JP3820834B2 - RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL - Google Patents

RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL Download PDF

Info

Publication number
JP3820834B2
JP3820834B2 JP2000050794A JP2000050794A JP3820834B2 JP 3820834 B2 JP3820834 B2 JP 3820834B2 JP 2000050794 A JP2000050794 A JP 2000050794A JP 2000050794 A JP2000050794 A JP 2000050794A JP 3820834 B2 JP3820834 B2 JP 3820834B2
Authority
JP
Japan
Prior art keywords
circuit board
resin
semiconductor device
circuit
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050794A
Other languages
Japanese (ja)
Other versions
JP2001240654A (en
Inventor
一郎 小椋
未希 平井
知之 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2000050794A priority Critical patent/JP3820834B2/en
Publication of JP2001240654A publication Critical patent/JP2001240654A/en
Application granted granted Critical
Publication of JP3820834B2 publication Critical patent/JP3820834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Description

【0001】
【発明の属する技術分野】
本発明は、ボールグリッドアレイ(BGA)タイプに代表されるチップスケールパッケージ等の格子状端子が配設された半導体装置、該装置に使用される回路基板、及びこれに用いる樹脂組成物に関する。
【0002】
【従来の技術】
近年、半導体装置分野において回路の高集積化に対応すべく、従来のファインピッチ表面実装技術に代わりBGAタイプの半導体装置が開発されている。
【0003】
即ち、BGA半導体パッケージは単位面積当たり超極大化された数の入出力端子を配設し得るため、回路の高集積化を実現できるほか、半導体装置の省スペース化を図ることができるため、近年その需要が増大している。
【0004】
このようなBGAタイプの半導体装置は、一般に多層化された回路配線基板上に半導体チップが搭載されると共に、多層回路をビアホールを介して導通、引き回して裏面に配設された半田ボールと通電させることにより形成されているものであるが、回路の高集積化に基づく処理能力の飛躍的向上に起因して、半導体装置の発熱対策、高周波数領域での電気的能などが問題となっている。
【0005】
その為、当該装置に用いられる回路基板としても、優れた耐熱性と共に、低誘電率、低線膨張係数を兼備することが要求されている。
【0006】
この様な観点から回路基板に用いられる樹脂成分として、従来より高耐熱性、低誘電率といった特徴からビスマレイミド系樹脂である、いわゆるBTレジンが主に使用されていた。
【0007】
【発明が解決しようとする課題】
しかし、ビスマレイミド系樹脂は、成形性や硬化性に劣り、生産コストの上昇を招く他、多層板の層間密着性や回路を形成する銅との密着性に劣り製品の信頼性を落とす要因になっていた。
【0008】
この様な、成形性や硬化性、及び密着性に優れる樹脂成分としてはエポキシ樹脂が知られているものの、エポキシ樹脂は一般に耐熱性、誘電率の点でBGAタイプの半導体装置における実用に耐え得るレベルにないものであった。
【0009】
本発明が解決しようとする課題は、生産性及び密着性に優れると共に、BGAタイプの半導体装置に用いられる格子状通電端子配設半導体装置用回路基板の樹脂成分として優れた高耐熱性及び低誘電率を達成できる樹脂材料、並びに密着性、耐熱性及び低誘電率を兼備した、格子状通電端子配設半導体装置用回路基板、及び前記回路基板を用いることにより信頼性に優れた半導体装置を提供することにある。
【0010】
【発明が解決しようとする手段】
本発明者等は鋭意検討した結果、脂環式炭化水素基を結接基としてフェノール類と結合した樹脂のポリグリシジルエーテルであって、かつ、1分子あたり芳香族炭化水素核を2個有する化合物を10〜35重量%の割合で含有するエポキシ樹脂(A)、および硬化剤(B)を必須成分とする組成物を回路基板用の樹脂成分として用いることにより、エポキシ樹脂成分でありながら優れた高耐熱性及び低誘電率を達成でき、BGAタイプの半導体装置用の回路基板に適用することが可能となり、その結果、硬化物の高耐熱性及び低誘電率を実現できると共に成形性や硬化性に優れた材料を提供でき、回路基板及び半導体装置としての信頼性を飛躍的に向上できることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明は、脂環式炭化水素基を結接基としてフェノール類と結合した樹脂のポリグリシジルエーテルであって、かつ、1分子あたり芳香族炭化水素核を2個有する化合物を10〜35重量%の割合で含有するエポキシ樹脂(A)、および硬化剤(B)を必須成分とすることを特徴とする格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物、
該組成物を、プリプレグに含浸、該プリプレグの複数を加熱加圧一体に成形してなり、且つ、表面に配線パターンの回路が形成されていることを特徴とする格子状通電端子配設半導体装置用回路基板、及び
該組成物を、プリプレグに含浸、該プリプレグの複数を加熱加圧一体に成形された積層板の表面に配線パターンを形成してなる回路基板と、該回路基板裏面に該配線パターンと導通された格子状通電端子を配設すると共に、更に、該回路基板における配線パターン上に半導体チップが搭載され、更に、該半導体チップが樹脂で封止された構造を有することを特徴する半導体装置に関する。
【0012】
本発明で用いるエポキシ樹脂(A)は、脂環式炭化水素基を結接基としてフェノール類と結合した樹脂のポリグリシジルエーテルであって、かつ、1分子あたり芳香族炭化水素核を2個有する化合物を10〜35重量%の割合で含有するものである。
【0013】
ここで、上記の1分子あたり芳香族炭化水素核を2個有する化合物(以下、「2核体化合物」と略記する)の含有量の条件を満足するものは、2核体化合物の含有率が35重量%を超える範囲のものに比較して、同程度の低吸湿率、低誘電率を持ちながらも、遙かに優れた硬化性、耐熱性、低線膨張係数を硬化物に付与できる。ここで、特筆すべきは、一般的にエポキシ樹脂は、分子量が低い方が低吸湿率、低誘電率が発現され易いという特徴を有するものであるが、本発明においては、2核体化合物の含有率が低く、即ち、多核体化合物を多く含むにも係わらず、低吸湿率、低誘電率を達成でき、然も、その水準がこれまでのエポキシ樹脂の性能を遥かに超えたている点にある。よって、この様な性能によりBGAタイプの半導体装置用の回路基板にエポキシ樹脂を適用することが可能となる。
【0014】
ここで2核体化合物の含有率とは、エポキシ樹脂(A)において、1分子あたりフェノール類化合物2個から構成される樹脂成分をいい、具体的には、ゲルパーミュエーションクロマトグラフィー(GPC)によって分析された重量割合で表される値である。
【0015】
また、エポキシ樹脂(A)は、上記の構造的、分子量分布的な条件を満足するとともに、エポキシ当量が253〜300g/eqの範囲にあるものがいっそう硬化性、耐熱性を向上させることができ好ましい。
【0016】
エポキシ樹脂(A)を構成するフェノール類としては、特に限定されるものではないが、例えば、フェノール類としては、フェノール、及びアルキル基、アルケニル基、アリル基、アリール基、アラルキル基或いはハロゲン基等が結合した置換フェノール類が挙げられる。具体的に例示すると、クレゾール、キシレノール、エチルフェノール、イソプロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ビニルフェノール、イソプロペニルフェノール、アリルフェノール、フェニルフェノール、ベンジルフェノール、クロルフェノール、ブロムフェノール(各々o、m、p−異性体を含む)、ビスフェノールA、ナフトール、ジヒドロキシナフタレン等が例示されるが、これらに限定されるものではない。またこれらの混合物を用いても構わない。これらの中でも流動性および硬化性が優れる点からフェノール、クレゾールが特に好ましい。
【0017】
また、エポキシ樹脂(A)を構成する脂環式炭化水素基は、該エポキシ樹脂のグリシジルエーテル構造部位を形成するフェノール骨格部分の結接基となるものであり、その構造は特に限定されるものではないが、中でもその骨格中にシクロヘキサン環或いはシクロヘキセン環を有するものが硬化物の耐水性向上効果に優れる点から好ましい。それらの中でも特にこの効果が顕著である点から、具体的にはジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等の不飽和脂環式化合物の分子骨格中の不飽和結合に起因する2価の脂環式炭化水素基が好ましい。これらの脂環式炭化水素基は単独で存在していても、また2種類以上が共存していても良い。更に、これらの中でも硬化物の耐熱性及び耐湿性を一層向上させることができる点からジシクロペンタジエンの分子骨格中の不飽和結合に起因する2価の複合脂環式炭化水素基であることが好ましい。
【0018】
尚、これらの脂環式炭化水素基を樹脂構造中に導入するために用いられる不飽和脂環式化合物としては、1分子中に不飽和二重結合を2つ以上有する脂肪族環状炭化水素化合物であれば、特に限定されないが、例示するならばジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、5−ビニルノルボナ−2−エン、α−ピネン、β−ピネン、リモネン等が挙げられる。これらの中でも特性バランス、特に耐熱性、吸湿性の点からジシクロペンタジエンが好ましい。またジシクロペンタジエンは石油留分中に含まれることから、工業用ジシクロペンタジエンには他の脂肪族或いは芳香族性ジエン類等が不純物として含有されることがあるが、耐熱性、硬化性、成形性等を考慮すると、ジシクロペンタジエンの純度90重量%以上の製品を用いることが望ましい。
【0019】
また、本発明で用いるエポキシ樹脂(A)は、フェノール類が上記結接基を介して結合した構造を有するポリフェノールのポリグリシジルエーテルであり、結接基によって繰り返される芳香族炭化水素核の数によって種々の分子量のものが得られるが、既述の通り、エポキシ樹脂(A)は、2核体化合物を樹脂中10〜35重量%含有されるものである。
【0020】
ここで、核体数2の化合物とは、具体的には下記構造式で表わされるものが挙げられる。
【0021】
【化1】

Figure 0003820834
【0022】
(式中、Xは脂肪族炭化水素基、R1は水素原子またはメチル基、R2およびR3はそれぞれ独立的に、ハロゲン原子若しくは炭素原子数1〜10のアルキル基を表わす。)
【0023】
上記のエポキシ樹脂(A)を得るには、特にその製造方法が限定されるものでないが、上述したフェノール類と不飽和脂環式化合物との重付加反応体である中間体とエピハロヒドリンを反応させればよい。
【0024】
ここで、中間体である上記重付加反応物は、特にその製造条件が限定されるものではないが、エポキシ樹脂(A)の2核体化合物の含有量を10〜35重量%の範囲に設定するためには、反応時のフェノール類と不飽和脂環式化合物のモル比率を調整することが好ましく、たとえばフェノール類/不飽和脂環式化合物=2.5/1〜/1(モル比率)の範囲内で合成すると、目的のエポキシ樹脂を得るに好ましい中間体が得られる。
【0025】
ここで上記中間体の製造法を詳述すれば、溶融或いは溶液にしたフェノール類に、重付加触媒を添加し、これに不飽和脂環式化合物を適下後、加熱攪拌し重付加反応を進行させ、その後に未反応フェノール類を蒸留回収し、重付加反応物を得る。ここで、反応温度は特に制限されないが、40〜150℃であることが好ましく、重付加触媒としては、塩酸、硫酸などの無機酸或いはパラトルエンスルホン酸等の有機酸或いはAlCl3、BF3等のルイス酸等が挙げられる。
【0026】
次いで、この様にして得られた重付加反応物とエピハロヒドリンとを反応させることによって、目的とするエポキシ樹脂(A)とすることができるが、この反応は公知の方法に従って良く、例えば次の反応が挙げられる。
【0027】
即ち、先ず、中間体の水酸基に対して2〜15当量、中でもの溶融粘度の低減効果に優れる点から好ましくは3〜10当量のエピハロヒドリンを添加して溶解し、その後、重付加反応物中の水酸基に対して0.8〜1.2当量の10〜50%NaOH水溶液を50〜80℃の温度で3〜5時間要して適下する。適下後その温度で0.5〜2時間程度攪拌を続けて、静置後下層の食塩水を棄却する。次いで過剰のエピハロヒドリンを蒸留回収し祖樹脂を得る。これにトルエン、MIBK等の有機溶媒を加え、水洗−脱水−濾過−脱溶媒工程を経て、目的の樹脂を得ることができる。また不純物塩素量の低減等を目的に、反応の際ジオキサン、DMSO等の溶媒を併用しても良い。
【0028】
ここで用いるエピハロヒドリンとしては、エピクロルヒドリンが最も一般的であるが、他にエピヨードヒドリン、エピブロムヒドリン、β−メチルエピクロルヒドリン等も用いることができる。
【0029】
また、本発明に用いられる硬化剤(B)としては、通常エポキシ樹脂の硬化剤として常用されている化合物が何れも使用することができ、特に限定されるものではないが、例えばフェノールノボラック樹脂、オルソクレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ビスフェノールFノボラック樹脂、フェノール類−ジシクロペンタジエン重付加型樹脂、ジヒドロキシナフタレンノボラック樹脂、キシリデン基を結接基とした多価フェノール類、フェノール−アラルキル樹脂、ナフトール類樹脂、トリアジン変性フェノールノボラック樹脂、ジエチレントリアミン、トリエチレンテトラミンなどの脂肪族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどの芳香族アミン類、ポリアミド樹脂およびこれらの変性物、無水マレイン酸、無水フタル酸、無水ヘキサヒドロフタル酸、無水ピロメリット酸などの酸無水物系硬化剤、ジシアンジアミド、イミダゾール、BF3 −アミン錯体、グアニジン誘導体等の潜在性硬化剤等が挙げられる。
【0030】
これらのなかでも特にジシアンジアミド、フェノールノボラック樹脂、フェノール類−ジシクロペンタジエン重付加型樹脂、フェノール−アラルキル樹脂が、耐熱性、電気特性、耐水性が一層向上する点から好ましい。
【0031】
これらの硬化剤の使用量は、エポキシ樹脂を硬化せしめる量であれば何れでもよく、特に限定されないが、好ましくは用いるエポキシ樹脂の一分子中に含まれるエポキシ基の数と、硬化剤中の活性水素の数が当量付近となる量である。
上掲された如き各化合物を硬化剤として用いる際は、硬化促進剤を適宜使用することができる。
【0032】
硬化促進剤としては公知慣用のものがいずれも使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩、等が挙げられ、これらは単独のみならず2種以上の併用も可能である。
【0033】
また、本発明の格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物は、必須成分である上述したエポキシ樹脂(A)に加え、さらにその他のエポキシ樹脂(D)を併用しても構わない。この際に用いられるエポキシ樹脂(D)としては、公知慣用のものが何れも使用でき、例えばビスフェノールAジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビフェニル型2官能エポキシ樹脂等が挙げられる。これらのエポキシ樹脂(D)の使用割合としては、特に制限されるものではないが、全エポキシ樹脂成分中5〜60重量%なる範囲であることが好ましい。
【0034】
本発明の回路基板用樹脂組成物においては、上記各成分に更に溶媒を加えて繊維基材に含浸しやすいようにワニス化して粘度調整を行うことが好ましく、この際使用される溶媒としては、特に限定されるものではないが、アセトン、メチルエチルケトン等のケトン系溶媒、トルエン、キシレン等の芳香族系溶媒、DMF、NMP等の非プロトン系極性溶媒、メタノール、エタノール等のアルコール系溶媒が挙げられる。これらはそれぞれ単独又は複数種併用してもよい。これらのなかでも特にアセトン、メチルエチルケトン及びDMFがエポキシ樹脂(A)の溶解性の点から好ましい。
また、上記溶媒の使用量としては、特に制限されるものではないが、作業性や、繊維基材含浸後の乾燥が容易となる点から固形分濃度30〜80重量%であることが好ましい。
【0035】
上記の如く溶媒を加えてワニス化したものは、本発明の目的に反しない範囲において、着色剤、補強剤、高熱伝導性あるいは低誘電率の充填剤を配合することができる。熱伝導性の良い充填剤としては、水酸化アルミニウム等が挙げられ、また低誘電率の充填剤としてフッ素樹脂粉末、中空ガラスビーズ等が挙げられる。また、必要に応じてタルク、炭酸カルシウム等を適宜配合してもよい。これら充填剤の中でも特に熱伝導性のみならず、難燃効果にも優れた効果を発現する点から水酸化アルミニウムが好ましい。
【0036】
また、本発明の回路基板用樹脂組成物は、上述した各成分の他にテトラブロモビスフェノールA型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂、三酸化アンチモン、ヘキサブロモベンゼン等の難燃剤、カ−ボンブラック、ベンガラ等の着色剤、天然ワックス、合成ワックス等の離型剤及びシリコンオイル、合成ゴム、シリコーンゴム等の低応力添加剤等の添加剤を適宜配合してもよい。
【0037】
また必要に応じて、着色剤、難燃剤、離型剤、またはカップリング剤などの公知慣用の各種添加剤成分も適宜配合せしめることができる。
【0038】
この様にして得られる本発明の格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物は、繊維基材に本発明のエポキシ樹脂組成物を含浸、乾燥させてプリプレグを得、次いで、これを複数枚積層し、加熱加圧成形し、かつ、表面に、導電層及び配線パターンを形成することにより本発明の格子状通電端子配設半導体装置用回路基板が得られる。
【0039】
ここで用いる繊維基材としては、ガラスクロス、ガラスペーパー、紙、金属繊維からなる織布やマット類等、又は、アラミド樹脂、フッ素樹脂若しくはポリイミド樹脂等からなる不織布又は織布等が挙げられる。これらのなかでも特に、基材の膨張率が小さく、本発明の低線膨張性の効果が一層顕著なものとなる点から、ガラスクロス、アラミド樹脂の不織布が好ましい。
【0040】
プリプレグの積層枚数は特に制限されるものではないが、通常、4〜20枚であることが好ましい。また、これを加熱加圧成形する条件としては、特に制限されるものではないが、複数枚のプリプレグ、及び必要に応じ回路形成用の銅箔を積層した後、圧力20〜100kg・f/cm2、温度100〜250℃なる条件で、ステンレス板間に挟み加熱プレスによって一体に積層成形する方法が挙げられる。尚、この様にして得られる本発明の積層板においてプリプレグ積層部分は絶縁層を形成している。
【0041】
本発明の回路基板は、既述のとおり、上記プリプレグ積層部分の絶縁層の少なくとも片面に導電層を形成され、次いで、配線パターンが形成される。導電層及び配線パターンの形成は、金属箔、金属鍍金層、導電性ペースト層等の回路形成が可能なものが何れも使用できる。特に銅箔等の金属箔を使用する場合には、加熱加圧成形した後、選択エッチングにより導電層を形成することができ、大量生産に適する生産性が向上する点から好ましい。
【0042】
金属鍍金層を用いる方法としては、接着剤付積層板を作り接着剤の表面に必要部分のみ鍍金して導電層を形成させるもの、また、導電性ペースト層で回路形成する方法としては、積層板の表面にスクリーン印刷等によって導電層を形成するものが何れも好ましく適用できる。
【0043】
この様にして製造した回路基板は、次いで、該回路基板における配線パターン上に半導体チップが搭載され、該半導体チップの電極と前記配線パターンとを電気的に接続部位を介して接続し、かつ、半導体チップと接続部位とを樹脂で封止すると共に、更に、半導体チップの搭載面の裏側に前記配線パターンと導通された格子状通電入出力端子を配設することにより、本発明の目的とする、格子状通電端子配設半導体装置とすることができる。
【0044】
更に、具体的には、配線パターンが形成された回路基板の、該回路面上に半導体チップが搭載されると共に、該半導体チップの電極と基板上の配線パターンをワイヤ等の接続部位によりボンディングして電気的に連結させ、更に半導体チップ及びボンディングワイヤ等を外部環境から保護するため樹脂封止部を形成しており、更に、該回路を引き回して裏面に配設された通電端子と通電させるた構造の半導体装置であることが好ましい。
【0045】
更には、該回路基板において多層回路が形成され、層間がビアホールを介して導通されると共に、通電端子として半田ボールが用いられた、いわゆるボールグリッドアレイ型の半導体装置であることが好ましい。この半導体装置の一例を図1に示す。
【0046】
本発明の半導体装置は、既述の通り、単位面積当たり超極大化された数の入出力端子を配設し得ることが可能であり、200ピン以上の半導体装置とすることが可能であることはもとより、2000ピン以上の半導体装置とすることもできる。
【0047】
【実施例】
次に本発明を製造例、実施例およびその比較例により具体的に説明する。尚、例中において部は特に断りのない限りすべて重量部である。2核体含有量は、東ソー(株)製「ゲルパーミュエーションクロマトグラフィー(GPC)」(測定条件:流速=1.0ml/分間、圧力=92Kg/cm2、カラム=G4、3、2、2HXL、検出器=RI 32×10−6RIUFS)で測定した。
【0048】
製造例1
攪拌機、温度計、コンデンサーが装着された2リットルの4つ口フラスコにフェノール338g(3.6モル)を、BF3・フェノール錯体17gを添加し充分混合した。その後ジシクロペンタジエン177g(純度94%、1.2モル)を、系内温度を110〜120℃に保ちながら4時間要して添加した。その後、系内温度を120℃に保ち、3時間加熱攪拌し、得られた反応生成物溶液にマグネシウム化合物「KW-1000」(商品名;協和化学工業(株)社製)52gを添加し、1時間攪拌して触媒を失活させた後、反応溶液を濾過した。得られた透明溶液を未反応フェノールを蒸留回収しながら230℃に昇温し、減圧下で4時間ホールドした。その結果、固形樹脂343gを得た。この樹脂の水酸基当量は187g/eqであった。
【0049】
攪拌機、温度計、ディーンスタークトラップ、コンデンサーが装着された2リットルの4つ口フラスコに、この樹脂300g、エピクロルヒドリン740g(8モル)及びジメチルスルホキシド250gを加え溶解する。それを55℃に加熱し、減圧下それに49%NaOH163gを8時間要して滴下した。その際共沸して留出された液体をディーンスタークトラップで水とエピクロルヒドリンに分離し、エピクロルヒドリンのみを反応系内に戻しながら反応を行った。滴下後さらに1時間その温度で攪拌した後、120℃まで加熱し、未反応のエピクロルヒドリンを蒸留回収した。次いで得られた粗樹脂溶液にMIBK600g、水200gを加えて、無機塩及びDMSOを水洗にて除去した。さらに同量の水を用い、5回洗浄し、DMSOを除去した。この溶液に5%NaOH100gを添加し、85℃で3時間攪拌した。その後静置分液して、下層を除去し、さらに水洗を2回繰り返した。次いで共沸脱水、濾過を経て、MIBKを150℃で脱溶剤して目的のエポキシ樹脂(I)340gを得た。このエポキシ樹脂の2核体含有量は25重量%、エポキシ当量は275g/eqであった。
【0050】
製造例2
フェノールを282g(3.0モル)に変更した以外は製造例1と同様にして、固形樹脂324gを得た。この樹脂の軟化点は130℃、水酸基当量は191g/eqであった。
【0051】
この中間体を使用して、製造例1と同様にして目的のエポキシ樹脂(II)339gを得た。このエポキシ樹脂の2核体含有量は21重量%、エポキシ当量は286g/eqであった。
【0052】
製造比較例1
フェノールを282g(7.0モル)に変更した以外は製造例1と同様にして、固形樹脂329gを得た。この樹脂の軟化点は95℃、水酸基当量は170g/eqであった。
【0053】
この中間体を使用して、製造例1と同様にして目的のエポキシ樹脂(III)321gを得た。このエポキシ樹脂の2核体含有量は53重量%、エポキシ当量は250g/eqであった。
【0054】
[回路基板用樹脂組成物の評価]
実施例1〜2及び比較例1〜2
第1表で表される配合に従って調製した組成物の175℃でのゲルタイムを測定した。次いで180℃×10分間の条件でプレス成形して得られた評価用試験片を用い、ガラス転移温度、吸湿率、線膨張係数、誘電率を測定した。
【0055】
【表1】
Figure 0003820834
【0056】
表中、各成分は以下の通りであり、また、それらの配合量は重量部を表す。
フェノールノボラック樹脂:
Phenolite TD-2131(大日本インキ化学工業株式会社製,水酸基当量104g/eq.,軟化点80℃)
フェノールノボラック型エポキシ樹脂:
EPICLON N-770(大日本インキ化学工業株式会社製,エポキシ当量188g/eq.,軟化点72℃)
ゲルタイム:175℃
ガラス転移温度:動的粘弾性測定装置(DMA)
吸湿率:85℃×85%RH 300時間
線膨張係数:熱機械測定装置(TMA) 25-125℃
誘電率:25℃/1MHz
【0057】
[格子状通電端子配設半導体装置用回路基板の評価]
実施例3〜4及び比較例3〜4
エポキシ樹脂(I)〜(III)100重量部、ジシアンジアミド5重量部、2−エチル−4−メチルイミダゾール(2E4MZ)1重量部、に、N、N−ジメチルホルムアミド/メチルエチルケトン=1/2の混合溶媒を加えて不揮発分濃度50%となるようにワニスを調整した。このワニスを用いて、ガラスクロス(日東紡績(株)製、厚さ0.18mm)100重量部に対して、ワニス固形分が80重量部になるように含浸させて、150℃ の乾燥炉で4分間乾燥させ、樹脂含有量44.4%のプリプレグを得た。このプリプレグ8枚を重ね、その両側に厚さ35μmの電解銅箔を重ねて圧力40kgf/cm2、温度170℃ で120分間加熱加圧成形を行ない、厚さ1.6mmの格子状通電端子配設半導体装置用回路基板を製造した。実施例および比較例の格子状通電端子配設半導体装置用回路基板について、ガラス転移温度、誘電率、面方向と厚み方向の熱膨張率、TSOPの接続安定性、スルーホール信頼性、耐ハンダ耐熱性を試験したのでその結果を表2に示した。本発明は各特性のバランスに優れており、本発明の効果が確認された。
【0058】
【表2】
Figure 0003820834
【0059】
表中、各成分は以下の通りであり、また、それらの配合量は重量部を表す。
クレゾールノボラック型エポキシ樹脂:
EPICLON N-665-EXP-S(大日本インキ化学工業株式会社製,エポキシ当量203g/eq.,軟化点69℃)
ガラス転移温度 :動的粘弾性測定装置(DMA)
誘電率 :25℃/1MHz
線膨張係数 :熱機械測定装置(TMA) 25?125℃,面方向/厚み方向
スルーホール信頼性試験条件:
気中ヒートサイクル -40℃/1時間?150℃/1時間
耐ハンダ耐熱性:煮沸2時間吸水処理後,260℃ハンダ槽に180秒間浸せきさせた後の外観異常を観察
図1に本発明の格子状通電端子配設半導体装置用回路基板を用いた半導体装置を図示した。
【発明の効果】
本発明によれば、生産性及び密着性に優れると共に、BGAタイプの半導体装置に用いられる格子状通電端子配設回路基板用の樹脂成分として優れた高耐熱性及び低誘電率を達成できる樹脂材料、並びに、密着性、耐熱性及び低誘電率を兼備した格子状通電端子配設半導体装置用回路基板、及び前記回路基板を用いることにより信頼性に優れた半導体装置を提供できる。
【図面の簡単な説明】
【図1】図1は、本発明の半導体装置の断面図である。
1.格子状通電端子配設半導体装置用回路基板
2.半導体チップ
3.半田ボール
4.封止材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which lattice-like terminals such as a chip scale package represented by a ball grid array (BGA) type are disposed, a circuit board used in the device, and a resin composition used therefor.
[0002]
[Prior art]
In recent years, BGA type semiconductor devices have been developed in place of the conventional fine pitch surface mounting technology in order to cope with higher circuit integration in the semiconductor device field.
[0003]
That is, since the BGA semiconductor package can be provided with an extremely large number of input / output terminals per unit area, the circuit can be highly integrated and the space of the semiconductor device can be saved. The demand is increasing.
[0004]
In such a BGA type semiconductor device, a semiconductor chip is generally mounted on a multi-layered circuit wiring board, and the multi-layer circuit is conducted through a via hole, and is conducted with a solder ball disposed on the back surface. However, due to the dramatic improvement in processing capability based on high integration of circuits, there are problems with measures against heat generation of semiconductor devices, electrical capability in a high frequency range, etc. .
[0005]
Therefore, a circuit board used in the device is required to have both a low dielectric constant and a low linear expansion coefficient as well as excellent heat resistance.
[0006]
From this point of view, so-called BT resin, which is a bismaleimide resin, has been mainly used as a resin component used for circuit boards from the viewpoint of high heat resistance and low dielectric constant.
[0007]
[Problems to be solved by the invention]
However, bismaleimide resin is inferior in moldability and curability, leading to an increase in production cost, and inferior in interlayer adhesion of multilayer boards and adhesion to copper forming the circuit. It was.
[0008]
Epoxy resins are known as such resin components having excellent moldability, curability and adhesion, but epoxy resins can generally withstand practical use in BGA type semiconductor devices in terms of heat resistance and dielectric constant. It was not on the level.
[0009]
The problems to be solved by the present invention are excellent in productivity and adhesion, and excellent in heat resistance and low dielectric property as a resin component of a circuit board for a grid-type energizing terminal-arranged semiconductor device used in a BGA type semiconductor device. A circuit board for a semiconductor device provided with a grid-like energization terminal having a resin material capable of achieving a high rate, adhesion, heat resistance, and a low dielectric constant, and a semiconductor device excellent in reliability by using the circuit board There is to do.
[0010]
Means to be Solved by the Invention
As a result of intensive studies, the present inventors have found that the compound is a polyglycidyl ether of a resin in which an alicyclic hydrocarbon group is bonded to a phenol as a linking group and has two aromatic hydrocarbon nuclei per molecule. By using as a resin component for a circuit board an epoxy resin (A) containing 10 to 35% by weight of an epoxy resin (A) and a curing agent (B) as essential components, the epoxy resin component is excellent. High heat resistance and low dielectric constant can be achieved, and it can be applied to circuit boards for BGA type semiconductor devices. As a result, high heat resistance and low dielectric constant of cured products can be realized and moldability and curability It was found that excellent materials can be provided, and the reliability as a circuit board and a semiconductor device can be dramatically improved, and the present invention has been completed.
[0011]
That is, the present invention is a polyglycidyl ether of a resin in which an alicyclic hydrocarbon group is bonded to a phenol as a linking group, and a compound having two aromatic hydrocarbon nuclei per molecule. A resin composition for a circuit board used for a lattice-shaped energized terminal-arranged semiconductor device, characterized by comprising, as essential components, an epoxy resin (A) and a curing agent (B) contained in a percentage by weight,
A grid-shaped energized terminal-arranged semiconductor device, wherein the composition is impregnated into a prepreg, a plurality of the prepregs are integrally formed by heating and pressing, and a circuit of a wiring pattern is formed on the surface. Circuit board for use, and a circuit board formed by impregnating the prepreg with a prepreg, and forming a wiring pattern on the surface of a laminate formed by integrally heating and pressing a plurality of the prepregs, and the wiring on the back of the circuit board A grid-shaped energizing terminal that is electrically connected to the pattern is disposed, a semiconductor chip is mounted on the wiring pattern on the circuit board, and the semiconductor chip is further sealed with a resin. The present invention relates to a semiconductor device.
[0012]
The epoxy resin (A) used in the present invention is a polyglycidyl ether of a resin in which an alicyclic hydrocarbon group is bonded to a phenol as a linking group, and has two aromatic hydrocarbon nuclei per molecule. The compound is contained at a ratio of 10 to 35% by weight.
[0013]
Here, a compound satisfying the content condition of a compound having two aromatic hydrocarbon nuclei per molecule (hereinafter abbreviated as “binuclear compound”) has a dinuclear compound content of Compared to the range exceeding 35% by weight, the cured product can be provided with far superior curability, heat resistance, and low linear expansion coefficient while having the same low moisture absorption and low dielectric constant. Here, it should be noted that the epoxy resin generally has a characteristic that the lower the molecular weight, the lower the hygroscopicity and the lower dielectric constant are more easily exhibited. Low content, that is, despite the high content of polynuclear compounds, low moisture absorption and low dielectric constant can be achieved, but the level far exceeds the performance of conventional epoxy resins. It is in. Therefore, such a performance makes it possible to apply an epoxy resin to a circuit board for a BGA type semiconductor device.
[0014]
Here, the content of the binuclear compound means a resin component composed of two phenolic compounds per molecule in the epoxy resin (A), specifically, gel permeation chromatography (GPC). Is a value represented by the weight ratio analyzed by
[0015]
An epoxy resin (A) satisfying the above structural and molecular weight distribution conditions and having an epoxy equivalent in the range of 253 to 300 g / eq can further improve curability and heat resistance. preferable.
[0016]
Although it does not specifically limit as phenols which comprise an epoxy resin (A), For example, as phenols, phenol, an alkyl group, an alkenyl group, an allyl group, an aryl group, an aralkyl group, a halogen group, etc. Substituted phenols to which is attached. Specifically, cresol, xylenol, ethylphenol, isopropylphenol, butylphenol, octylphenol, nonylphenol, vinylphenol, isopropenylphenol, allylphenol, phenylphenol, benzylphenol, chlorophenol, bromophenol (respectively o, m, p) -Including isomers), bisphenol A, naphthol, dihydroxynaphthalene and the like, but are not limited thereto. Moreover, you may use these mixtures. Among these, phenol and cresol are particularly preferable from the viewpoint of excellent fluidity and curability.
[0017]
In addition, the alicyclic hydrocarbon group constituting the epoxy resin (A) serves as a linking group of the phenol skeleton part that forms the glycidyl ether structure part of the epoxy resin, and its structure is particularly limited. However, among them, those having a cyclohexane ring or a cyclohexene ring in the skeleton are preferable from the viewpoint of excellent water resistance improvement effect of the cured product. Among these, since this effect is particularly remarkable, specifically, unsaturated groups such as dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorborna-2-ene, α-pinene, β-pinene, and limonene. A divalent alicyclic hydrocarbon group derived from an unsaturated bond in the molecular skeleton of the alicyclic compound is preferred. These alicyclic hydrocarbon groups may be present alone or in combination of two or more. Furthermore, among these, it is a divalent complex alicyclic hydrocarbon group resulting from an unsaturated bond in the molecular skeleton of dicyclopentadiene because it can further improve the heat resistance and moisture resistance of the cured product. preferable.
[0018]
The unsaturated alicyclic compound used to introduce these alicyclic hydrocarbon groups into the resin structure is an aliphatic cyclic hydrocarbon compound having two or more unsaturated double bonds in one molecule. If it is, it will not specifically limit, If it illustrates, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, 5-vinylnorborna-2-ene, (alpha) -pinene, (beta) -pinene, limonene etc. will be mentioned. Among these, dicyclopentadiene is preferred from the viewpoint of property balance, particularly heat resistance and hygroscopicity. In addition, since dicyclopentadiene is contained in petroleum fractions, industrial dicyclopentadiene may contain other aliphatic or aromatic dienes as impurities, but heat resistance, curability, In consideration of moldability and the like, it is desirable to use a product having a purity of 90% by weight or more of dicyclopentadiene.
[0019]
In addition, the epoxy resin (A) used in the present invention is a polyglycidyl ether of polyphenol having a structure in which phenols are bonded via the above-mentioned bonding group, and depending on the number of aromatic hydrocarbon nuclei repeated by the bonding group. Although various molecular weights can be obtained, as described above, the epoxy resin (A) contains a dinuclear compound in an amount of 10 to 35% by weight.
[0020]
Here, specific examples of the compound having 2 nuclei include those represented by the following structural formula.
[0021]
[Chemical 1]
Figure 0003820834
[0022]
(Wherein X represents an aliphatic hydrocarbon group, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 each independently represents a halogen atom or an alkyl group having 1 to 10 carbon atoms.)
[0023]
In order to obtain the epoxy resin (A), the production method is not particularly limited. However, an intermediate which is a polyaddition reaction product of the above-described phenols and an unsaturated alicyclic compound is reacted with an epihalohydrin. Just do it.
[0024]
Here, the production condition of the intermediate polyaddition reaction product is not particularly limited, but the content of the binuclear compound of the epoxy resin (A) is set in the range of 10 to 35% by weight. to, it is preferable to adjust the molar ratio of phenol with an unsaturated alicyclic compound during the reaction, for example, phenol / unsaturated alicyclic compound = 2.5 / 1-3 / 1 (molar ratio ) Within the range of (), a preferred intermediate for obtaining the desired epoxy resin can be obtained.
[0025]
Here, the method for producing the above intermediate will be described in detail. A polyaddition catalyst is added to the phenols that have been melted or made into a solution, and an unsaturated alicyclic compound is appropriately added thereto. Then, the unreacted phenols are recovered by distillation to obtain a polyaddition reaction product. Here, the reaction temperature is not particularly limited, but is preferably 40 to 150 ° C. The polyaddition catalyst includes inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as paratoluenesulfonic acid, and Lewis acids such as AlCl 3 and BF 3. An acid etc. are mentioned.
[0026]
Subsequently, the target epoxy resin (A) can be obtained by reacting the thus obtained polyaddition reaction product with epihalohydrin. This reaction may be performed according to a known method, for example, the following reaction: Is mentioned.
[0027]
That is, first, 2 to 15 equivalents relative to the hydroxyl group of the intermediate, preferably 3 to 10 equivalents of epihalohydrin are added and dissolved from the viewpoint of excellent melt viscosity reduction effect, and then in the polyaddition reaction product. A 0.8 to 1.2 equivalent amount of 10-50% NaOH aqueous solution with respect to the hydroxyl group is appropriately reduced at a temperature of 50-80 ° C for 3-5 hours. Stirring is continued for about 0.5 to 2 hours at that temperature after appropriate reduction, and the lower layer saline solution is discarded after standing. Then, excess epihalohydrin is recovered by distillation to obtain the resin. To this, an organic solvent such as toluene or MIBK is added, and a target resin can be obtained through a water washing-dehydration-filtration-desolvation step. For the purpose of reducing the amount of impurity chlorine, a solvent such as dioxane or DMSO may be used in the reaction.
[0028]
As the epihalohydrin used here, epichlorohydrin is the most common, but epiiodohydrin, epibromohydrin, β-methylepichlorohydrin, and the like can also be used.
[0029]
In addition, as the curing agent (B) used in the present invention, any compound usually used as a curing agent for an epoxy resin can be used, and is not particularly limited. For example, a phenol novolak resin, Orthocresol novolak resin, bisphenol A novolak resin, bisphenol F novolak resin, phenols-dicyclopentadiene polyaddition resin, dihydroxynaphthalene novolac resin, polyhydric phenols having a xylidene group as a linking group, phenol-aralkyl resin, naphthol Resins, triazine-modified phenol novolac resins, aliphatic amines such as diethylenetriamine and triethylenetetramine, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone, poly Potential of polyimide resins and their modified products, anhydrides such as maleic anhydride, phthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, dicyandiamide, imidazole, BF3 -amine complex, guanidine derivatives Examples thereof include a curing agent.
[0030]
Among these, dicyandiamide, phenol novolak resin, phenol-dicyclopentadiene polyaddition resin, and phenol-aralkyl resin are particularly preferable from the viewpoint of further improving heat resistance, electrical properties, and water resistance.
[0031]
The amount of these curing agents used is not particularly limited as long as it cures the epoxy resin, but preferably the number of epoxy groups contained in one molecule of the epoxy resin used and the activity in the curing agent. The amount of hydrogen is about equivalent.
When each compound as listed above is used as a curing agent, a curing accelerator can be appropriately used.
[0032]
As the curing accelerator, any known and conventional ones can be used. Examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, amine complex salts, and the like. Two or more types can be used in combination.
[0033]
Moreover, the resin composition for circuit boards used for the lattice-shaped current-carrying terminal-arranged semiconductor device of the present invention is used in combination with the epoxy resin (A), which is an essential component, in addition to other epoxy resins (D). It doesn't matter. As the epoxy resin (D) used in this case, any known ones can be used. For example, bisphenol A diglycidyl ether type epoxy resin, phenol novolac type epoxy resin, orthocresol novolak type epoxy resin, bisphenol A novolak type Examples thereof include epoxy resins, bisphenol F novolac type epoxy resins, brominated phenol novolac type epoxy resins, naphthol novolac type epoxy resins, and biphenyl type bifunctional epoxy resins. The proportion of these epoxy resins (D) used is not particularly limited, but is preferably in the range of 5 to 60% by weight in the total epoxy resin components.
[0034]
In the resin composition for a circuit board of the present invention, it is preferable to adjust the viscosity by adding a solvent to the above components so that the fiber base material is easily impregnated, and the viscosity is adjusted. Although not particularly limited, ketone solvents such as acetone and methyl ethyl ketone, aromatic solvents such as toluene and xylene, aprotic polar solvents such as DMF and NMP, and alcohol solvents such as methanol and ethanol are exemplified. . These may be used alone or in combination. Among these, acetone, methyl ethyl ketone, and DMF are particularly preferable from the viewpoint of solubility of the epoxy resin (A).
The amount of the solvent used is not particularly limited, but is preferably 30 to 80% by weight in terms of workability and ease of drying after impregnation with the fiber base material.
[0035]
A varnish obtained by adding a solvent as described above can be blended with a colorant, a reinforcing agent, a high thermal conductivity or a low dielectric constant filler as long as the object of the present invention is not adversely affected. Examples of the filler having good thermal conductivity include aluminum hydroxide, and examples of the filler having a low dielectric constant include fluororesin powder and hollow glass beads. Moreover, you may mix | blend talc, a calcium carbonate, etc. suitably as needed. Among these fillers, aluminum hydroxide is particularly preferable because it exhibits not only thermal conductivity but also an excellent flame retardant effect.
[0036]
Moreover, the resin composition for circuit boards of the present invention includes brominated epoxy resins such as tetrabromobisphenol A type epoxy resin, brominated phenol novolak type epoxy resin, antimony trioxide, hexabromobenzene, etc. Flame retardants, carbon black, colorants such as bengara, release agents such as natural wax and synthetic wax, and additives such as low stress additives such as silicone oil, synthetic rubber and silicone rubber Good.
[0037]
If necessary, various known and commonly used additive components such as a colorant, a flame retardant, a mold release agent, or a coupling agent can be appropriately blended.
[0038]
The thus obtained resin composition for a circuit board used in the semiconductor device with a grid-like energized terminal of the present invention is impregnated with the epoxy resin composition of the present invention on a fiber base material and dried to obtain a prepreg, A circuit board for a semiconductor device with a grid-like energization terminal of the present invention can be obtained by laminating a plurality of these, heating and pressing, and forming a conductive layer and a wiring pattern on the surface.
[0039]
Examples of the fiber base material used here include woven fabrics and mats made of glass cloth, glass paper, paper, and metal fibers, or nonwoven fabrics or woven fabrics made of aramid resin, fluororesin, polyimide resin, or the like. Among these, glass cloth and non-woven fabric of aramid resin are preferable because the expansion coefficient of the base material is small and the low linear expansion effect of the present invention becomes more remarkable.
[0040]
The number of laminated prepregs is not particularly limited, but is usually preferably 4 to 20 sheets. In addition, the conditions for heat-press molding are not particularly limited, but after laminating a plurality of prepregs and, if necessary, a copper foil for forming a circuit, a pressure of 20 to 100 kg · f / cm. 2. A method of laminating and forming integrally with a stainless steel plate by a hot press under the condition of a temperature of 100 to 250 ° C. In the laminate of the present invention thus obtained, the prepreg laminate portion forms an insulating layer.
[0041]
As described above, in the circuit board of the present invention, a conductive layer is formed on at least one surface of the insulating layer of the prepreg laminated portion, and then a wiring pattern is formed. For forming the conductive layer and the wiring pattern, any of those capable of forming a circuit such as a metal foil, a metal plating layer, and a conductive paste layer can be used. In particular, when a metal foil such as a copper foil is used, a conductive layer can be formed by selective etching after heat and pressure molding, which is preferable from the viewpoint of improving productivity suitable for mass production.
[0042]
As a method of using a metal plating layer, a laminated plate with an adhesive is formed and only a necessary portion is plated on the surface of the adhesive to form a conductive layer. Also, as a method of forming a circuit with a conductive paste layer, a laminated plate is used. Any of those having a conductive layer formed on the surface thereof by screen printing or the like can be preferably applied.
[0043]
The circuit board manufactured in this way is then mounted with a semiconductor chip on the wiring pattern on the circuit board, electrically connecting the electrode of the semiconductor chip and the wiring pattern via a connection portion, and An object of the present invention is to seal the semiconductor chip and the connection portion with resin, and further dispose a grid-like energization input / output terminal connected to the wiring pattern on the back side of the mounting surface of the semiconductor chip. The semiconductor device can be provided with a grid-like energization terminal.
[0044]
More specifically, a semiconductor chip is mounted on the circuit surface of the circuit board on which the wiring pattern is formed, and the electrodes of the semiconductor chip and the wiring pattern on the board are bonded by connecting portions such as wires. In order to protect the semiconductor chip and the bonding wire from the external environment, a resin sealing portion is formed. Further, the circuit is routed to energize the energizing terminal disposed on the back surface. A semiconductor device having a structure is preferable.
[0045]
Furthermore, a so-called ball grid array type semiconductor device in which a multilayer circuit is formed on the circuit board, the layers are electrically connected through via holes, and solder balls are used as energization terminals is preferable. An example of this semiconductor device is shown in FIG.
[0046]
As described above, the semiconductor device of the present invention can be provided with an extremely large number of input / output terminals per unit area, and can be a semiconductor device having 200 pins or more. Needless to say, a semiconductor device having 2000 pins or more may be used.
[0047]
【Example】
Next, the present invention will be specifically described with reference to production examples, examples and comparative examples. In the examples, all parts are parts by weight unless otherwise specified. Dinuclear content is “Gel permeation chromatography (GPC)” manufactured by Tosoh Corporation (measuring conditions: flow rate = 1.0 ml / min, pressure = 92 Kg / cm 2, columns = G4, 3, 2, 2HXL) , Detector = RI 32 × 10 −6 RIUFS).
[0048]
Production Example 1
To a 2 liter four-necked flask equipped with a stirrer, thermometer, and condenser, 338 g (3.6 mol) of phenol and 17 g of BF3 / phenol complex were added and mixed well. Thereafter, 177 g (purity 94%, 1.2 mol) of dicyclopentadiene was added over 4 hours while maintaining the system temperature at 110 to 120 ° C. Thereafter, the system temperature was kept at 120 ° C., and the mixture was heated and stirred for 3 hours, and 52 g of magnesium compound “KW-1000” (trade name; manufactured by Kyowa Chemical Industry Co., Ltd.) was added to the obtained reaction product solution. After stirring for 1 hour to deactivate the catalyst, the reaction solution was filtered. The obtained transparent solution was heated to 230 ° C. while distilling and recovering unreacted phenol, and held under reduced pressure for 4 hours. As a result, 343 g of a solid resin was obtained. The hydroxyl equivalent of this resin was 187 g / eq.
[0049]
300 g of this resin, 740 g (8 mol) of epichlorohydrin and 250 g of dimethyl sulfoxide are dissolved in a 2 liter four-necked flask equipped with a stirrer, thermometer, Dean-Stark trap and condenser. It was heated to 55 ° C. and 163 g of 49% NaOH was added dropwise to it under reduced pressure over 8 hours. At that time, the liquid distilled azeotropically was separated into water and epichlorohydrin by a Dean Stark trap, and the reaction was carried out while returning only epichlorohydrin to the reaction system. After the dropwise addition, the mixture was further stirred for 1 hour at that temperature, and then heated to 120 ° C. to recover unreacted epichlorohydrin by distillation. Next, 600 g of MIBK and 200 g of water were added to the obtained crude resin solution, and inorganic salts and DMSO were removed by washing with water. Further, using the same amount of water, washing was performed 5 times to remove DMSO. To this solution, 100 g of 5% NaOH was added and stirred at 85 ° C. for 3 hours. Thereafter, the mixture was allowed to stand for liquid separation, the lower layer was removed, and washing with water was repeated twice. Next, after azeotropic dehydration and filtration, MIBK was removed at 150 ° C. to obtain 340 g of the desired epoxy resin (I). This epoxy resin had a dinuclear content of 25% by weight and an epoxy equivalent of 275 g / eq.
[0050]
Production Example 2
A solid resin 324 g was obtained in the same manner as in Production Example 1 except that phenol was changed to 282 g (3.0 mol). The softening point of this resin was 130 ° C., and the hydroxyl equivalent was 191 g / eq.
[0051]
Using this intermediate, 339 g of the desired epoxy resin (II) was obtained in the same manner as in Production Example 1. This epoxy resin had a dinuclear content of 21% by weight and an epoxy equivalent of 286 g / eq.
[0052]
Production Comparative Example 1
A solid resin 329 g was obtained in the same manner as in Production Example 1 except that phenol was changed to 282 g (7.0 mol). The softening point of this resin was 95 ° C., and the hydroxyl equivalent was 170 g / eq.
[0053]
Using this intermediate, 321 g of the target epoxy resin (III) was obtained in the same manner as in Production Example 1. This epoxy resin had a binuclear content of 53% by weight and an epoxy equivalent of 250 g / eq.
[0054]
[Evaluation of resin composition for circuit board]
Examples 1-2 and Comparative Examples 1-2
The gel time at 175 ° C. of the composition prepared according to the formulation shown in Table 1 was measured. Subsequently, the glass transition temperature, the moisture absorption rate, the linear expansion coefficient, and the dielectric constant were measured using a test piece for evaluation obtained by press molding at 180 ° C. for 10 minutes.
[0055]
[Table 1]
Figure 0003820834
[0056]
In the table, each component is as follows, and the blending amount represents parts by weight.
Phenol novolac resin:
Phenolite TD-2131 (Dainippon Ink Chemical Co., Ltd., hydroxyl equivalent weight 104g / eq., Softening point 80 ℃)
Phenol novolac epoxy resin:
EPICLON N-770 (Dainippon Ink Chemical Co., Ltd., epoxy equivalent 188g / eq., Softening point 72 ℃)
Gel time: 175 ° C
Glass transition temperature: Dynamic viscoelasticity measuring device (DMA)
Moisture absorption: 85 ° C x 85% RH 300 hours Linear expansion coefficient: Thermomechanical measurement device (TMA) 25-125 ° C
Dielectric constant: 25 ° C / 1MHz
[0057]
[Evaluation of Circuit Board for Semiconductor Device with Lattice-Shaped Terminals]
Examples 3-4 and Comparative Examples 3-4
100 parts by weight of epoxy resins (I) to (III), 5 parts by weight of dicyandiamide, 1 part by weight of 2-ethyl-4-methylimidazole (2E4MZ), and a mixed solvent of N, N-dimethylformamide / methyl ethyl ketone = 1/2 Was added to adjust the varnish to a non-volatile concentration of 50%. Using this varnish, 100 parts by weight of glass cloth (manufactured by Nitto Boseki Co., Ltd., thickness 0.18 mm) was impregnated so that the varnish solid content would be 80 parts by weight, It was dried for 4 minutes to obtain a prepreg having a resin content of 44.4%. 8 sheets of this prepreg are stacked, 35μm thick electrolytic copper foil is stacked on both sides, and heat pressing is performed for 120 minutes at a pressure of 40kgf / cm2 and a temperature of 170 ° C, and a 1.6mm thick grid-shaped energizing terminal is arranged. A circuit board for a semiconductor device was manufactured. For circuit boards for semiconductor devices with grid-like energized terminals of Examples and Comparative Examples, glass transition temperature, dielectric constant, thermal expansion coefficient in the plane and thickness directions, TSOP connection stability, through-hole reliability, soldering heat resistance The results are shown in Table 2. The present invention was excellent in the balance of each characteristic, and the effect of the present invention was confirmed.
[0058]
[Table 2]
Figure 0003820834
[0059]
In the table, each component is as follows, and the blending amount represents parts by weight.
Cresol novolac epoxy resin:
EPICLON N-665-EXP-S (Dainippon Ink & Chemicals, Epoxy equivalent 203g / eq., Softening point 69 ℃)
Glass transition temperature: Dynamic viscoelasticity measuring device (DMA)
Dielectric constant: 25 ° C / 1MHz
Linear expansion coefficient: Thermomechanical measurement device (TMA) 25-125 ° C, surface / thickness through-hole reliability test conditions:
Atmospheric heat cycle -40 ℃ / 1hour-150 ℃ / 1hour Solder heat resistance: After boiling water absorption treatment for 2 hours, observe the appearance abnormality after being immersed in a 260 ℃ solder bath for 180 seconds. A semiconductor device using a circuit board for a semiconductor device provided with a grid-like energization terminal is shown.
【The invention's effect】
According to the present invention, a resin material that is excellent in productivity and adhesion and that can achieve excellent high heat resistance and low dielectric constant as a resin component for a circuit board with a grid-like current terminal used in a BGA type semiconductor device. In addition, a circuit board for a semiconductor device having a grid-like energization terminal having adhesion, heat resistance and low dielectric constant, and a semiconductor device having excellent reliability can be provided by using the circuit board.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor device of the present invention.
1. 1. Circuit board for semiconductor device provided with grid-like energization terminals 2. Semiconductor chip 3. Solder balls Sealing material

Claims (8)

脂環式炭化水素基を結接基としてフェノール類と結合した樹脂のポリグリシジルエーテルであって、かつ、1分子あたり芳香族炭化水素核を2個有する化合物を10〜35重量%の割合で含有するエポキシ樹脂(A)、および硬化剤(B)を必須成分とすることを特徴とする格子状通電端子配設半導体装置に用いられる回路基板用樹脂組成物。Polyglycidyl ether of a resin bonded with phenols using an alicyclic hydrocarbon group as a linking group, and containing 10 to 35% by weight of a compound having two aromatic hydrocarbon nuclei per molecule An epoxy resin (A) and a curing agent (B) to be used as essential components. エポキシ樹脂(A)が、エポキシ当量が253〜300g/eqのものである請求項1記載の回路基板用樹脂組成物。The circuit board resin composition according to claim 1, wherein the epoxy resin (A) has an epoxy equivalent of 253 to 300 g / eq. フェノール類がフェノールであり、脂環式炭化水素基がジシクロペンタジエンの分子構造中の不飽和結合に基づく2価の炭化水素基である請求項1又は2に記載の回路基板用樹脂組成物。The circuit board resin composition according to claim 1 or 2, wherein the phenol is phenol and the alicyclic hydrocarbon group is a divalent hydrocarbon group based on an unsaturated bond in the molecular structure of dicyclopentadiene. エポキシ樹脂(A)及び硬化剤(B)に加え、更に有機溶媒(C)を含有する請求項1、2又は3記載の回路基板用樹脂組成物。The resin composition for circuit boards according to claim 1, 2 or 3, further comprising an organic solvent (C) in addition to the epoxy resin (A) and the curing agent (B). 半導体装置用格子状通電端子配設回路基板が、回路形成面の裏面に該回路と導通するように半田ボールが配設されたものである請求項1〜4の何れか1つに記載の回路基板用樹脂組成物。The circuit according to any one of claims 1 to 4, wherein the circuit board with the grid-like energizing terminals for a semiconductor device is provided with solder balls on the back surface of the circuit forming surface so as to be electrically connected to the circuit. Resin composition for substrates. 請求項1〜5の何れか1つに記載の組成物を、プリプレグに含浸、該プリプレグの複数を加熱加圧一体に成形してなり、且つ、表面に配線パターンの回路が形成されていることを特徴とする格子状通電端子配設半導体装置用回路基板。The composition according to any one of claims 1 to 5 is impregnated into a prepreg, a plurality of the prepregs are integrally formed by heating and pressing, and a circuit of a wiring pattern is formed on the surface. A circuit board for a semiconductor device provided with a grid-like energizing terminal. 請求項1〜5の何れか1つに記載の組成物を、プリプレグに含浸、該プリプレグの複数を加熱加圧一体に成形された積層板の表面に回路配線パターンを形成してなる回路基板における配線パターン上に半導体チップが搭載され、該半導体チップの電極と前記配線パターンとを電気的に接続部位を介して接続され、かつ、半導体チップと接続部位とが樹脂で封止されており、かつ、半導体チップの搭載面の裏側に前記配線パターンと導通された格子状通電入出力端子が配設された構造を有することを特徴する格子状通電端子配設半導体装置。In a circuit board formed by impregnating the composition according to any one of claims 1 to 5 into a prepreg, and forming a circuit wiring pattern on the surface of a laminated board formed by integrally heating and pressing a plurality of the prepregs. A semiconductor chip is mounted on the wiring pattern, the electrode of the semiconductor chip and the wiring pattern are electrically connected via a connection portion, and the semiconductor chip and the connection portion are sealed with a resin; and A grid-shaped energization terminal-arranged semiconductor device having a structure in which a grid-shaped energization input / output terminal connected to the wiring pattern is disposed on the back side of the semiconductor chip mounting surface. 回路基板裏面に該配線パターンと導通された格子状通電端子が半田ボールである請求項7記載の格子状通電端子配設半導体装置。8. A semiconductor device provided with a grid-like energization terminal according to claim 7, wherein the grid-like energization terminal connected to the wiring pattern on the back surface of the circuit board is a solder ball.
JP2000050794A 2000-02-28 2000-02-28 RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL Expired - Lifetime JP3820834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050794A JP3820834B2 (en) 2000-02-28 2000-02-28 RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050794A JP3820834B2 (en) 2000-02-28 2000-02-28 RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL

Publications (2)

Publication Number Publication Date
JP2001240654A JP2001240654A (en) 2001-09-04
JP3820834B2 true JP3820834B2 (en) 2006-09-13

Family

ID=18572543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050794A Expired - Lifetime JP3820834B2 (en) 2000-02-28 2000-02-28 RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL

Country Status (1)

Country Link
JP (1) JP3820834B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986723B1 (en) * 2013-04-26 2019-06-07 코오롱인더스트리 주식회사 Low Dielectric Constant Epoxy Resin and Processes for Production thereof
JP6429569B2 (en) * 2014-09-30 2018-11-28 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product thereof
WO2017010401A1 (en) 2015-07-10 2017-01-19 住友精化株式会社 Epoxy resin composition, process for producing same, and uses of said composition
US11091627B2 (en) 2017-01-10 2021-08-17 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
US11292872B2 (en) 2017-01-10 2022-04-05 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
EP3569626B1 (en) 2017-01-10 2023-03-01 Sumitomo Seika Chemicals Co., Ltd. Epoxy resin composition
CN110191921B (en) 2017-01-10 2022-04-26 住友精化株式会社 Epoxy resin composition
JP6832168B2 (en) * 2017-01-18 2021-02-24 東京応化工業株式会社 Resin composition, black matrix, display device, and method for manufacturing black matrix
JP7132784B2 (en) 2018-07-26 2022-09-07 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition, prepreg, laminate and printed wiring board
JPWO2020129724A1 (en) 2018-12-19 2020-06-25
JP7307668B2 (en) * 2019-12-10 2023-07-12 日本化薬株式会社 Epoxy resin and epoxy resin composition
JPWO2021246339A1 (en) 2020-06-04 2021-12-09
US20230227603A1 (en) 2020-06-04 2023-07-20 Nippon Steel Chemical & Material Co., Ltd. Epoxy resin composition and cured product thereof
KR20230008113A (en) 2020-06-11 2023-01-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Phenol resins, epoxy resins, methods for producing them, epoxy resin compositions, and cured products thereof
CN116507494A (en) 2020-12-07 2023-07-28 日铁化学材料株式会社 Polyhydroxy resin, epoxy resin, method for producing the same, epoxy resin composition, and cured product of epoxy resin composition

Also Published As

Publication number Publication date
JP2001240654A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP3820834B2 (en) RESIN COMPOSITION FOR CIRCUIT BOARD USED FOR SEMICONDUCTOR DEVICE HAVING LATTICE CURRENT TERMINAL
KR100607185B1 (en) Prepreg and laminated board formed of the prepreg
KR102316144B1 (en) Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device
US4529790A (en) Epoxy resin composition
EP0507271A2 (en) Epoxy resin compositions for use in electrical laminates
KR20090016763A (en) Oligomeric halogenated chain extenders for preparing epoxy resins
JPH0819213B2 (en) Epoxy resin composition and copper clad laminate
WO2022209642A1 (en) Epoxy resin and production method therefor, curable resin composition, and cured product thereof
JP2002220435A (en) Phosphorus-containing epoxy resin composition, prepreg, resin-coated metal foil, adhesive sheet, laminated board and multilayer board, phosphorus-containing epoxy resin varnish for coating, phosphorus-containing epoxy resin sealing material, phosphorus-containing epoxy resin casting material and phosphorus-containing epoxy resin varnish for immersion
JP3141962B2 (en) Epoxy resin composition and cured product thereof
EP0556429A1 (en) Epoxy resin compositions
JP2000219799A (en) Flame-retarded epoxy resin composition and laminate
JPH0959346A (en) Epoxy resin composition for laminate
JP4622036B2 (en) Thermosetting resin composition, cured product, prepreg for laminated board, and printed wiring board
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JP2006257137A (en) Epoxy resin composition and cured product thereof
JP7268256B1 (en) Epoxy resin, curable resin composition, and cured product thereof
JP6636599B2 (en) Epoxy resin composition, prepreg and metal-clad laminate, printed wiring board
KR20020047333A (en) Phosphorus-containing epoxy resin, flame-retardant highly heat-resistant epoxy resin composition containing the resin, and laminate
JP3735911B2 (en) Epoxy resin composition and laminate using the same
JP3440365B2 (en) Epoxy resin composition for laminated board
JP3546594B2 (en) Epoxy resin composition, prepreg and laminate
US5130407A (en) Hydantoin or barbituric acid-extended epoxy resin
EP0517337B1 (en) Epoxy resin composition for electrical laminates
JP4198508B2 (en) Modified polyimide resin composition and prepreg and laminate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R151 Written notification of patent or utility model registration

Ref document number: 3820834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term