator
JP3134524U (en) Gas separator
JP5966298B2 (en) Method for producing hollow fiber carbon membrane
JP4890938B2 (en) Gas separation tube housing structure
JP2012040549A (en) Silica membrane and method for manufacturing the same
JP2008238068A (en) Hollow fiber membrane module
US9126151B2 (en) Silica-based hydrogen separation material and manufacturing method therefor, as well as hydrogen separation module and hydrogen production apparatus having the same
US8101010B2 (en) Gas separation module
JP2000312811A (en) Gas separation module
JP2015186776A (en) Zeolite membrane evaluation method
JPWO2018179959A1 (en) Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
US9764275B2 (en) Membrane module capable of operation in extreme temperature environments
JP5109567B2 (en) Porous ceramic hollow fiber membrane module
WO2000013768A1 (en) Supported glass membrane for gas separation
JP5278933B2 (en) Zeolite membrane solvent-resistant sealing structure
US20170282117A1 (en) Gas separation method
JP3145103U (en) Inorganic porous hollow fiber membrane
JP3151517U (en) Gas separator using porous ceramic hollow fiber membrane
JP7136722B2 (en) Gas separator and membrane reactor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees