JP3820414B2 - Functional film sequential coating method - Google Patents

Functional film sequential coating method Download PDF

Info

Publication number
JP3820414B2
JP3820414B2 JP2002347110A JP2002347110A JP3820414B2 JP 3820414 B2 JP3820414 B2 JP 3820414B2 JP 2002347110 A JP2002347110 A JP 2002347110A JP 2002347110 A JP2002347110 A JP 2002347110A JP 3820414 B2 JP3820414 B2 JP 3820414B2
Authority
JP
Japan
Prior art keywords
rod
cylindrical hole
membrane material
pressure rod
backup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002347110A
Other languages
Japanese (ja)
Other versions
JP2004174593A (en
Inventor
剛 篠田
秀樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002347110A priority Critical patent/JP3820414B2/en
Publication of JP2004174593A publication Critical patent/JP2004174593A/en
Application granted granted Critical
Publication of JP3820414B2 publication Critical patent/JP3820414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、エンジンのシリンダ等円柱孔を有する対象物の円柱孔内面に沿って機能性膜をコーティングする方法に関する。
【0002】
【発明の背景】
従来、自動車のエンジンは鋳鉄製とされており、シリンダの内面は主として熱処理によって特定の機能が付与されて来た。
これに対し、近年自動車の軽量化の要請からアルミエンジンが用いられるようになって来ており、この場合アルミ製のシリンダ内面、即ちその円柱孔内面に高温強度付与等、特定の機能を付与する手法として鋳鉄ライナ,硬質アルミライナ等のスリーブ鋳込み,圧入が主として採用されている。
またその他シリンダ内面にメッキ,表面溶融合金化としての溶射,肉盛、更には表面処理として窒化,拡散浸透等が実用化されている。
【0003】
しかしながらスリーブ鋳込み,圧入方式では機能性膜としてのスリーブ自身の薄肉化に限度がある他、シリンダ内面との間に微小間隙が生じ、シリンダ性能への悪影響が出るなどの問題がある。
またシリンダ内面の機能性膜の膜厚はシリンダ完成状態で1mmもあれば良いが、このスリーブ鋳込み,圧入方式では薄いスリーブを形成することが困難で、厚肉スリーブを加工で一部除去し薄肉化しているのが実情である。
【0004】
一方メッキや拡散浸透等の処理方法は、非常に薄い膜にすることが可能であるものの、下地としてのシリンダ内面の性状による影響を受け、特に0.3mm程度のピンホールがあっても密着性が悪くなる。
またこの処理方法の場合、膜厚を1mm程度に厚くすることが困難で膜が薄膜とならざるを得ず、そのため耐久性が劣るといった問題もある。
【0005】
他方溶射や肉盛は、1mm程度の膜厚を有する機能性膜の形成方法としては有効であるが、溶射はメッキと同様シリンダ下地に欠陥があると密着性が悪くなる。溶射は下地と融合していないので、剥離強度は低い。
また厚くすると熱影響が大きくなり、残留歪等の不具合も発生する傾向が強い。
【0006】
このような事情の下において、下記特許文献1には新規な機能性膜のコーティング方法が開示されている。
図6はその具体例で、図中200は円柱孔、202は加圧ロッド、204は機能性膜210をコーティングするための膜材料である。
このコーティング方法では、円柱孔200を有する対象物206の底部208上に膜材料204をセットしておき、そして加圧ロッド202を回転させながら円柱孔200内部に挿入するとともに、図中下向きの前進移動によって膜材料204を加圧し、そして加圧ロッド202の回転に伴う摩擦発熱によって、膜材料204を加熱軟化して塑性流動させ、そしてこれを加圧ロッド202と円柱孔200内面との間の隙間に沿って底部208側から上向きに押し上げて(這い上がらせて)円柱孔200内面に機能性膜210をコーティングするものである。
【0007】
しかしながらその後の研究でこのコーティング方法の場合、機能性膜210の形成と円柱孔200内面との接合はできるものの、加熱軟化し塑性流動化した膜材料204が円柱孔200内面に沿って上向きに塑性流動する過程で、加圧ロッド202の外面或いは円柱孔200内面との摩擦等による抵抗が働いて、加圧ロッド202と円柱孔200内面との微小な隙間に沿って円滑に上向きに塑性流動せず、またその間に温度も低下して益々抵抗は大きくなり、これがため十分な高さ(軸方向長)に亘って機能性膜210を形成することが難しい場合もある他、下部において機能性膜210の膜厚が厚く、上部で膜厚が薄くなるなど機能性膜210の膜厚が不均等となり易く、更には半径方向に強い圧力が働くことによって対象物206、特にシリンダ等その厚みが10mm程度以下の肉厚の小さいものの場合、その半径方向の圧力によって割れを生じるなどの問題のあることが判明した。
しかし、対象物206の肉厚が10mm以上の場合は、本方法でも十分な機能性膜210の形成は可能である。
【0008】
図7(A)はこのコーティング方法にて機能性膜210を形成試験したときの結果の写真を図化したもので、機能性膜210は下部が厚肉に、上部が薄肉に、即ち機能性膜210の膜厚が軸方向で不均等となっている。
【0009】
また図7(B)は同方法でシリンダ変形の評価試験を行ったときの結果を図化したもので、図中212はシリンダの変形を評価するためにシリンダ内面、即ち円柱孔200内面に沿って垂直方向に設けた直径φ5mmの貫通孔である。
この貫通孔212は、同コーティング方法の実施後においてシリンダの変形のため下部が潰れてしまっている。
【0010】
【特許文献1】
特開2000−312981号公報
【0011】
【課題を解決するための手段】
本発明の機能性膜の逐次コーティング方法はこのような課題を解決するために案出されたものである。
而して請求項1のものは、円柱孔を有する対象物の円柱孔内面に沿って機能性膜をコーティングする方法であって、該円柱孔内に、該円柱孔より外径の小さな加圧ロッドと、該加圧ロッドよりも大径で且つ該円柱孔と実質同等外径を有するバックアップロッドとを軸方向に対向する状態に挿入して、該円柱孔内にセットした膜材料をそれら加圧ロッドとバックアップロッドとで軸方向に挟み込んで加圧し、その加圧下で該膜材料の該バックアップロッドとの接触部を実質的に塑性流動させない状態に保ちつつ、該加圧ロッドの回転により該膜材料の該加圧ロッドの軸端面との接触部を摩擦発熱により加熱軟化して半径方向外方に、次いで該加圧ロッドと前記円柱孔内面との間の隙間に塑性流動させつつ、該加圧ロッドを該膜材料,バックアップロッドとともに該円柱孔内面に対して軸方向に相対的に前進移動させることで、該円柱孔内面に該膜材料を該前進方向と同方向に順にコーティングして行くことを特徴とする。
【0012】
請求項2のものは、請求項1において、前記バックアップロッドを前記膜材料に対して相対的に回転停止状態を保つことを特徴とする。
【0013】
請求項3のものは、請求項1,2の何れかにおいて、前記バックアップロッドの少なくとも前記膜材料との接触側の端部を冷却して、該バックアップロッドとの接触部において該膜材料の塑性流動を抑制することを特徴とする。
【0014】
【作用及び発明の効果】
以上のように本発明は、円柱孔内部において加圧ロッドとバックアップロッドとで膜材料を軸方向に挟んで加圧し、その加圧下で加圧ロッドの回転により膜材料の加圧ロッドとの接触部を摩擦発熱により加熱軟化し、そしてこれを半径方向外方に、次いで加圧ロッドと円柱孔内面との間の隙間に塑性流動させつつ、加圧ロッドを膜材料,バックアップロッドとともに円柱孔内面に対して軸方向に前進移動させ、その際に膜材料を円柱孔内面に対して加圧ロッドの前進移動方向と同方向に順にコーティングして行くものである。
尚このコーティング方法では、膜材料のバックアップロッドとの接触部を実質的に塑性流動させない状態に保持しておく。
【0015】
そのための方法として、バックアップロッドを膜材料に対して相対的に回転停止状態に保つようになしておくことができる(請求項2)。
【0016】
或いはまたバックアップロッドを膜材料に対して回転させる場合において、バックアップロッドの少なくとも膜材料との接触側の端部を冷却しておき、摩擦発熱によって膜材料のバックアップロッドとの接触部が塑性流動しないようにしておく(請求項3)。
【0017】
本発明のコーティング方法は、加熱軟化して塑性流動化した膜材料を円柱孔内面の軸方向全長に亘って、詳しくはコーティングすべき軸方向全長に亘って一挙に押し上げる(這い上がらせる)といったものではなく、塑性流動化した膜材料を加圧ロッドと円柱孔内面との間に少しずつ充填しながら、順次に新たな膜材料の塑性流動化と隙間への充填を行いつつ加圧ロッドを前進移動させて行くものである。
即ちこのコーティング方法では、塑性流動した膜材料は加圧ロッドの先端近傍部分においてのみ円柱孔内面と加圧ロッドとの間の隙間に入り込み、そして加圧ロッドが膜材料,バックアップロッドとともに前進移動するのに伴って膜材料の隙間への充填,円柱孔内面への貼付けが連続的に行われ、最終的に円柱孔内面に所定の目的範囲に亘って機能性膜が形成される。
【0018】
かかる本発明のコーティング方法は、膜材料を少しずつ塑性流動化させ且つ円柱孔内面に貼り付けて行き、そして加圧ロッドの前進移動に連れて、次なる膜材料の塑性流動化と円柱孔内面への貼付けを行って行く逐次コーティング方法であるため、円柱孔内面に機能性膜を良好にコーティング形成することができる。
【0019】
そして本発明によれば、円柱孔内面に十分な軸方向長に亘って機能性膜を形成することが可能となり、また軸方向に亘って均等な厚みで機能性膜を形成することが可能となる。
またシリンダ等の対象物に対し、半径方向に過大な圧力を加えてこれを割るなどの損傷を与えてしまうといった問題も解決することが可能となる。
【0020】
尚本発明では、膜材料のバックアップロッドとの接触部を実質的に塑性流動化させない点を1つの特徴としている。
バックアップロッドとの接触部で膜材料が加熱軟化し塑性流動化してしまうと、加圧ロッドとの接触部で加熱軟化し且つ塑性流動化した膜材料とバックアップロッドとの接触部で塑性流動化した膜材料とが円柱孔内面において流れの衝突を生じてそこにウェルドラインを生じてしまったり、バックアップロッドとの接触部で加熱軟化されて半径方向外方に塑性流動化した膜材料が、加圧ロッドの進行の妨げとなるなどの問題を生ずる。
【0021】
そこで本発明はバックアップロッドとの接触部で膜材料を塑性流動化させず、実質的に加圧ロッドとの接触部においてのみ塑性流動化させるもので、このようにすることで円滑に機能性膜を円柱孔内面にコーティング形成することが可能となる。
【0022】
【実施の形態】
次に本発明の実施の形態を図面に基づいて以下に詳しく説明する。
図1において、10は対象物としてのシリンダで円柱孔12を有している。
14は加圧ロッドで、16はバックアップロッドである。ここで加圧ロッド14は円柱孔12よりも外径が小さく、円柱孔12内への挿入状態において円柱孔12内面との間に微小な隙間を形成する。
一方バックアップロッド16は円柱孔12と実質同等の外径を有している。
18は円柱孔12内面に機能性膜20を形成するための膜材料である。
【0023】
図1(イ)に示しているように、本実施形態ではバックアップロッド16を円柱孔12内に図中下から上向きに挿入し、そして円柱孔12内部において膜材料18をバックアップロッド16の上面にセットしておく。
そして図2(イ)に示しているように加圧ロッド14を高速回転(例えば100〜2000rpm)させながら図中下向きに円柱孔12内に挿入し、バックアップロッド16とともに膜材料18を軸方向に挟み込んでこれを加圧する(加圧力は10〜300MPa程度)。
【0024】
このとき膜材料18は、加圧ロッド14の軸端面(図中下端面)と接触する上面部分が、加圧ロッド14の高速回転による摩擦発熱によって加熱軟化され、先ず半径方向外方に、続いてバックアップロッド16と円柱孔12内面との間の隙間に塑性流動する(図2(ロ)参照)。
尚このとき、バックアップロッド16は停止状態としておき、膜材料18の下面の部分、即ちバックアップロッド16の上面との接触部分で加熱軟化による塑性流動を起こさないように保っておく。
【0025】
本実施形態では、続いて図1(ロ)に示しているように加圧ロッド14をバックアップロッド16,膜材料18とともに図中下方に前進移動させ、膜材料18の上面の部分を連続して加熱軟化及び塑性流動させて、加圧ロッド14と円柱孔12内面との隙間に充填して行く。
そして図1(ハ)に示しているようにバックアップロッド16,膜材料18,加圧ロッド14が円柱孔12内面に対し軸方向に移動した分だけ、円柱孔12内面に所定の機能性膜20がコーティング形成される。
【0026】
ここでバックアップロッド16の移動速度は、膜材料18が減少した場合においても加圧ロッド14とともに膜材料18を軸方向に加圧する際の加圧力を適正に保つように、また膜材料18のシリンダ変形に対する半径方向の加圧密着力を適正とするように制御する。
尚、膜材料18は半溶融状態、或いは固液共存域の大きな合金系では一部溶融状態で円柱孔12内面にコーティングするようにしても良いが、通常は高温固相で流動し、円柱孔12内面にコーティングすることで十分である。
【0027】
かかる本例の機能性膜20の逐次コーティング方法によれば、膜材料18を少しずつ塑性流動化させ且つ円柱孔12内面に貼り付けて行き、そして加圧ロッド14の前進移動に連れて次なる膜材料18の塑性流動化と円柱孔12内面への貼付けを行って行く逐次コーティング方法であるため、円柱孔12内面に機能性膜20を良好にコーティング形成することができる。
【0028】
そして本例によれば、円柱孔12内面に十分な軸方向長に亘って機能性膜20を形成することが可能であり、また軸方向に亘って均等な厚みで機能性膜20を形成することができる。
またシリンダ10に対して半径方向に過大な圧力を加えてこれを割るなどの損傷を与えてしまう問題も解決することができる。
【0029】
因みに図3は、この実施形態の方法で円柱孔12内面に機能性膜20をコーティング試験した結果の写真を図化したものである。
同図に示しているようにこの方法によれば、機能性膜20を十分な軸方向長に亘って且つほぼ均等な膜厚で形成することが可能である。
【0030】
図2(ハ)は比較例の方法を示したもので、ここではバックアップロッド16を回転させる場合の例である。
このようになした場合、膜材料18のバックアップロッド16との接触部分が摩擦発熱により加熱軟化し、これにより膜材料18の下部が半径方向外方に張り出してしまって、加圧ロッド14及び膜材料18の進行の妨げとなる。
【0031】
但し本発明はバックアップロッド16を回転させる場合を全て排除するものではなく、かかるバックアップロッド16を回転させるようになすことも可能である。
但しその場合には、図4に示しているようにバックアップロッド16の軸端部を水通路30を有する水冷構造となしてそこに冷却水を通じ、軸端部を冷却することで、膜材料18の下部の軟化及び塑性流動を防ぎつつコーティングを行う。
【0032】
尚加圧ロッド14及び膜材料18の形状は上例以外の様々な形状が可能である。
図5はその一例を示している。
図5(イ)は加圧ロッド14-1を、先端部に大径部22を有する段付形状として構成し、そして中実の膜材料18-1とを組み合わせて使用した例である。ここで大径部22は、加圧ロッド14-1の本体部に対し直径が2mm程度大径とされている。尚大径部22の外径はφ37mm、また膜材料18-1の外径はφ37mm,高さは30mmである。
【0033】
一方図5(ロ)の加圧ロッド14-2は、図5(イ)の場合と同じ外径の大径部22と、ピン24と、テーパ部26とを加圧ロッド14-2の先端部に設け、そしてこの加圧ロッド14-2と円筒形状をなす膜材料18-2とを組み合わせて使用した例である。
ここで大径部22の外径はφ37mm、ピン24の外径はφ19mm,高さは10mm、テーパ部26のテーパ角は15°、また膜材料18-2の外径はφ37mm,内径はφ20mm,高さは40mmである。
【0034】
次に図5(ハ)は加圧ロッド14-3を、先端部に大径部22とピン28とを有する形状となし、これを円筒形状の膜材料18-3と組み合わせて使用した例である。
ここで大径部22の外径はφ37mm、ピン28の外径はφ26mm,高さは20mm、また膜材料18-3の外径はφ37mm,内径はφ27mm,高さは45mmである。
【0035】
一方図5(ニ)の加圧ロッド14-2は、大径部22と、ピン24と、テーパ部26とを有する形状で先端部を構成し、これを円筒形状の膜材料18-4と組み合わせて使用した例である。
尚この図5(ニ)の加圧ロッド14-2は、図5(ロ)の加圧ロッド14-2と同形状のものである。
一方膜材料18-4は外径がφ30mm,内径がφ20mm,高さが50mmである。
【0036】
これらの中で図5(ハ)の組み合わせが最も良好な結果が得られた。
尚、上記のように加圧ロッド14を段付形状としたとき、円柱孔12内面と加圧ロッド14との間の隙間に塑性流動した膜材料18ないしコーティング層(機能性膜20)と加圧ロッド14との接触面積を小さくして回転時の抵抗を小さくでき、ロッド寿命を延長できる利点が得られる。
【0037】
以上本発明の実施形態を詳述したがこれらはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【図面の簡単な説明】
【図1】本発明の一実施形態の機能性膜の逐次コーティング方法の説明図である。
【図2】同実施形態の方法と比較例の方法を示す図である。
【図3】同実施形態の方法で円柱孔内面に機能性膜をコーティング試験した結果の写真を図化したものである。
【図4】本発明の他の実施形態を示す図である。
【図5】本発明の更に他の実施形態を示す図である。
【図6】従来公知の円柱孔内面への機能性膜のコーティング方法を示す図である。
【図7】図6に示す方法で円柱孔内面に機能性膜をコーティング試験した結果の写真を図化したものである。
【符号の説明】
10 シリンダ(円柱孔内面を有する対象物)
12 円柱孔
14,14-1,14-2,14-3,14-4 加圧ロッド
16 バックアップロッド
18,18-1,18-2,18-3,18-4 膜材料
20 機能性膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of coating a functional film along an inner surface of a cylindrical hole of an object having a cylindrical hole such as an engine cylinder.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, automobile engines are made of cast iron, and the inner surface of the cylinder has been given a specific function mainly by heat treatment.
On the other hand, in recent years, aluminum engines have come to be used due to demands for reducing the weight of automobiles. In this case, specific functions such as imparting high-temperature strength are imparted to the inner surface of an aluminum cylinder, that is, the inner surface of the cylindrical hole. As a method, sleeve casting and press fitting such as cast iron liner and hard aluminum liner are mainly adopted.
In addition, plating on the inner surface of the cylinder, thermal spraying and overlaying as a surface melting alloy, and nitriding and diffusion penetration as surface treatments have been put into practical use.
[0003]
However, in the sleeve casting and press-fitting methods, there is a limit to the thinning of the sleeve itself as a functional film, and there is a problem that a minute gap is formed between the inner surface of the cylinder and adversely affects the cylinder performance.
Also, the functional film on the inner surface of the cylinder should have a thickness of 1 mm when the cylinder is completed. However, it is difficult to form a thin sleeve with this sleeve casting and press-fitting method. It is the actual situation.
[0004]
On the other hand, although treatment methods such as plating and diffusion penetration can be made into a very thin film, it is affected by the properties of the inner surface of the cylinder as a base, and even with pinholes of about 0.3 mm, it has good adhesion. Deteriorate.
In addition, in the case of this processing method, it is difficult to increase the film thickness to about 1 mm, and the film has to be a thin film.
[0005]
On the other hand, thermal spraying or overlaying is effective as a method for forming a functional film having a thickness of about 1 mm, but the thermal spraying deteriorates adhesion when there is a defect in the cylinder base as in plating. Since the thermal spray is not fused with the substrate, the peel strength is low.
Further, when the thickness is increased, the thermal effect is increased, and there is a strong tendency to cause defects such as residual strain.
[0006]
Under such circumstances, the following Patent Document 1 discloses a novel functional film coating method.
FIG. 6 shows a specific example, in which 200 is a cylindrical hole, 202 is a pressure rod, and 204 is a membrane material for coating the functional membrane 210.
In this coating method, the membrane material 204 is set on the bottom 208 of the object 206 having the cylindrical hole 200, and the pressure rod 202 is inserted into the cylindrical hole 200 while rotating, and is advanced downward in the figure. The membrane material 204 is pressurized by the movement, and the frictional heat generated by the rotation of the pressure rod 202 causes the membrane material 204 to be heated and softened to be plastically flowed, and this is transferred between the pressure rod 202 and the inner surface of the cylindrical hole 200. The functional film 210 is coated on the inner surface of the cylindrical hole 200 by pushing upward from the side of the bottom 208 along the gap.
[0007]
However, in this research, in the case of this coating method, the functional film 210 and the inner surface of the cylindrical hole 200 can be joined, but the heat-softened and plastic fluidized film material 204 is plasticized upward along the inner surface of the cylindrical hole 200. In the process of flowing, resistance due to friction or the like with the outer surface of the pressure rod 202 or the inner surface of the cylindrical hole 200 acts, and the plastic flow smoothly and upwards along a minute gap between the pressure rod 202 and the inner surface of the cylindrical hole 200. In addition, the temperature also decreases in the meantime, and the resistance is increased. Therefore, it may be difficult to form the functional film 210 over a sufficient height (length in the axial direction). The film thickness of the functional film 210 is likely to be uneven, such as the film thickness of 210 is thin and the film thickness is thin at the upper part. If despite Linda like its thickness less thick small about 10 mm, it was found that a problem of causing cracks by the pressure of the radial direction.
However, when the thickness of the object 206 is 10 mm or more, the functional film 210 can be sufficiently formed by this method.
[0008]
FIG. 7A illustrates a photograph of the result when the functional film 210 is formed and tested by this coating method. The functional film 210 is thick at the bottom and thin at the top. The film thickness of the film 210 is not uniform in the axial direction.
[0009]
FIG. 7B illustrates the result of the cylinder deformation evaluation test performed in the same manner. In FIG. 7B, reference numeral 212 denotes an inner surface of the cylinder, that is, the inner surface of the cylindrical hole 200 in order to evaluate the deformation of the cylinder. And a through hole having a diameter of 5 mm provided in the vertical direction.
The lower part of the through hole 212 is crushed due to deformation of the cylinder after the coating method is performed.
[0010]
[Patent Document 1]
JP 2000-312981 A
[Means for Solving the Problems]
The functional film sequential coating method of the present invention has been devised in order to solve such problems.
Thus, according to the first aspect of the present invention, there is provided a method of coating a functional film along the inner surface of a cylindrical hole of an object having a cylindrical hole, wherein the pressure applied in the cylindrical hole is smaller in outer diameter than the cylindrical hole. A rod and a backup rod having a diameter larger than that of the pressure rod and having substantially the same outer diameter as that of the cylindrical hole are inserted in the axially opposed state, and the membrane material set in the cylindrical hole is added thereto. The pressure rod and the backup rod are sandwiched in the axial direction and pressed, and the contact portion of the membrane material with the backup rod is not substantially plastically flowed under the pressure, and the pressure rod rotates to rotate the pressure rod. While the contact portion of the membrane material with the axial end surface of the pressure rod is heated and softened by frictional heat generation, it is plastically flowed outward in the radial direction and then into the gap between the pressure rod and the inner surface of the cylindrical hole. Apply pressure rod to the membrane material, back-up By which relatively move forward in the axial direction with respect to the circular column hole inner surface with rods, characterized in that the membrane material into the circular column hole inner surface goes coated sequentially in the same direction as the forward direction.
[0012]
According to a second aspect of the present invention, in the first aspect of the present invention, the backup rod is kept in a rotation stopped state relative to the membrane material.
[0013]
According to a third aspect of the present invention, in any one of the first and second aspects, at least an end portion of the backup rod on the contact side with the membrane material is cooled, and the plasticity of the membrane material at the contact portion with the backup rod It is characterized by suppressing flow.
[0014]
[Operation and effect of the invention]
As described above, in the present invention, the membrane material is pressed between the pressure rod and the backup rod inside the cylindrical hole in the axial direction, and contact with the pressure rod of the membrane material is performed by rotation of the pressure rod under the pressure. The part is heated and softened by frictional heat generation, and this is plastically flowed outward in the radial direction and then into the gap between the pressure rod and the inner surface of the cylindrical hole, while the pressure rod is joined to the inner surface of the cylindrical hole together with the membrane material and the backup rod. In this case, the membrane material is sequentially coated on the inner surface of the cylindrical hole in the same direction as the forward movement direction of the pressure rod.
In this coating method, the contact portion of the membrane material with the backup rod is kept in a state that does not substantially plastically flow.
[0015]
As a method therefor, the backup rod can be kept in a rotation stopped state relative to the membrane material (claim 2).
[0016]
Alternatively, when the backup rod is rotated with respect to the membrane material, at least the end of the backup rod in contact with the membrane material is cooled, and the contact portion of the membrane material with the backup rod does not plastically flow due to frictional heat generation. (Claim 3).
[0017]
In the coating method of the present invention, the film material that has been softened by heat softening is pushed up (climbed up) all along the entire axial length of the inner surface of the cylindrical hole, and more specifically over the entire axial length to be coated. Rather than filling the plastic fluidized membrane material little by little between the pressure rod and the inner surface of the cylindrical hole, advance the pressure rod while sequentially plasticizing and filling the gap with new membrane material. It will be moved.
That is, in this coating method, the plastically flowing membrane material enters the gap between the cylindrical hole inner surface and the pressure rod only in the vicinity of the tip of the pressure rod, and the pressure rod moves forward together with the membrane material and the backup rod. Accordingly, the filling of the gap between the film materials and the application to the inner surface of the cylindrical hole are continuously performed, and finally a functional film is formed on the inner surface of the cylindrical hole over a predetermined target range.
[0018]
Such a coating method of the present invention causes the membrane material to be plastically fluidized little by little and attached to the inner surface of the cylindrical hole, and as the pressure rod advances, the plastic fluidization of the next membrane material and the inner surface of the cylindrical hole are performed. Therefore, the functional film can be satisfactorily formed on the inner surface of the cylindrical hole.
[0019]
According to the present invention, it is possible to form a functional film over a sufficient axial length on the inner surface of the cylindrical hole, and it is possible to form a functional film with a uniform thickness over the axial direction. Become.
Further, it is possible to solve a problem that an object such as a cylinder is damaged by applying an excessive pressure in the radial direction to break the object.
[0020]
One feature of the present invention is that the contact portion of the membrane material with the backup rod is not substantially plastically fluidized.
When the membrane material is heated and softened at the contact portion with the backup rod and plastically fluidized, it is plasticized and fluidized at the contact portion between the membrane material and the backup rod that is softened and heated at the contact portion with the pressure rod. The membrane material causes a flow collision on the inner surface of the cylindrical hole and creates a weld line there, or the membrane material that is heated and softened at the contact with the backup rod and plastically fluidized outward in the radial direction is pressurized. This causes problems such as obstructing the progress of the rod.
[0021]
Therefore, the present invention does not plastically fluidize the membrane material at the contact portion with the backup rod, but substantially plastically fluidizes only at the contact portion with the pressure rod. By doing so, the functional membrane can be smoothly smoothed. Can be formed on the inner surface of the cylindrical hole.
[0022]
Embodiment
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, 10 is a cylinder as an object and has a cylindrical hole 12.
14 is a pressure rod, and 16 is a backup rod. Here, the pressure rod 14 has an outer diameter smaller than that of the cylindrical hole 12, and forms a minute gap with the inner surface of the cylindrical hole 12 when inserted into the cylindrical hole 12.
On the other hand, the backup rod 16 has an outer diameter substantially equal to that of the cylindrical hole 12.
Reference numeral 18 denotes a film material for forming the functional film 20 on the inner surface of the cylindrical hole 12.
[0023]
As shown in FIG. 1A, in this embodiment, the backup rod 16 is inserted into the cylindrical hole 12 upward from the bottom in the figure, and the membrane material 18 is placed on the upper surface of the backup rod 16 in the cylindrical hole 12. Set it.
Then, as shown in FIG. 2 (a), the pressure rod 14 is inserted into the cylindrical hole 12 downward in the figure while rotating at a high speed (for example, 100 to 2000 rpm), and the membrane material 18 together with the backup rod 16 is axially moved. It is sandwiched and pressurized (applying pressure is about 10 to 300 MPa).
[0024]
At this time, the membrane material 18 is heated and softened by the frictional heat generated by the high-speed rotation of the pressure rod 14 at the upper surface portion contacting the shaft end surface (lower surface in the drawing) of the pressure rod 14, and then first outward in the radial direction. Thus, it plastically flows in the gap between the backup rod 16 and the inner surface of the cylindrical hole 12 (see FIG. 2B).
At this time, the backup rod 16 is kept in a stopped state so as not to cause plastic flow due to heat softening at the lower surface portion of the film material 18, that is, the contact portion with the upper surface of the backup rod 16.
[0025]
In this embodiment, subsequently, as shown in FIG. 1B, the pressure rod 14 is moved forward together with the backup rod 16 and the membrane material 18 downward in the figure, and the upper surface portion of the membrane material 18 is continuously moved. The gap between the pressure rod 14 and the cylindrical hole 12 is filled by heating and softening and plastic flow.
As shown in FIG. 1C, the predetermined functional film 20 is formed on the inner surface of the cylindrical hole 12 by the amount that the backup rod 16, the membrane material 18, and the pressure rod 14 are moved in the axial direction with respect to the inner surface of the cylindrical hole 12. Is formed as a coating.
[0026]
Here, the movement speed of the backup rod 16 is set so that the pressure applied when the membrane material 18 is axially pressurized together with the pressure rod 14 even when the membrane material 18 is decreased, and the cylinder of the membrane material 18 is maintained. Control is performed so that the pressure contact force in the radial direction against deformation is appropriate.
The film material 18 may be coated on the inner surface of the cylindrical hole 12 in a semi-molten state or a partially molten state in an alloy system having a large solid-liquid coexistence region. It is sufficient to coat 12 inner surfaces.
[0027]
According to the sequential coating method of the functional film 20 of the present example, the film material 18 is plastically fluidized little by little and is attached to the inner surface of the cylindrical hole 12, and then the pressure rod 14 is moved forward. Since this is a sequential coating method in which the film material 18 is plastically fluidized and attached to the inner surface of the cylindrical hole 12, the functional film 20 can be satisfactorily formed on the inner surface of the cylindrical hole 12.
[0028]
According to this example, the functional film 20 can be formed on the inner surface of the cylindrical hole 12 over a sufficient axial length, and the functional film 20 is formed with a uniform thickness over the axial direction. be able to.
Further, it is possible to solve the problem of damaging the cylinder 10 by applying an excessive pressure in the radial direction to break it.
[0029]
Incidentally, FIG. 3 illustrates a photograph of the result of the coating test of the functional film 20 on the inner surface of the cylindrical hole 12 by the method of this embodiment.
As shown in the figure, according to this method, the functional film 20 can be formed with a substantially uniform film thickness over a sufficient axial length.
[0030]
FIG. 2C shows the method of the comparative example, and here is an example in the case where the backup rod 16 is rotated.
In such a case, the contact portion of the membrane material 18 with the backup rod 16 is heated and softened by frictional heat generation, whereby the lower portion of the membrane material 18 protrudes radially outward, and the pressure rod 14 and the membrane This hinders the progress of the material 18.
[0031]
However, the present invention does not exclude all cases where the backup rod 16 is rotated, and it is also possible to rotate the backup rod 16.
However, in that case, as shown in FIG. 4, the shaft end portion of the backup rod 16 has a water cooling structure having a water passage 30, and cooling water is passed therethrough to cool the shaft end portion, whereby the membrane material 18 Coating is performed while preventing softening and plastic flow at the bottom of the substrate.
[0032]
The pressure rod 14 and the membrane material 18 can have various shapes other than the above examples.
FIG. 5 shows an example.
FIG. 5A shows an example in which the pressure rod 14-1 is configured as a stepped shape having a large-diameter portion 22 at the tip, and is used in combination with a solid membrane material 18-1. Here, the large-diameter portion 22 is about 2 mm in diameter with respect to the main body portion of the pressure rod 14-1. The outer diameter of the large diameter portion 22 is φ37 mm, the outer diameter of the membrane material 18-1 is φ37 mm, and the height is 30 mm.
[0033]
On the other hand, the pressure rod 14-2 in FIG. 5 (b) has a large diameter portion 22, a pin 24, and a taper portion 26 having the same outer diameter as in FIG. In this example, the pressure rod 14-2 and the cylindrical membrane material 18-2 are used in combination.
Here, the outer diameter of the large diameter portion 22 is φ37 mm, the outer diameter of the pin 24 is φ19 mm, the height is 10 mm, the taper angle of the taper portion 26 is 15 °, the outer diameter of the membrane material 18-2 is φ37 mm, and the inner diameter is φ20 mm. , Height is 40mm.
[0034]
Next, FIG. 5 (c) shows an example in which the pressure rod 14-3 has a shape having a large-diameter portion 22 and a pin 28 at the tip, and this is used in combination with a cylindrical membrane material 18-3. is there.
Here, the outer diameter of the large diameter portion 22 is φ37 mm, the outer diameter of the pin 28 is φ26 mm, the height is 20 mm, and the outer diameter of the membrane material 18-3 is φ37 mm, the inner diameter is φ27 mm, and the height is 45 mm.
[0035]
On the other hand, the pressure rod 14-2 in FIG. 5 (d) has a tip portion having a shape having a large-diameter portion 22, a pin 24, and a tapered portion 26, and this is formed into a cylindrical membrane material 18-4. It is an example used in combination.
The pressure rod 14-2 in FIG. 5 (d) has the same shape as the pressure rod 14-2 in FIG. 5 (b).
On the other hand, the membrane material 18-4 has an outer diameter of 30 mm, an inner diameter of 20 mm, and a height of 50 mm.
[0036]
Among these, the best results were obtained with the combination shown in FIG.
When the pressure rod 14 has a stepped shape as described above, the film material 18 or the coating layer (functional film 20) that plastically flows in the gap between the inner surface of the cylindrical hole 12 and the pressure rod 14 is added. The contact area with the pressure rod 14 can be reduced, the resistance during rotation can be reduced, and the rod life can be extended.
[0037]
Although the embodiments of the present invention have been described in detail above, these are merely examples, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a sequential coating method of a functional film according to an embodiment of the present invention.
FIG. 2 is a diagram showing a method of the embodiment and a method of a comparative example.
FIG. 3 is a diagram showing a photograph of the result of coating test of a functional film on the inner surface of a cylindrical hole by the method of the embodiment.
FIG. 4 is a diagram showing another embodiment of the present invention.
FIG. 5 is a diagram showing still another embodiment of the present invention.
FIG. 6 is a view showing a conventionally known method for coating a functional film on the inner surface of a cylindrical hole.
FIG. 7 is a diagram showing a photograph of a result of coating test of a functional film on the inner surface of a cylindrical hole by the method shown in FIG.
[Explanation of symbols]
10 Cylinder (object with cylindrical hole inner surface)
12 Cylindrical hole 14, 14-1, 14-2, 14-3, 14-4 Pressure rod 16 Backup rod 18, 18-1, 18-2, 18-3, 18-4 Membrane material 20 Functional membrane

Claims (3)

円柱孔を有する対象物の円柱孔内面に沿って機能性膜をコーティングする方法であって
該円柱孔内に、該円柱孔より外径の小さな加圧ロッドと、該加圧ロッドよりも大径で且つ該円柱孔と実質同等外径を有するバックアップロッドとを軸方向に対向する状態に挿入して、該円柱孔内にセットした膜材料をそれら加圧ロッドとバックアップロッドとで軸方向に挟み込んで加圧し、その加圧下で該膜材料の該バックアップロッドとの接触部を実質的に塑性流動させない状態に保ちつつ、該加圧ロッドの回転により該膜材料の該加圧ロッドの軸端面との接触部を摩擦発熱により加熱軟化して半径方向外方に、次いで該加圧ロッドと前記円柱孔内面との間の隙間に塑性流動させつつ、該加圧ロッドを該膜材料,バックアップロッドとともに該円柱孔内面に対して軸方向に相対的に前進移動させることで、該円柱孔内面に該膜材料を該前進方向と同方向に順にコーティングして行くことを特徴とする機能性膜の逐次コーティング方法。
A method of coating a functional film along the inner surface of a cylindrical hole of an object having a cylindrical hole, the pressure rod having a smaller outer diameter than the cylindrical hole, and a larger diameter than the pressure rod in the cylindrical hole And a cylindrical rod and a backup rod having substantially the same outer diameter are inserted so as to face each other in the axial direction, and the membrane material set in the cylindrical hole is sandwiched between the pressure rod and the backup rod in the axial direction. And pressurizing with the shaft end surface of the pressure rod of the membrane material by rotation of the pressure rod while keeping the contact portion of the membrane material with the backup rod under substantially no plastic flow The contact portion is heated and softened by frictional heat generation and plastically flows radially outward and then into the gap between the pressure rod and the inner surface of the cylindrical hole. Inside the cylindrical hole Axially by which relatively move forward, a sequential method of coating a functional layer, characterized in that the membrane material into the circular column hole inner surface goes coated sequentially in the same direction as the forward direction with respect.
請求項1において、前記バックアップロッドを前記膜材料に対して相対的に回転停止状態を保つことを特徴とする機能性膜の逐次コーティング方法。2. The functional film sequential coating method according to claim 1, wherein the backup rod is kept in a rotation stopped state relative to the film material. 請求項1,2の何れかにおいて、前記バックアップロッドの少なくとも前記膜材料との接触側の端部を冷却して、該バックアップロッドとの接触部において該膜材料の塑性流動を抑制することを特徴とする機能性膜の逐次コーティング方法。3. The method according to claim 1, wherein at least an end portion of the backup rod in contact with the membrane material is cooled to suppress plastic flow of the membrane material at the contact portion with the backup rod. A sequential coating method for functional films.
JP2002347110A 2002-11-29 2002-11-29 Functional film sequential coating method Expired - Fee Related JP3820414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347110A JP3820414B2 (en) 2002-11-29 2002-11-29 Functional film sequential coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347110A JP3820414B2 (en) 2002-11-29 2002-11-29 Functional film sequential coating method

Publications (2)

Publication Number Publication Date
JP2004174593A JP2004174593A (en) 2004-06-24
JP3820414B2 true JP3820414B2 (en) 2006-09-13

Family

ID=32707813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347110A Expired - Fee Related JP3820414B2 (en) 2002-11-29 2002-11-29 Functional film sequential coating method

Country Status (1)

Country Link
JP (1) JP3820414B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554707C (en) * 2004-11-30 2009-10-28 独立行政法人科学技术振兴机构 Manufacturing has the method for connecting rod of bearing liner and the connecting rod with bearing liner
JP4951430B2 (en) * 2007-07-19 2012-06-13 光生アルミニューム工業株式会社 Internal friction welding of pipe members
ES2926202T3 (en) * 2017-11-27 2022-10-24 Citizen Watch Co Ltd Friction welding method and machine tool

Also Published As

Publication number Publication date
JP2004174593A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US5469617A (en) Friction forming
JPWO2006059595A1 (en) Manufacturing method of connecting rod with bearing and connecting rod with bearing
US20210053283A1 (en) Solid-State Manufacturing System And Process Suitable For Extrusion, Additive Manufacturing, Coating, Repair, Welding, Forming And Material Fabrication
US7552856B2 (en) Clamp apparatus, joining method, and method of manufacturing hollow member
US20060289603A1 (en) Apparatus and process for friction stir welding
FR2977177A1 (en) METHOD FOR RECHARGING A PIECE
JPH11285842A (en) Joined metal member and joining method of its member
US20130323531A1 (en) Bonded body of electrically conductive materials
JP3820414B2 (en) Functional film sequential coating method
CN101837513A (en) Friction stir spot welding (FSSW) method without key hole
AU2011244959A1 (en) Method for producing a pipe
JP2000312981A (en) Coating method of cylinder inner face
JP4160036B2 (en) Method for forming bonding layer on circular inner surface
US20180111231A1 (en) Method for metallurgically bonding a cylinder liner into a bore in an engine block
KR20090069612A (en) Friction stir welding system and welding method using thereof
JP2000102885A (en) Jointing metallic member and jointing method of members
Dwivedi Dissimilar metal joining of steel-aluminium alloy by friction stir welding
CN108746960B (en) Novel method for filling keyhole of friction stir welding based on resistance plug welding principle
JP5249295B2 (en) Lining method
JP2000225476A (en) Friction-stir-welding method for works made of metal
MA et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding
JP4495325B2 (en) Engine block manufacturing method
CN107639214A (en) A kind of cylindrical aluminium-plated type cylinder sleeve
CN219254072U (en) Pipe die for centrifugal casting and centrifugal casting equipment
JP2005052876A (en) Method for producing vehicle wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20021202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees