JP3820642B2 - Fuel pre-burner pressure control method and apparatus - Google Patents

Fuel pre-burner pressure control method and apparatus Download PDF

Info

Publication number
JP3820642B2
JP3820642B2 JP23666596A JP23666596A JP3820642B2 JP 3820642 B2 JP3820642 B2 JP 3820642B2 JP 23666596 A JP23666596 A JP 23666596A JP 23666596 A JP23666596 A JP 23666596A JP 3820642 B2 JP3820642 B2 JP 3820642B2
Authority
JP
Japan
Prior art keywords
burner
pressure
valve opening
fuel
pressure control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23666596A
Other languages
Japanese (ja)
Other versions
JPH1082522A (en
Inventor
繁一 古川
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP23666596A priority Critical patent/JP3820642B2/en
Publication of JPH1082522A publication Critical patent/JPH1082522A/en
Application granted granted Critical
Publication of JP3820642B2 publication Critical patent/JP3820642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料のバーナ前圧力制御方法及び装置に関するものである。
【0002】
【従来の技術】
ボイラには、燃料としてCWM(coal water mixture)やオリマルジョンを焚くものがあるが、CWMやオリマルジョン焚きの場合には、通常燃料流量制御を燃料ポンプの回転数により行っている。
【0003】
しかし、燃料ポンプの回転数には下限があり、或る回転数よりも下げることはできないため、下限域においては、燃料流量制御を燃料ポンプの回転数ではなく、燃料ポンプ出口における燃料を一部逃がしてサービスタンクへ戻すバーナ前圧力制御により行っており、通常は、1ペアのバーナが燃焼を完了したら、燃料流量制御をバーナ前圧力制御から燃料ポンプの回転数制御へと移行させている。
【0004】
ところが、燃料ポンプの容量が大容量になると、数ペアのバーナの燃焼後でなければ、燃料ポンプの回転数制御に移行することができず、従って、燃料ポンプの回転数制御へ移行する前の段階におけるバーナの点消火時には、燃料噴射弁を開き或いは閉止することによりバーナ前圧力が低下若しくは上昇するため、バーナ前設定圧力を迅速に規定値にすることができない。
【0005】
そこで、燃料ポンプの回転数制御へ移行する前の段階であるバーナ前圧力制御時にバーナ前圧力の安定を図るため、従来は、バーナの点消火時にバーナ前圧力制御を一時的に中断したり、或いはバーナペア数に対応してプログラムに基づき圧力制御弁の開度を調整することが行われている。
【0006】
而して、バーナの点消火時にバーナ前圧力制御を一時的に中断する場合の燃料供給系の一例は、図4に示され、図中、1は中途部に燃料ポンプ2を備えた燃料主管、3a,3bは燃料主管1の先端から複数に分岐し且つ中途部に燃料噴射弁4a,4bを備えた燃料管、5a,5bは燃料管3a,3b先端から2本に分岐した燃料噴射管、6a,6bは各燃料噴射管5a,5bの先端に接続された複数ペアの燃料噴射バーナであり、各燃料噴射バーナ6a,6bは夫々2本ずつペアで燃焼するようになっている。
【0007】
7は燃料ポンプ2の燃料流れ方向D下流側で燃料主管1に接続され且つ中途部に圧力制御弁8を備えた燃料戻し管であり、燃料戻し管7を通った燃料はサービスタンクへ戻されるようになっている。
【0008】
9は燃料主管1の燃料戻し管7接続部よりも燃料流れ方向D下流側に位置するよう接続され且つ燃料主管1内を流れる燃料のバーナ前圧力を検出するための圧力検出器である。
【0009】
10は燃料噴射バーナ6a,6bの点火時におけるバーナ前設定圧力P1又はP3(P1≒P3)の指令を出力する信号発生器、11は燃料噴射バーナ6a,6bの消火時におけるバーナ前設定圧力P2又はP4(P2≒P4<P1≒P3)の指令を出力する信号発生器、12は点火時にはa側に切換って信号発生器10からのバーナ前設定圧力P1又はP3を出力し、消火時には、b側に切換って信号発生器11からのバーナ前設定圧力P2又はP4を出力する切換器、13は点消火指令がない場合(点消火時以外の場合)には、b側に切換って切換器12からのバーナ前設定圧力P1,P3又はP2,P4を出力し、点消火指令が与えられた点消火時の場合には、a側に切換って圧力検出器9で検出したバーナ前検出圧力Pを出力するようにした切換器である。
【0010】
14は点消火指令のない場合には、切換器13からのバーナ前設定圧力P1,P3又はP2,P4に到達するまで、変化率を制限してバーナ前設定圧力の信号を出力し、点消火指令が与えられたら変化率の制限を解除(レート除外)して圧力検出器9からのバーナ前検出圧力Pを出力し得るようにした変化率制限器、15は変化率制限器14から与えられたバーナ前設定圧力P1,P3又はP2,P4若しくはバーナ前検出圧力Pと圧力検出器9から直接与えられたバーナ前検出圧力Pの差をとって、バーナ前圧力偏差ΔPを求める減算器、16は減算器15からのバーナ前圧力偏差ΔPを比例積分処理し、弁開度調整指令V1として圧力制御弁8へ与える比例積分調節器である。
【0011】
例えば1ペアの燃料噴射バーナ6aが燃焼しており、次に2ペア目の燃料噴射バーナ6bを点火させる場合で、まだ点火指令が与えられていない場合には、切換器12はa側に、又切換器13はb側に切換っている。
【0012】
このため、信号発生器10からは、バーナ前設定圧力P1が出力され、切換器12,13を経て変化率制限器14へ与えられ、変化率を制限された信号として減算器15へ与えられる。
【0013】
又、圧力検出器9で検出した燃料主管1を送給される燃料のバーナ前圧力は、バーナ前検出圧力Pとして減算器15へ与えられ、減算器15では、バーナ前設定圧力P1とバーナ前検出圧力Pの差がバーナ前圧力偏差ΔPとして求められ、求められたバーナ前圧力偏差ΔPは比例積分調節器16へ与えられる。
【0014】
比例積分調節器16へ与えられたバーナ前圧力偏差ΔPは、比例積分処理されて弁開度調整指令V1が求められ、求められた弁開度調整指令V1は圧力制御弁8へ与えられて圧力制御弁8の開度が弁開度調整指令V1に対応して調整され、而して燃料戻し管7からサービスタンクへ戻される燃料の流量を制御することによりバーナ前設定圧力P1とバーナ前検出圧力Pとが等しくなるよう、すなわち、バーナ前圧力偏差ΔPが零になるよう圧力制御運転が行われる。
【0015】
燃料噴射バーナ6aが燃焼した状態で燃料噴射バーナ6bに点火を行う場合には、点火指令により燃料噴射弁4bが開くと共に切換器13はa側に切換り、変化率制限器14はレート除外される。このため、圧力検出器9で検出したバーナ前検出圧力Pは、直接減算器15に与えられると共に、切換器13、レート除外された変化率制限器14を経て減算器15に与えられる。
【0016】
このため、減算器15で求められたバーナ前圧力偏差ΔPは零になり、比例積分調節器16からは弁開度調整指令V1が出力されず、圧力制御弁8の開度は変化しなくなる。その結果、点火時には一時的に燃料供給系の圧力制御が行われない状態になる。
【0017】
又、燃料噴射バーナ6bが点火した後規定時間後に、切換器13はb側に切換り、変化率制限器14はレート除外を解除される。
【0018】
このため、以後は、圧力制御弁8は、信号発生器10からのバーナ前設定圧力P3と圧力検出器9で検出したバーナ前検出圧力Pが等しくなるよう、すなわち、バーナ前圧力偏差ΔPが零となるよう圧力制御弁8の開度が調整され、燃料供給系の圧力制御が行われる。
【0019】
燃料噴射バーナ6a,6bが燃焼している状態で例えば燃料噴射バーナ6bを消火する場合には、消火指令が与えられない状態では切換器12はb側に切り換っており、信号発生器11からのバーナ前設定圧力P4と圧力検出器9で検出したバーナ前検出圧力Pとの差であるバーナ前圧力偏差ΔPが減算器15において求められ、バーナ前圧力偏差ΔPは比例積分調節器16で比例積分処理されて弁開度調整指令V1が求められ、圧力制御弁8は弁開度調整指令V1により、バーナ前圧力偏差ΔPが零になるよう開度を調整され、圧力制御が行われる。
【0020】
消火指令が切換器13及び変化率制限器14に与えられると、燃料噴射弁4bが閉止すると共に切換器13はa側に切換り、変化率制限器14はレート除外される。このため、圧力検出器9で検出したバーナ前検出圧力Pは、直接減算器15へ与えられると同時に切換器13、変化率制限器14を経て減算器15に与えられ、従って減算器15で求められるバーナ前圧力偏差ΔPは零となり、その結果、比例積分調節器16から圧力制御弁8へ弁開度調整指令V1は出力されず、圧力制御弁8の開度は変化しないため、消火時にも、一時的に燃料供給系の圧力制御が行われない状態になる。
【0021】
又、燃料噴射バーナ6bが消火した後規定時間後に、切換器13はb側に切換り、変化率制限器14はレート除外が解除される。
【0022】
このため、以後は、圧力制御弁8は、信号発生器10からのバーナ前設定圧力P2と圧力検出器9で検出したバーナ前検出圧力Pとの差であるバーナ前圧力偏差ΔPが零となるよう圧力制御弁8の開度が調整され、圧力制御が行われる。
【0023】
上述の点火、消火を行う際の燃料流量とバーナ前圧力の関係は図5に示されている。すなわち、例えば燃料噴射バーナ6aをバーナ前圧力がP1となるよう運転を行っている状態で、燃料噴射バーナ6bを点火する場合、点火指令により燃料噴射弁4bが開き、燃料噴射バーナ6bから燃料の噴射が開始される。この際、圧力制御弁8は一時的に圧力制御が行われず、一定開度を保持した状態となるため、バーナ前圧力は、図5の垂線イのP1からP2に示すように、急激に下降し、曲線ハに示すように燃料流量が徐々に増加するに従い圧力制御弁8による圧力制御が再開されてバーナ前圧力が回復して来る。
【0024】
又、燃料噴射バーナ6a,6bバーナ前圧力がP3となるよう、運転を行っている状態で燃料噴射バーナ6bを消火する場合、消火指令により燃料噴射弁4bが閉止し、燃料噴射バーナ6bからの燃料噴射が停止される。この際、圧力制御弁8は一時的に圧力制御が行われず、一定開度を保持した状態となるため、バーナ前圧力は図5の垂線イのP2からP1に示すように急激に上昇し、曲線ロに示すように燃料流量が徐々に下降するに従い、圧力制御弁8による圧力制御が再開されてバーナ前圧力は徐々に下降する。
【0025】
図5中、曲線ロは、バーナペア数が1ペアの場合の燃料流量とバーナ前圧力との関係を示し、曲線ハの場合は、バーナペア数が2ペアの場合の燃料流量とバーナ前圧力との関係を示す。
【0026】
なお、上述の装置の場合、一時的に点消火時に圧力制御弁8の開度を一定に保持し、圧力制御を行わないのは、以下の理由による。すなわち、点消火時には、圧力検出器9で検出されるバーナ前圧力は急激に下降若しくは上昇するため、急激に変化するバーナ前圧力に基づき圧力制御弁8の開度を調整すると、圧力制御弁8の開度は大きく変化し、安定した圧力制御に移行するのに時間が掛かるためである。
【0027】
次に、バーナの点消火時にバーナペア数に対応してプログラムに基づき圧力制御弁の開度を調整する場合の燃料供給系の一例は図6に示され、図中、17は燃焼する燃料噴射バーナ6a,6bのペア数によりプログラムに基づき圧力制御弁8の弁開度指令V2を出力する関数発生器、18は関数発生器17からの弁開度指令V2の変化率を制限して圧力制御弁8の開閉速度を押えるための変化率制限器であり、燃料供給系自体は、図4の場合と同じであるため、同一部分には同一の符号が付してある。
【0028】
関数発生器17には、図7に示すごとくバーナペア数が増加したら圧力制御弁8の開度を段階的に絞り、燃料噴射バーナ6a,6bから噴射される燃料の圧力を段階的に上昇させるための関数F(x)がプログラムとして入力されている。
【0029】
本例の場合燃料噴射バーナ6a,6bを点火若しくは消火する場合には、バーナペア数の指令により燃料噴射弁4a,4bが開又は閉され、又バーナペア数に対応した弁開度指令V2が関数発生器17から圧力制御弁8に与えられ、圧力制御弁8はバーナペア数に見合った開度にプログラム制御される。
【0030】
このため、図6の燃料供給系では、例えば燃料噴射バーナ6aが燃焼している状態で燃料噴射弁4bを開き燃料噴射バーナ6bに点火を行ってもバーナ前圧力が急激に減少することがなく、燃料噴射バーナ6a,6bが燃焼している状態で燃料噴射弁4bを閉止して燃料噴射バーナ6bを消火してもバーナ前圧力が急激に増加することがない。従って図6の場合には、点消火時においても迅速に安定したバーナ前圧力を得ることができ、点火時のバーナ前圧力低下による不安定燃焼を防止することができる。
【0031】
【発明が解決しようとする課題】
図4に示す燃料供給系の場合は、バーナの点消火時にバーナ前圧力が急激に低下若しくは上昇するため、バーナ前圧力を迅速に規定値に保持することが難しく、特にバーナ点火時のバーナ前圧力の低下により燃料噴射バーナの不安定燃焼が生じる虞れがある。
【0032】
又、図6に示す燃料供給系の場合は、バーナ点消火時にも迅速に安定したバーナ前圧力を得ることができるため、点火時にバーナ前圧力が低下することがなく、従って燃料噴射バーナ6a,6bの不安定燃焼が生じる虞れはない。
【0033】
しかし燃料がCWMやオリマルジョンの場合、圧力制御弁8の弁や弁座は使用年月の経過に伴い摩耗し、このため同じペア数でも使用開始直後とある期間使用した後では圧力制御弁8の開度に差が生じ、制御の安定性に欠けるという問題がある。
【0034】
本発明は上述の実情に鑑み、燃料噴射バーナの点消火時に迅速に安定したバーナ前圧力を得ることができるようにすると共に使用によって圧力制御弁の弁、弁座が摩耗した場合にも制御の安定性が損われないようにすることを目的としてなしたものである。
【0035】
【課題を解決するための手段】
本発明は、バーナ点火時若しくは消火時は、バーナペア数に対応したプログラムにより定まる弁開度指令に基づき、燃料ポンプから燃料噴射バーナへ至る管路に接続した燃料戻し管の圧力制御弁の開度を調整し、前記バーナ点火若しくは消火から規定時間到達後は、予め定めたバーナ前設定圧力と前記管路中のバーナ前検出圧力の差を処理して求めた弁開度調整指令を前記弁開度指令に加算して修正弁開度調整指令を求め、該修正弁開度調整指令により前記圧力制御弁の開度を調整するものである。
【0036】
本装置発明は、バーナペア数に対応したプログラムにより定まる弁開度指令を出力する関数発生器と、
点火時には、点火時のバーナ前設定圧力を出力する信号発生器から与えられたバーナ前設定圧力を出力し、消火時には、消火時のバーナ前設定圧力を出力する信号発生器から与えられたバーナ前設定圧力を出力する第1の切換器と、
点火時若しくは消火時には、燃料ポンプから燃料噴射バーナへ至る管路に接続した圧力検出器により検出したバーナ前検出圧力を出力し、点火時若しくは消火時以外は前記第1の切換器からのバーナ前設定圧力を出力する第2の切換器と、
前記圧力検出器からのバーナ前検出圧力と前記第2の切換器からのバーナ前検出圧力若しくはバーナ前設定圧力の差を取りバーナ前圧力偏差を求める減算器と、
前記減算器で求めたバーナ前圧力偏差を処理し弁開度調整指令を求める調節器と、
前記関数発生器からの弁開度指令と調節器からの弁開度調整指令を加算して修正弁開度調整指令を求め、該修正弁開度調整指令を基に燃料ポンプから燃料噴射バーナへ至る管路に接続した燃料戻し管の圧力制御弁の開度を調整する加算器を設けたものである。
【0037】
本発明では、点消火時には圧力制御弁の開度はプログラムに基づき制御され、前記バーナ点火若しくは消火から規定時間到達後は、燃料のバーナ前圧力及びバーナペア数に対応したプログラムの両方により制御される。
【0038】
このため、本発明では、点消火時のバーナ前圧力を迅速に規定値に保持することができ、点火時のバーナ前圧力の低下による燃料噴射バーナの不安定燃焼が生じることがなく、しかも制御の安定性が向上する。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照しつつ説明する。
【0040】
図1は本発明の実施の形態の一例で、本実施の形態例においては、図4に示すごときバーナ前圧力制御を一次的に中断する制御系と、図6に示すごときバーナペア数に対応してプログラムに基づき圧力制御弁の開度を調整する制御系の両方が設置され、比例積分調節器16から出力された弁開度調整指令V1と変化率制限器18からの弁開度指令V2は加算器19で加算したうえ、修正弁開度調整指令V3として圧力制御弁8へ与え得るようになっている。
【0041】
なお、加算器19以外の各機器は図4、6に示す機器と同じであるため、同一部分には同一の符号を付し、説明は省略する。
【0042】
次に、本発明の実施の形態における作用について説明する。
【0043】
例えば、1ペアの燃料噴射バーナ6aが燃焼しており、次に他ペアの燃料噴射バーナ6bを点火させる場合で、まだ点火指令が与えられていない場合には、図4の場合と同様、切換器12はa側に、又切換器13はb側に切換っている。
【0044】
このため、信号発生器10からはバーナ前設定圧力P1が出力され、切換器12,13を経て変化率制限器14へ与えられ、変化率を制限された信号として減算器15へ与えられる。
【0045】
又、圧力検出器9で検出した燃料主管1を送給される燃料の圧力はバーナ前検出圧力Pとして減算器15へ与えられ、減算器15では、バーナ前設定圧力P1とバーナ前検出圧力Pの差がバーナ前圧力偏差ΔPとして求められ、求められたバーナ前圧力偏差ΔPは比例積分調節器16へ与えられる。
【0046】
比例積分調節器16へ与えられたバーナ前圧力偏差ΔPは比例積分処理されて弁開度調整指令V1が求められ、求められた弁開度調整指令V1は加算器19へ与えられる。
【0047】
一方、バーナペア数(ここでは1ペア)に対応して関数発生器17からは弁開度指令V2が出力され、変化率制限器18を経て加算器19へ与えられる。
【0048】
加算器19では、比例積分調節器16からの弁開度調整指令V1と変化率制限器18からの弁開度指令V2が加算されて修正弁開度調整指令V3が求められ、求められた修正弁開度調整指令V3は圧力制御弁8へ与えられ、圧力制御弁8はバーナペア数に見合ったバーナ前圧力となるよう開度調整される。
【0049】
従って、バーナ前圧力制御とプログラム制御とが併用されるため、経時的に圧力制御の安定性が損われることがなく、安定した圧力制御を行うことができる。
【0050】
燃料噴射バーナ6aが燃焼した状態で燃料噴射バーナ6bに点火を行う場合には、点火指令により燃料噴射弁4bが開くと共に切換器13はa側に切換り、変化率制限器14はレート除外される。このため、圧力検出器9で検出したバーナ前検出圧力Pは直接減算器15に与えられると共に切換器13、変化率制限器14を経て減算器15に与えられる。
【0051】
このため、減算器15で求められたバーナ前圧力偏差ΔPは零になり、比例積分調節器16から加算器19へ与えられる弁開度調整指令V1は零となる。
【0052】
従って、点火時には、バーナペア数(この場合には2ペア)に対応して関数発生器17から出力された弁開度指令V2のみが圧力制御弁8へ与えられ、圧力制御弁8はバーナペア数に見合った開度にプログラム制御される。
【0053】
このため本実施の形態例では、燃料噴射バーナ6aが燃焼している状態で燃料噴射弁4bを開き、燃料噴射バーナ6bに点火を行ってもバーナ前圧力が急激に減少することがなく、安定したバーナ前圧力を得ることができ、従って燃料噴射バーナ6a,6bに不安定燃焼が生じることがない。
【0054】
又、燃料噴射バーナ6bが点火した後規定時間到達で、切換器13はb側に切換り、変化率制限器14のレート除外も解除されるため、以後は、減算器15で信号発生器10からのバーナ前設定圧力P3と圧力検出器9からのバーナ前検出圧力Pの差であるバーナ前圧力偏差ΔPが求められ、該バーナ前圧力偏差ΔPは比例積分調節器16で比例積分処理されて弁開度調整指令V1として加算器19へ与えられ、バーナペア数に対応して定まる弁開度指令V2と加算され、修正弁開度調整指令V3として圧力制御弁8へ与えられ、圧力制御弁8はバーナ前圧力制御とプログラム制御とが併用され、従って経時的に圧力制御の安定性が損われることなく、安定した圧力制御が行われる。
【0055】
燃料噴射バーナ6a,6bが燃焼している状態で例えば燃料噴射バーナ6bを消火する場合には、消火指令が与えられない状態では切換器12はb側に切換っており、信号発生器11からのバーナ前設定圧力P4が減算器15に与えられ、以後は、燃料噴射バーナ6bを点火する場合と同様の手順で圧力制御弁8の開度調整が行われる。
【0056】
又、消火指令が与えられると切換器13はa側に切換り、前述と同様、比例積分調節器16からの弁開度調整指令V1は零となるため、消火の際には、圧力制御弁8はバーナペア数に対応した弁開度指令V2によってプログラム制御される。
【0057】
又、燃料噴射バーナ6bが消火された後規定時間到達で、切換器13はb側に切換り、以後は、信号発生器11からのバーナ前設定圧力P2とバーナ前検出圧力Pの差であるバーナ前圧力偏差ΔPをもとに求めた弁開度調整指令V1及び関数発生器17からの弁開度指令V2が加算されて修正弁開度調整指令V3が求められ、修正弁開度調整指令V3により圧力制御弁8が制御される。
【0058】
従ってこの場合にも、バーナ前圧力制御とプログラム制御が併用され、安定した圧力制御が可能となる。
【0059】
本実施の形態例における点火時の時間とバーナ前圧力、圧力制御弁開度の関係は図2に示され、消火時の時間とバーナ前圧力、圧力制御弁開度の関係は図3に示されている。而して、図2からバーナ点火時におけるバーナ前圧力P2’はそれ程低下せず、P2よりも高いことが分る。従って、バーナ前圧力は迅速にバーナ前設定圧力P3に保持される。
【0060】
又同様に消火時にもバーナ前圧力は迅速にバーナ前設定圧力P2に保持される。
【0061】
なお、本発明の実施の形態においては、燃料噴射バーナを2ペア設ける場合について説明したが、複数ペアなら何ペアでも実施できること、その他、本発明の要旨を逸脱しない範囲内で種々変更を加え得ること、等は勿論である。
【0062】
【発明の効果】
本発明の燃料のバーナ前圧力制御方法及び装置によれば、請求項1、2の何れにおいても、点消火時のバーナ前圧力を迅速に規定値に保持することができ、又バーナ点火時のバーナ前圧力の低下による燃料噴射バーナの不安定燃焼が生じることがなく、安定燃焼が可能となり、又使用により経年的に制御性が損われることがない、等種々の優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の燃料のバーナ前圧力制御方法及び装置の実施の形態の一例を示すブロック図である。
【図2】本発明における点火時の時間とバーナ前圧力、圧力制御弁開度の関係を示すグラフである。
【図3】本発明における消火時の時間とバーナ前圧力、圧力制御弁開度の関係を示すグラフである。
【図4】従来の燃料のバーナ前圧力制御装置において、バーナの点消火時にバーナ前圧力制御を一時的に中断する場合の一例のブロック図である。
【図5】図4に示す燃料のバーナ前圧力制御装置により制御を行う際の燃料流量とバーナ前圧力との関係を示すグラフである。
【図6】従来の燃料のバーナ前圧力制御装置において、プログラム制御を行う場合の一例のブロック図である。
【図7】図6に示す燃料のバーナ前圧力制御装置における関数発生器に設定される関数を示すグラフである。
【符号の説明】
1 燃料主管(管路)
2 燃料ポンプ
6a,6b 燃料噴射バーナ
7 燃料戻し管
8 圧力制御弁
9 圧力検出器
10,11 信号発生器
12,13 切換器
15 減算器
16 比例積分調節器(調節器)
17 関数発生器
P1,P2,P3,P4 バーナ前設定圧力
P バーナ前検出圧力
ΔP バーナ前圧力偏差(差)
V1 弁開度調整指令
V2 弁開度指令
V3 修正弁開度調整指令
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel burner pre-pressure control method and apparatus.
[0002]
[Prior art]
Some boilers use CWM (coal water mixture) and orimulsion as fuel. In the case of using CWM and orimulsion, the fuel flow control is usually performed by the number of revolutions of the fuel pump.
[0003]
However, since the speed of the fuel pump has a lower limit and cannot be lowered below a certain speed, in the lower limit range, the fuel flow control is not performed at the fuel pump speed but part of the fuel at the fuel pump outlet. The pressure control is performed by the pre-burner pressure control for escaping and returning to the service tank. Normally, when one pair of burners completes the combustion, the fuel flow control is shifted from the pre-burner pressure control to the rotation speed control of the fuel pump.
[0004]
However, when the capacity of the fuel pump becomes large, it is not possible to shift to the rotational speed control of the fuel pump unless after combustion of several pairs of burners. At the time of point fire extinguishing of the burner in the stage, the pre-burner pressure cannot be quickly set to the specified value because the pre-burner pressure is lowered or increased by opening or closing the fuel injection valve.
[0005]
Therefore, in order to stabilize the pre-burner pressure during the pre-burner pressure control, which is the stage before shifting to the rotation speed control of the fuel pump, conventionally, the pre-burner pressure control is temporarily interrupted when the burner is extinguished, Alternatively, the opening of the pressure control valve is adjusted based on a program corresponding to the number of burner pairs.
[0006]
Thus, an example of the fuel supply system in the case where the pre-burner pressure control is temporarily interrupted when the burner is extinguished is shown in FIG. 4, where 1 is a fuel main pipe provided with a fuel pump 2 in the middle. 3a and 3b are branched into a plurality of fuel pipes from the tip of the fuel main pipe 1, and fuel pipes provided with fuel injection valves 4a and 4b in the middle, and 5a and 5b are fuel pipes branched into two from the tips of the fuel pipes 3a and 3b. , 6a, 6b are a plurality of pairs of fuel injection burners connected to the ends of the fuel injection pipes 5a, 5b, and each of the fuel injection burners 6a, 6b burns in pairs.
[0007]
Reference numeral 7 denotes a fuel return pipe connected to the fuel main pipe 1 at the downstream side of the fuel flow direction D of the fuel pump 2 and having a pressure control valve 8 in the middle, and the fuel passing through the fuel return pipe 7 is returned to the service tank. It is like that.
[0008]
A pressure detector 9 is connected so as to be located on the downstream side in the fuel flow direction D with respect to the fuel return pipe 7 connection portion of the fuel main pipe 1 and detects the pre-burner pressure of the fuel flowing in the fuel main pipe 1.
[0009]
10 is a signal generator that outputs a command of a pre-burner set pressure P1 or P3 (P1≈P3) when the fuel injection burners 6a and 6b are ignited, and 11 is a pre-burner set pressure P2 when the fuel injection burners 6a and 6b are extinguished. Alternatively, a signal generator that outputs a command of P4 (P2≈P4 <P1≈P3), 12 is switched to the a side at the time of ignition and outputs the pre-burner set pressure P1 or P3 from the signal generator 10, and at the time of fire extinguishing, Switch to the b side and output the pre-burner set pressure P2 or P4 from the signal generator 11, and 13 switch to the b side when there is no point fire extinguishing command (other than during point fire extinguishing) In the case of a point fire extinguishing when a pre-burner set pressure P1, P3 or P2, P4 is output from the switcher 12 and a point fire extinguishing command is given, the preburner detected by the pressure detector 9 is switched to the a side. Outputs detected pressure P A switching unit that was.
[0010]
14, when there is no point fire extinguishing command, the rate of change is limited until the pre-burner set pressure P1, P3 or P2, P4 from the switch 13 is reached, and a pre-burner pre-set pressure signal is output. A change rate limiter 15 is provided from the change rate limiter 14 so as to be able to output the pre-burner detected pressure P from the pressure detector 9 by releasing the rate limit restriction (excluding the rate) when a command is given. The subtractor for calculating the pre-burner pressure deviation ΔP by taking the difference between the pre-burner set pressure P1, P3 or P2, P4 or the pre-burner detection pressure P and the pre-burner detection pressure P directly applied from the pressure detector 9. Is a proportional-integral controller that performs proportional-integral processing on the pre-burner pressure deviation ΔP from the subtractor 15 and supplies the result to the pressure control valve 8 as a valve opening adjustment command V1.
[0011]
For example, when one pair of fuel injection burners 6a is burning and then the second pair of fuel injection burners 6b is ignited and the ignition command has not been given yet, the switcher 12 is moved to the a side, The switch 13 is switched to the b side.
[0012]
For this reason, the pre-burner set pressure P1 is output from the signal generator 10, is supplied to the change rate limiter 14 via the switches 12 and 13, and is supplied to the subtractor 15 as a signal with a limited change rate.
[0013]
The pre-burner pressure of the fuel fed through the fuel main pipe 1 detected by the pressure detector 9 is given to the subtracter 15 as the pre-burner detection pressure P. In the subtracter 15, the pre-burner set pressure P1 and the pre-burner pressure The difference between the detected pressures P is obtained as the pre-burner pressure deviation ΔP, and the obtained pre-burner pressure deviation ΔP is given to the proportional-plus-integral controller 16.
[0014]
The pre-burner pressure deviation ΔP given to the proportional integration controller 16 is subjected to proportional integration processing to obtain a valve opening adjustment command V1, and the obtained valve opening adjustment command V1 is given to the pressure control valve 8 to adjust the pressure. The opening of the control valve 8 is adjusted in response to the valve opening adjustment command V1, and thus the pre-burner set pressure P1 and the pre-burner detection are controlled by controlling the flow rate of fuel returned from the fuel return pipe 7 to the service tank. The pressure control operation is performed so that the pressure P becomes equal, that is, the pre-burner pressure deviation ΔP becomes zero.
[0015]
When ignition is performed on the fuel injection burner 6b with the fuel injection burner 6a burned, the fuel injection valve 4b is opened by the ignition command and the switch 13 is switched to the a side, and the rate of change limiter 14 is excluded from the rate. The For this reason, the pre-burner detection pressure P detected by the pressure detector 9 is directly supplied to the subtractor 15 and is also supplied to the subtracter 15 via the switching unit 13 and the rate-of-change limiter 14 excluding the rate.
[0016]
Therefore, the pre-burner pressure deviation ΔP obtained by the subtracter 15 becomes zero, the valve opening adjustment command V1 is not output from the proportional-plus-integral regulator 16, and the opening of the pressure control valve 8 does not change. As a result, the pressure of the fuel supply system is temporarily not controlled during ignition.
[0017]
Further, after a predetermined time after the fuel injection burner 6b is ignited, the switch 13 is switched to the b side, and the rate of change limiter 14 is released from the rate exclusion.
[0018]
For this reason, thereafter, the pressure control valve 8 causes the pre-burner set pressure P3 from the signal generator 10 and the pre-burner detected pressure P detected by the pressure detector 9 to be equal, that is, the pre-burner pressure deviation ΔP is zero. Thus, the opening degree of the pressure control valve 8 is adjusted, and the pressure control of the fuel supply system is performed.
[0019]
For example, when the fuel injection burner 6b is extinguished while the fuel injection burners 6a and 6b are burning, the switcher 12 is switched to the b side when no fire extinguishing command is given, and the signal generator 11 The pre-burner pressure deviation ΔP, which is the difference between the pre-burner pre-set pressure P4 from the above and the pre-burner detected pressure P detected by the pressure detector 9, is obtained by the subtractor 15, and the pre-burner pressure deviation ΔP is obtained by the proportional integral controller 16. Proportional integration processing is performed to obtain a valve opening adjustment command V1, and the pressure control valve 8 is adjusted by the valve opening adjustment command V1 so that the pre-burner pressure deviation ΔP becomes zero, and pressure control is performed.
[0020]
When a fire extinguishing command is given to the switching device 13 and the change rate limiter 14, the fuel injection valve 4b is closed and the switcher 13 is switched to the a side, and the change rate limiter 14 is excluded from the rate. For this reason, the pre-burner detected pressure P detected by the pressure detector 9 is directly supplied to the subtractor 15 and simultaneously supplied to the subtractor 15 via the switch 13 and the change rate limiter 14. The pressure deviation ΔP before the burner is zero, and as a result, the valve opening adjustment command V1 is not output from the proportional-plus-integral regulator 16 to the pressure control valve 8, and the opening of the pressure control valve 8 does not change. The pressure in the fuel supply system is temporarily not controlled.
[0021]
Further, after a specified time after the fuel injection burner 6b is extinguished, the switch 13 is switched to the b side, and the rate limiter 14 is released from the rate exclusion.
[0022]
Therefore, thereafter, the pressure control valve 8 has a pre-burner pressure deviation ΔP, which is a difference between the pre-burner set pressure P2 from the signal generator 10 and the pre-burner detection pressure P detected by the pressure detector 9, being zero. Thus, the opening degree of the pressure control valve 8 is adjusted, and pressure control is performed.
[0023]
FIG. 5 shows the relationship between the fuel flow rate and the pre-burner pressure when performing the above ignition and extinguishing. That is, for example, when the fuel injection burner 6b is ignited while the fuel injection burner 6a is operated so that the pre-burner pressure becomes P1, the fuel injection valve 4b is opened by the ignition command, and the fuel is injected from the fuel injection burner 6b. Injection starts. At this time, since the pressure control valve 8 is not temporarily controlled and is in a state of maintaining a constant opening, the pressure before the burner rapidly decreases as indicated by P1 to P2 of the vertical line A in FIG. Then, as shown by the curve C, as the fuel flow rate gradually increases, the pressure control by the pressure control valve 8 is resumed and the pre-burner pressure is recovered.
[0024]
Further, when the fuel injection burner 6b is extinguished while the operation is performed so that the pressure before the fuel injection burners 6a and 6b becomes P3, the fuel injection valve 4b is closed by the fire extinguishing command, and the fuel injection burner 6b Fuel injection is stopped. At this time, since the pressure control valve 8 is temporarily not pressure-controlled and maintains a constant opening, the pre-burner pressure suddenly increases as indicated by P2 to P1 in the vertical line A in FIG. As shown by curve B, as the fuel flow rate gradually decreases, the pressure control by the pressure control valve 8 is resumed and the pre-burner pressure gradually decreases.
[0025]
In FIG. 5, curve B shows the relationship between the fuel flow rate and the pre-burner pressure when the number of burner pairs is one pair, and in the case of curve C, the fuel flow rate and the pre-burner pressure when the number of burner pairs is two pairs. Show the relationship.
[0026]
In the case of the above-mentioned device, the opening degree of the pressure control valve 8 is temporarily kept constant during point extinction and the pressure control is not performed for the following reason. That is, when the point is extinguished, the pre-burner pressure detected by the pressure detector 9 suddenly drops or rises. Therefore, when the opening degree of the pressure control valve 8 is adjusted based on the pre-burner pressure that changes rapidly, the pressure control valve 8 This is because the opening degree of the valve changes greatly and it takes time to shift to stable pressure control.
[0027]
Next, FIG. 6 shows an example of a fuel supply system in the case where the opening degree of the pressure control valve is adjusted based on a program corresponding to the number of burner pairs during point extinction of the burner. In FIG. A function generator 18 that outputs the valve opening command V2 of the pressure control valve 8 based on the program by the number of pairs 6a and 6b, 18 is a pressure control valve that limits the rate of change of the valve opening command V2 from the function generator 17 8 is a change rate limiter for suppressing the opening / closing speed of 8, and the fuel supply system itself is the same as in the case of FIG.
[0028]
In the function generator 17, as shown in FIG. 7, when the number of burner pairs increases, the opening degree of the pressure control valve 8 is gradually reduced to increase the pressure of the fuel injected from the fuel injection burners 6a and 6b stepwise. The function F (x) is input as a program.
[0029]
In the case of this example, when the fuel injection burners 6a and 6b are ignited or extinguished, the fuel injection valves 4a and 4b are opened or closed according to the burner pair number command, and a valve opening command V2 corresponding to the burner pair number is generated as a function. The pressure control valve 8 is given to the pressure control valve 8 from the vessel 17, and the pressure control valve 8 is program-controlled to an opening degree corresponding to the number of burner pairs.
[0030]
For this reason, in the fuel supply system of FIG. 6, for example, even if the fuel injection valve 4b is opened and the fuel injection burner 6b is ignited while the fuel injection burner 6a is burning, the pre-burner pressure does not rapidly decrease. Even if the fuel injection valve 4b is closed and the fuel injection burner 6b is extinguished while the fuel injection burners 6a and 6b are burning, the pre-burner pressure does not increase rapidly. Therefore, in the case of FIG. 6, a stable pre-burner pressure can be obtained quickly even during point extinction, and unstable combustion due to a drop in pre-burner pressure during ignition can be prevented.
[0031]
[Problems to be solved by the invention]
In the case of the fuel supply system shown in FIG. 4, it is difficult to quickly maintain the pre-burner pressure at a specified value because the pre-burner pressure rapidly decreases or rises when the burner is extinguished. There is a possibility that unstable combustion of the fuel injection burner may occur due to a decrease in pressure.
[0032]
Further, in the case of the fuel supply system shown in FIG. 6, since a stable pre-burner pressure can be obtained quickly even when the burner point is extinguished, the pre-burner pressure does not decrease at the time of ignition, so the fuel injection burner 6a, There is no risk of unstable combustion of 6b.
[0033]
However, when the fuel is CWM or orimulsion, the valve and the valve seat of the pressure control valve 8 wear with the passage of time of use, and therefore even if the same number of pairs is used immediately after the start of use and after a certain period of use, the pressure control valve 8 There is a problem that a difference occurs in the opening and the stability of the control is lacking.
[0034]
In view of the above circumstances, the present invention makes it possible to quickly obtain a stable pre-burner pressure when the fuel injection burner is extinguished and to control the pressure control valve even when the valve and the valve seat are worn by use. The purpose is to prevent the stability from being lost.
[0035]
[Means for Solving the Problems]
In the present invention, when the burner is ignited or extinguished, the opening degree of the pressure control valve of the fuel return pipe connected to the pipeline from the fuel pump to the fuel injection burner based on the valve opening degree instruction determined by the program corresponding to the number of burner pairs After reaching the specified time from the burner ignition or extinguishing, the valve opening adjustment command obtained by processing the difference between the preset pre-burner set pressure and the pre-burner detection pressure in the pipeline is opened . A correction valve opening adjustment command is obtained by adding to the degree command, and the opening of the pressure control valve is adjusted by the correction valve opening adjustment command.
[0036]
The present invention is a function generator for outputting a valve opening command determined by a program corresponding to the number of burner pairs,
At the time of ignition, the pre-burner set pressure given by the signal generator that outputs the pre-burner set pressure at the time of ignition is output, and at the time of fire extinguishing, the pre-burner set pressure that is output from the signal generator that outputs the pre-burner set pressure at the time of fire extinguishing A first switch for outputting a set pressure;
At the time of ignition or extinguishing, the pre-burner detection pressure detected by the pressure detector connected to the pipe line from the fuel pump to the fuel injection burner is output, and before the burner from the first switching device except at the time of ignition or extinguishing A second switch for outputting the set pressure;
A subtractor for calculating a pre-burner pressure deviation by taking a difference between the pre-burner detection pressure from the pressure detector and the pre-burner detection pressure or the pre-burner set pressure from the second switch;
A controller for processing a pre-burner pressure deviation obtained by the subtractor to obtain a valve opening adjustment command;
The corrected valve opening adjustment command is obtained by adding the valve opening command from the function generator and the valve opening adjustment command from the regulator, and from the fuel pump to the fuel injection burner based on the corrected valve opening adjustment command. An adder is provided for adjusting the opening degree of the pressure control valve of the fuel return pipe connected to the pipe line.
[0037]
In the present invention, the opening degree of the pressure control valve is controlled based on a program at the time of point extinction, and is controlled by both the pre-burner pressure of the fuel and the program corresponding to the number of burner pairs after reaching the specified time from the burner ignition or extinguishing. .
[0038]
For this reason, in the present invention, the pre-burner pressure at the time of point-extinguishing can be quickly held at a specified value, and unstable combustion of the fuel injection burner due to a decrease in the pre-burner pressure at the time of ignition does not occur and control is performed. Improves stability.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0040]
FIG. 1 shows an example of the embodiment of the present invention. In this embodiment, the control system for temporarily interrupting the pre-burner pressure control as shown in FIG. 4 and the number of burner pairs as shown in FIG. Both of the control system for adjusting the opening degree of the pressure control valve based on the program are installed, and the valve opening degree adjustment command V1 output from the proportional integration controller 16 and the valve opening degree instruction V2 from the change rate limiter 18 are After adding by the adder 19, it can be given to the pressure control valve 8 as a corrected valve opening adjustment command V3.
[0041]
In addition, since each apparatus other than the adder 19 is the same as the apparatus shown in FIGS. 4 and 6, the same reference numerals are given to the same parts, and the description is omitted.
[0042]
Next, the operation in the embodiment of the present invention will be described.
[0043]
For example, when one pair of fuel injection burners 6a is burning and then the other pair of fuel injection burners 6b is ignited and an ignition command has not yet been given, switching is performed as in FIG. The switch 12 is switched to the a side, and the switch 13 is switched to the b side.
[0044]
For this reason, the pre-burner set pressure P1 is output from the signal generator 10, is supplied to the change rate limiter 14 via the switches 12 and 13, and is supplied to the subtractor 15 as a signal with a limited change rate.
[0045]
The pressure of the fuel fed through the fuel main pipe 1 detected by the pressure detector 9 is given to the subtractor 15 as the pre-burner detection pressure P. In the subtracter 15, the pre-burner set pressure P1 and the pre-burner detection pressure P Is obtained as the pre-burner pressure deviation ΔP, and the obtained pre-burner pressure deviation ΔP is supplied to the proportional-plus-integral controller 16.
[0046]
The pre-burner pressure deviation ΔP supplied to the proportional integration controller 16 is subjected to proportional integration processing to obtain a valve opening adjustment command V1, and the obtained valve opening adjustment command V1 is supplied to the adder 19.
[0047]
On the other hand, the valve opening command V2 is output from the function generator 17 corresponding to the number of burner pairs (here, one pair), and is supplied to the adder 19 via the change rate limiter 18.
[0048]
The adder 19 adds the valve opening degree adjustment command V1 from the proportional integral regulator 16 and the valve opening degree instruction V2 from the change rate limiter 18 to obtain a corrected valve opening degree adjustment command V3, and the obtained correction is obtained. The valve opening adjustment command V3 is given to the pressure control valve 8, and the opening degree of the pressure control valve 8 is adjusted so that the pre-burner pressure corresponding to the number of burner pairs is obtained.
[0049]
Therefore, since the pre-burner pressure control and the program control are used in combination, the stability of the pressure control is not lost over time, and the stable pressure control can be performed.
[0050]
When ignition is performed on the fuel injection burner 6b with the fuel injection burner 6a burned, the fuel injection valve 4b is opened by the ignition command and the switch 13 is switched to the a side, and the rate of change limiter 14 is excluded from the rate. The For this reason, the pre-burner detection pressure P detected by the pressure detector 9 is directly supplied to the subtractor 15 and is also supplied to the subtractor 15 via the switch 13 and the change rate limiter 14.
[0051]
Therefore, the pre-burner pressure deviation ΔP obtained by the subtracter 15 becomes zero, and the valve opening degree adjustment command V1 given from the proportional-plus-integral regulator 16 to the adder 19 becomes zero.
[0052]
Therefore, at the time of ignition, only the valve opening command V2 output from the function generator 17 corresponding to the number of burner pairs (in this case, 2 pairs) is given to the pressure control valve 8, and the pressure control valve 8 is set to the number of burner pairs. Program controlled to an appropriate opening.
[0053]
For this reason, in this embodiment, even if the fuel injection valve 4b is opened while the fuel injection burner 6a is burning and the fuel injection burner 6b is ignited, the pre-burner pressure does not rapidly decrease and is stable. Thus, the pre-burner pressure can be obtained, so that unstable combustion does not occur in the fuel injection burners 6a and 6b.
[0054]
In addition, when the specified time is reached after the fuel injection burner 6b is ignited, the switch 13 is switched to the b side, and the rate exclusion of the change rate limiter 14 is also cancelled. The pre-burner pressure deviation ΔP, which is the difference between the pre-burner pre-set pressure P3 from the pressure sensor 9 and the pre-burner detected pressure P from the pressure detector 9, is obtained, and the pre-burner pressure deviation ΔP is proportionally integrated by the proportional-plus-integral controller 16. It is given to the adder 19 as the valve opening adjustment command V1, added to the valve opening command V2 determined in accordance with the number of burner pairs, and given to the pressure control valve 8 as the corrected valve opening adjustment command V3. Since the pre-burner pressure control and the program control are used in combination, stable pressure control is performed without losing the stability of the pressure control over time.
[0055]
For example, when the fuel injection burner 6b is extinguished while the fuel injection burners 6a and 6b are combusting, the switch 12 is switched to the b side when no fire extinguishing command is given. The pre-burner set pressure P4 is given to the subtractor 15, and thereafter the opening degree of the pressure control valve 8 is adjusted in the same procedure as when the fuel injection burner 6b is ignited.
[0056]
When a fire extinguishing command is given, the switch 13 is switched to the a side, and the valve opening adjustment command V1 from the proportional integral controller 16 becomes zero as described above. 8 is program-controlled by a valve opening command V2 corresponding to the number of burner pairs.
[0057]
Further, when the specified time has elapsed after the fuel injection burner 6b is extinguished, the switch 13 switches to the b side, and thereafter, the difference between the pre-burner set pressure P2 from the signal generator 11 and the pre-burner detected pressure P. The corrected valve opening adjustment command V3 is obtained by adding the valve opening adjustment command V1 obtained based on the pre-burner pressure deviation ΔP and the valve opening command V2 from the function generator 17, and the corrected valve opening adjustment command V3 is obtained. The pressure control valve 8 is controlled by V3.
[0058]
Therefore, also in this case, the pre-burner pressure control and the program control are used together, and stable pressure control is possible.
[0059]
The relationship between ignition time, pre-burner pressure, and pressure control valve opening in the present embodiment is shown in FIG. 2, and the relationship between fire extinguishing time, pre-burner pressure, and pressure control valve opening is shown in FIG. Has been. Thus, it can be seen from FIG. 2 that the pre-burner pressure P2 ′ at the time of burner ignition does not decrease so much and is higher than P2. Accordingly, the pre-burner pressure is quickly held at the pre-burner set pressure P3.
[0060]
Similarly, the pre-burner pressure is quickly maintained at the pre-burner set pressure P2 during fire extinguishing.
[0061]
In the embodiment of the present invention, the case where two pairs of fuel injection burners are provided has been described. However, any number of pairs can be implemented, and various modifications can be made without departing from the scope of the present invention. Of course.
[0062]
【The invention's effect】
According to the fuel pre-burner pressure control method and apparatus of the present invention, in any of claims 1 and 2, the pre-burner pressure at the time of fire extinguishing can be quickly held at a specified value, Unstable combustion of the fuel injection burner due to a decrease in the pre-burner pressure does not occur, stable combustion is possible, and various excellent effects such as no loss of controllability over time due to use can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an embodiment of a fuel pre-burner pressure control method and apparatus according to the present invention.
FIG. 2 is a graph showing the relationship between ignition time, pre-burner pressure, and pressure control valve opening in the present invention.
FIG. 3 is a graph showing the relationship between fire extinguishing time, pre-burner pressure, and pressure control valve opening in the present invention.
FIG. 4 is a block diagram of an example in the case where the pre-burner pressure control is temporarily interrupted when the burner is extinguished in a conventional fuel pre-burner pressure control apparatus;
5 is a graph showing the relationship between the fuel flow rate and the pre-burner pressure when control is performed by the pre-burner pressure control device for fuel shown in FIG. 4;
FIG. 6 is a block diagram of an example when program control is performed in a conventional fuel pre-burner pressure control apparatus;
7 is a graph showing a function set in a function generator in the fuel pre-burner pressure control apparatus shown in FIG. 6; FIG.
[Explanation of symbols]
1 Fuel main pipe (pipe)
2 Fuel pumps 6a and 6b Fuel injection burner 7 Fuel return pipe 8 Pressure control valve 9 Pressure detectors 10 and 11 Signal generators 12 and 13 Switch 15 Subtractor 16 Proportional integral regulator (regulator)
17 Function generators P1, P2, P3, P4 Pre-burner set pressure P Pre-burner detection pressure ΔP Pre-burner pressure deviation (difference)
V1 Valve opening adjustment command V2 Valve opening command V3 Correction valve opening adjustment command

Claims (2)

バーナ点火時若しくは消火時は、バーナペア数に対応したプログラムにより定まる弁開度指令に基づき、燃料ポンプから燃料噴射バーナへ至る管路に接続した燃料戻し管の圧力制御弁の開度を調整し、前記バーナ点火若しくは消火から規定時間到達後は、予め定めたバーナ前設定圧力と前記管路中のバーナ前検出圧力の差を処理して求めた弁開度調整指令を前記弁開度指令に加算して修正弁開度調整指令を求め、該修正弁開度調整指令により前記圧力制御弁の開度を調整することを特徴とする燃料のバーナ前圧力制御方法。When the burner is ignited or extinguished, based on the valve opening command determined by the program corresponding to the number of burner pairs, the opening of the pressure control valve of the fuel return pipe connected to the pipeline from the fuel pump to the fuel injection burner is adjusted, After the specified time has elapsed since the burner ignition or extinguishing, the valve opening adjustment command obtained by processing the difference between the preset pressure before the burner and the pre-burner detection pressure in the pipe is added to the valve opening command. Then, a correction valve opening adjustment command is obtained, and the opening degree of the pressure control valve is adjusted by the correction valve opening adjustment command. バーナペア数に対応したプログラムにより定まる弁開度指令を出力する関数発生器と、
点火時には、点火時のバーナ前設定圧力を出力する信号発生器から与えられたバーナ前設定圧力を出力し、消火時には、消火時のバーナ前設定圧力を出力する信号発生器から与えられたバーナ前設定圧力を出力する第1の切換器と、
点火時若しくは消火時には、燃料ポンプから燃料噴射バーナへ至る管路に接続した圧力検出器により検出したバーナ前検出圧力を出力し、点火時若しくは消火時以外は前記第1の切換器からのバーナ前設定圧力を出力する第2の切換器と、
前記圧力検出器からのバーナ前検出圧力と前記第2の切換器からのバーナ前検出圧力若しくはバーナ前設定圧力の差を取りバーナ前圧力偏差を求める減算器と、
前記減算器で求めたバーナ前圧力偏差を処理し弁開度調整指令を求める調節器と、
前記関数発生器からの弁開度指令と調節器からの弁開度調整指令を加算して修正弁開度調整指令を求め、該修正弁開度調整指令を基に燃料ポンプから燃料噴射バーナへ至る管路に接続した燃料戻し管の圧力制御弁の開度を調整する加算器を設けた
ことを特徴とする燃料のバーナ前圧力制御装置。
A function generator that outputs a valve opening command determined by a program corresponding to the number of burner pairs;
At the time of ignition, the pre-burner set pressure given by the signal generator that outputs the pre-burner set pressure at the time of ignition is output, and at the time of fire extinguishing, the pre-burner set pressure that is output from the signal generator that outputs the pre-burner set pressure at the time of fire extinguishing A first switch for outputting a set pressure;
At the time of ignition or extinguishing, the pre-burner detection pressure detected by the pressure detector connected to the pipe line from the fuel pump to the fuel injection burner is output, and before the burner from the first switching device except at the time of ignition or extinguishing A second switch for outputting the set pressure;
A subtractor for calculating a pre-burner pressure deviation by taking a difference between the pre-burner detection pressure from the pressure detector and the pre-burner detection pressure or the pre-burner set pressure from the second switch;
A controller for processing a pre-burner pressure deviation obtained by the subtractor to obtain a valve opening adjustment command;
The corrected valve opening adjustment command is obtained by adding the valve opening command from the function generator and the valve opening adjustment command from the regulator, and from the fuel pump to the fuel injection burner based on the corrected valve opening adjustment command. A pre-burner pressure control device for a fuel, comprising an adder for adjusting an opening degree of a pressure control valve of a fuel return pipe connected to a leading pipe.
JP23666596A 1996-09-06 1996-09-06 Fuel pre-burner pressure control method and apparatus Expired - Fee Related JP3820642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23666596A JP3820642B2 (en) 1996-09-06 1996-09-06 Fuel pre-burner pressure control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23666596A JP3820642B2 (en) 1996-09-06 1996-09-06 Fuel pre-burner pressure control method and apparatus

Publications (2)

Publication Number Publication Date
JPH1082522A JPH1082522A (en) 1998-03-31
JP3820642B2 true JP3820642B2 (en) 2006-09-13

Family

ID=17003982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23666596A Expired - Fee Related JP3820642B2 (en) 1996-09-06 1996-09-06 Fuel pre-burner pressure control method and apparatus

Country Status (1)

Country Link
JP (1) JP3820642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5985525B2 (en) * 2014-02-18 2016-09-06 中国電力株式会社 Fuel supply method

Also Published As

Publication number Publication date
JPH1082522A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
JP3820642B2 (en) Fuel pre-burner pressure control method and apparatus
JP3226957B2 (en) Gas turbine engine and operating method thereof
JP3836604B2 (en) Gas turbine fuel gas decompression and heating system
JPH07233936A (en) Controlling method of flow rate of fuel of boiler
JP3848981B2 (en) Fuel flow control device
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP3744074B2 (en) Pressure control method and apparatus in fuel oil supply line
JP7508721B1 (en) Boiler and hydrogen gas purging method
JP5521602B2 (en) Fuel control device for by-product gas-fired combustion device
JP7210125B2 (en) Combustion equipment
JP3053980B2 (en) Boiler combustion control device
JP4025206B2 (en) Control device for biomass gas turbine
JPS6023717A (en) Method of controlling amount of combustion air in coal burning boiler
JP2007205224A (en) Fuel gas pressure control device and fuel gas pressure control method for dual fuel combustion gas turbine
JP3703615B2 (en) Gas turbine equipment
JP3396040B2 (en) Fluid flow control device
JP3769660B2 (en) Water heater
JPH1163403A (en) Steam delivering unit at start up of boiler
JP3193505B2 (en) Combustion equipment
JP3564293B2 (en) Method and apparatus for controlling the number of burners in a plant
JPH026968B2 (en)
JPH08114320A (en) Pressure stabilizing valve controller for burner
KR0143379B1 (en) Purge media supply system for oil combustion burner
JPS6325252B2 (en)
JPH06249431A (en) Gas supply control in ignition of gas boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees