JP3820051B2 - Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube - Google Patents

Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube Download PDF

Info

Publication number
JP3820051B2
JP3820051B2 JP04139499A JP4139499A JP3820051B2 JP 3820051 B2 JP3820051 B2 JP 3820051B2 JP 04139499 A JP04139499 A JP 04139499A JP 4139499 A JP4139499 A JP 4139499A JP 3820051 B2 JP3820051 B2 JP 3820051B2
Authority
JP
Japan
Prior art keywords
electrode
detection tube
alumina
platinum
fluid detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04139499A
Other languages
Japanese (ja)
Other versions
JP2000241212A (en
Inventor
豊一 内田
茂男 酒井
靖史 伊藤
弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Machinery Systems Co Ltd
Original Assignee
Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd filed Critical Mitsubishi Heavy Industries Food and Packaging Machinery Co Ltd
Priority to JP04139499A priority Critical patent/JP3820051B2/en
Publication of JP2000241212A publication Critical patent/JP2000241212A/en
Application granted granted Critical
Publication of JP3820051B2 publication Critical patent/JP3820051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飲料充填機械等で充填する流体の流量を検出する電磁流量計用流体検出管及び流体検出管の製造方法に関する。
【0002】
【従来の技術】
飲料充填機械では、例えばガラスビン、PETボトル等の容器に飲料を充填する際、充填する飲料の流量を流量計により計測し、その計測結果に基づいて適量の飲料が容器に充填されるように流量制御を行なっている。上記流量計としては、電磁的に流量を計測する電磁流量計がある。図6は、本発明の対象とする電磁流量計の概略構成を示したものである。
【0003】
図6において、1は流体流量を検出するための検出管で、この検出管1内の流路中を例えば飲料等の流体2が流れる。上記検出管1には、直径方向に流路に対して対称に、つまり、対向するように一対の電極3a、3bが取り付けられている。また、検出管1の外側には、電極3a、3bから90ーシフトした位置で対向するように一対の電磁コイル4a、4bが取り付けられる。この電磁コイル4a、4bは、励磁回路5により励磁される。この励磁回路5は、電源ライン6より直流電源が供給され、定電流回路7を介して接地される。上記励磁回路5は、後述するCPU(マイクロコンピュータ)11から与えられる励磁指令に応じて正弦波、あるいは矩形波の励磁信号を電磁コイル4a、4bに供給する。
【0004】
上記電磁コイル4a、4bが励磁されることにより、検出管1の電極3a、3bに流体速度、地場強度等に応じた電圧が誘起する。例えば検出管1の直径をd(m)、電磁コイル4a、4bにより与えられる磁束密度をB(T)、導電性のある流体2の平均流速をv(m/s)とし、かつ、磁界が均一で検出管1内が軸対称流速分布の場合、流体2中に発生する電圧e(v)は、次式で求められる。
【0005】
e=B・d・v
上記電極3a、3bに誘起した電圧eは、差動増幅回路8に入力されて増幅され、その後、同期検出回路9へ送られる。この同期検出回路9は、励磁回路5による励磁信号に同期して上記電極3a、3bへの誘起電圧を検出し、流量変換回路10へ出力する。この流量変換回路10は、同期検出回路9で検出された信号を流量に換算し、CPU11へ出力する。このCPU11は、上記したように励磁指令を励磁回路5に出力すると共に、流量変換回路10から出力される流量に応じて飲料充填機械(図示せず)へ制御信号を出力する。
【0006】
上記のように検出管1の電極3a、3bに誘起した電圧eを計測すれば、一意的に平均流速vを求めることができ、この流速vから流体2の流量を算出できる。
【0007】
上記電極3a、3bの電位は、流体2との間に生じる電圧であるが、流体2の移動により発生する信号電圧が数mVに対してノイズが数mVから数V程度発生するため、直流では計測できず、上記したように交番磁界を印加して計測している。
【0008】
そして、上記検出管1の電極3a、3bは、従来では図7(a)〜(c)に示すように平形、外挿形、尖頭形のものが用いられている。図7(a)〜(c)は、電極部の断面構造を示したものである。
【0009】
図7(a)に示す平形は、金属製の検出管1の管壁21及びその内側に設けられたライニング22に電極用の穴を開け、この穴内に先端が平形の電極3を管内側から挿入し、管壁21と電極3との隙間に管外側から絶縁体23を介在させて密閉している。
【0010】
図7(b)に示す外挿形は、電極3の先端を細径に形成し、管壁21及びライニング22に設けた穴内に管外側から挿入して電極先端をライニング22から少し突出させている。そして、管壁21と電極3との隙間には、上記平形と同様に管外側から絶縁体23を介在させて密閉している。
【0011】
図7(c)に示す尖頭形は、電極3の先端に近い部分にフランジ部24を形成すると共に、このフランジ部24の中心部を尖頭形に形成し、更に、このフランジ部24に上記尖頭電極部を除いて絶縁コーティング25を施している。そして、上記電極3を管壁21及びライニング22に設けた穴内に管内側から挿入し、フランジ部24をライニング22の内壁に当接させ、管壁21と電極3との隙間に管外側から絶縁体23を介在させて密閉している。
【0012】
上記電極3(3a、3b)の材質は、通常SUS316が使用されるが、特に腐蝕性の高い流体2を測定するには、例えば白金イリジウム、ハステロイB、ハステロイC、チタン、タンタル、モネルなとが使用され、ライニング材質には、ネオプレン、ポリウレタン、天然ゴム、4フッ化エチレン樹脂、3フッ化エチレン、ガラスなどが条件に応じて使われる。
【0013】
【発明が解決しようとする課題】
検出管1の材質としては、従来、上記したように金属が一般に使用されていたが、最近では耐腐蝕性に優れたセラミクスが使用されるようになってきている。
【0014】
上記セラミクスを使用した検出管1は、耐蝕性に優れているが、加工が難しいという問題がある。例えば電極挿入用の穴開け加工を施す際、焼成後に行なうと、セラミクスが非常に硬くなってドリルによる穴開け加工が困難であり、また、仮焼結後に穴開け加工を行なうと、加工時に固まりで欠ける可能性があった。更にまた、焼結していない粉体成形体に電極を挿入すると、電極挿入時に粉体成形体を削って穴径が変化し、焼成後に電極と隙間を生じたり、欠けが生じたりする可能性があった。
【0015】
セラミック検出管と白金(電極)との組み合わせては耐食性の点で優れているが、熱衝撃や曲げ強度、密着性の点で未だ改良の余地がある。
【0016】
本発明は上記の課題を解決するためになされたもので、電極を確実に装着でき、熱衝撃や曲げ強度、耐蝕性、密着性に優れた電磁流量計用流体検出管及び流体検出管の製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
第1の発明は、電磁流量計用流体検出管の製造方法において、アルミナが主成分のセラミクス粉末を圧縮型成形し、この圧縮成形体に電極挿入用の穴を開けて600〜1400℃の温度で仮焼成し、この仮焼成後の上記電極挿入用穴に白金若しくは白金合金の電極を挿入して1400〜1700℃の温度で本焼成し、且つ、前記セラミクス粉末は、アルミナと該アルミナより熱膨張係数の大きいセラミクスとを複合して白金に近い熱膨張係数としたことを特徴とする。
【0018】
第2の発明は、電磁流量計用流体検出管の製造方法において、アルミナが主成分のセラミクス粉末を圧縮型成形し、この圧縮成形体に電極挿入用の穴を開けて600〜1400℃の温度で仮焼成し、この仮焼成後の上記電極挿入用穴に白金若しくは白金合金の電極を挿入して1400〜1700℃の温度で本焼成し、且つ、前記セラミクス粉末は、アルミナをベースに部分安定化ジルコニアを30〜40%の範囲で複合したことを特徴とする。
【0022】
の発明は、電磁流量計用流体検出管にあって、白金電極とアルミナ及び該アルミナより熱膨張係数の大きいセラミクスを複合して白金に近い熱膨張率としたセラミクスで作製した管体とから成ることを特徴とする。
【0023】
の発明は、電磁流量計用流体検出管にあって、白金電極とアルミナを基本材料として30〜40%の範囲でジルコニアを複合したセラミクスで作製した管体から成ることを特徴とする。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を説明する。
【0025】
(第1実施例)
図1(a)〜(c)は、本発明の第1実施例に係る電磁流量計における流体検出管の製造工程を示したものである。まず、図1(a)に示すように高純度アルミナ(Al23)の原料粉末を圧縮型成形し、この粉体成形体を旋盤やドリルにて検出管30の概略構造に加工する。
【0026】
次に上記検出管30の構造に加工した粉体成形体をドリルにて穴開け加工を行ない、電極挿入用穴31を形成する。その後、上記検出管30を600〜1400℃の仮焼成温度、例えば1000℃の温度で一旦仮焼結してバインダを揮発させ、少し焼結(固く)させる。この仮焼結体に対し、流路の流れを良くするために内面や端部の研磨加工を施した後、電極挿入用穴31に図1(b)に示すように白金若しくは白金合金により形成した棒状(円柱状)の電極32を挿入する。この場合、電極32の先端が検出管30の内面と同一面となるように挿入位置を調整する。また、上記電極挿入用穴31は、電極32の直径より少し大きい値に予め設定している。
【0027】
次いで、上記のように検出管30の電極挿入用穴31に電極32を挿入した状態で、1400〜1700℃の本焼成温度、例えば1600℃の温度で焼結させる。この焼結処理を行なうことにより、図1(c)に示すように検出管30の電極挿入用穴31が狭まり、電極32の外周面が電極挿入用穴31の内壁に密着して確実に保持される。その後、最終研磨を行ない、検出管30として完成させる。
【0028】
電磁流量計において、磁場強度に応じた電圧を計測するためには、少なくとも流体検出管の内側は絶縁体で覆い、電圧を計測するための電極32を接液させる必要がある。上記実施例で示したように配管部にセラミクスを用いると、配管自体の熱膨張係数は「1*10-5/℃」以下であり、また一般に電磁流量計の計測精度は0.1%オーダであるため、配管の熱膨張は殆ど問題とならず、温度補正の必要はない。しかもセラミクスの耐蝕性は、非常に良好である。
【0029】
また、電極32に白金を用いると、白金の熱膨張係数は「9*10-6/℃」、また、セラミクスの熱膨張係数、例えば高純度アルミナの熱膨張係数は「8*10-6/℃」であり、共に値が近いので大きな問題とはなり得ない。しかも、白金の耐蝕性は優れている。
【0030】
そして、上記第1実施例で示したようにセラミクス粉体を圧縮成形し、検出管30の構造に加工した状態で、電極挿入用穴31を開けることにより、電極の穴開け加工を容易に行なうことができる。また、検出管30を600〜1400℃の任意の温度で一旦仮焼結し、少し固くなった状態で、少し大きめの電極挿入用穴31に電極32を挿入し、その後、本焼成処理を行なっているので、電極挿入時に粉体成形体が削られる可能性及びクラックの発生を低減し、かつ、電極32の外周面と電極挿入用穴31の内壁との密着性を向上することができる。
【0031】
(第2実施例)
アルミナ(Al23)に3モルのイットリアを含む部分安定化ジルコニア(ZrO2)を35%添加し、上記第1実施例と同様の方法により検出管30を完成させる。
【0032】
アルミナとジルコニア(Al23/ZrO2)の複合焼結体は、ジルコニア強靭化アルミナとも呼ばれ、焼結過程においてアルミナ(Al23)がジルコニア(ZrO2)の相変態を押さえつつ、逆にジルコニアがアルミナの粒成長速度を遅くさせるので、これがシナジー効果として働き、強靭化に作用する。これは四方良一、他著「高強度ZrO2−Al23 複合焼結体の機械的性質と組織の評価」によっても示される。図2は、上記アルミナ/ジルコニア複合焼結体におけるアルミナ含有量(重量%)と曲げ強度(MPa)との関係を示す特性曲線図である。特にジルコニアの添加量が30〜40%の範囲であると、図3に示すようにジルコニアの粒径は0.2μmに漸近する。図3は、アルミナ/ジルコニア複合焼結体におけるアルミナ含有量とアルミナ及びジルコニアの粒径との関係を示したものである。また、更に、四方良一、他著「ジルコニアの低温熱劣化に及ぼす原料粉末比表面積の影響」では、低温(200℃熱水)熱劣化を受けない臨界粒子径は0.3〜0.4μm程度に微細であれば耐蝕性が増すとしている。このため余裕を見て0.2μmの粒径が得られる様、また強度と熱膨張係数を任意に選定できる様、アルミナ/ジルコニア複合焼結体にあってジルコニアの添加量を40%以下とすることで、耐蝕性と熱膨張係数を考慮した高強度セラミクス検出管を得ることができる。
【0033】
上記ジルコニアの含有量は、以下の理由により15%以上であることが望ましい。
セラミクス(アルミナ/ジルコニア複合焼結体)の電極3への締め付け量は、焼結時の割れから判断しているが、経験値では電極径の約10〜20%である。この締付けにより密着性を確保している。セラミクスが電極3を締め付けたとき塑性変形による内部応力は、高温状態で緩和され、焼成後緩やかに徐冷することにより、残留内部歪みを小さくできる。徐冷条件によるが、ある温度から電極(白金)が収縮することにより、内部引張応力が発生する。
【0034】
このため問題視されるのは、使用条件下での温度である。通常、電磁流量計は、最高でも200℃以下で使用されるので、セラミクス(アルミナ/ジルコニア複合焼結体)の0〜200℃の線膨張係数を考慮する。白金の線膨張係数は9.6である。図4は、アルミナ/ジルコニア複合焼結体のジルコニア含有量と線膨張係数(10−6/℃)の関係を示したもので、曲線aは0〜100℃、曲線bは0〜200℃、曲線cは0〜300℃の場合の特性図である。
白金とセラミクスとの線膨張係数差は、セラミクスの強度と白金の締め付け量にも依存するが、経験値ではアルミナ/ジルコニア複合焼結体は、約15%まで許容される。上記線膨張係数差が約20%であるとすると、ジルコニアの含有量の下限は15%程度までである。収縮のバラツキを考えるとジルコニア含有量の下限は30%となる。以上により、ジルコニアの含有量は、15%〜40%までがよいが、バラツキまで考慮するとジルコニア含有量は30〜40%が妥当となる。このため本実施例では、ジルコニア含有量は35%を選んだ。
【0035】
(第3実施例)
アルミナ(Al23)に3モルのイットリウムを含むジルコニア(ZrO2)を75%添加し、上記第1実施例と同様の方法により検出管30を完成させる。
【0036】
前記第1実施例で示したように、セラミクスにより配管部を構成すると共に白金の電極32を用いることにより、クラックの発生を低減すると共に電極部の隙間を無くし、かつ耐蝕性に優れた検出管30を構成することができる。
【0037】
ただ、温度変化が大きい場合、例えば急激に検出管30が冷却されると、上記のように配管と電極との熱膨張係数差が小さい場合でも繰り返し熱衝撃が加わり、割れる可能性が高まる。このため第3実施例では、アルミナより熱膨張係数の大きいセラミクスの粉体として、部分安定化ジルコニアを75%添加し、アルミナの熱膨張係数を大きくさせている。上記ジルコニアの熱膨張係数は、「10*10-6/℃」である。
【0038】
上記第3実施例で示したように部分安定化ジルコニアを75%添加することにより、アルミナの熱膨張係数を白金の熱膨張係数である「9*10-6/℃」近くにでき、白金との熱膨張係数差を殆ど無くすことができる。この結果、検出管30に大きな温度変化が与えられた場合でも、配管の損傷を防止することができる。
【0039】
(第4実施例)
図5は、本発明の第4実施例に係る流体検出管の仮焼成前の要部を示したものである。第1実施例と同様にしてアルミナが主成分の原料粉末を圧縮型成形した後、旋盤やドリルにて検出管30の概略構造に加工する。次に上記検出管30に対し、ドリルにて穴開け加工を行なって電極挿入用穴31を形成する。更に、上記検出管30を600〜1400℃の仮焼成温度、例えば1000℃の温度で一旦仮焼結した後、その内面や端部の研磨加工を施す。
【0040】
一方、白金若しくは白金合金により形成した棒状(円柱状)の電極32に対し、その外周面にアルミナ33を蒸着法により0.001〜0.005mm蒸着させる。このときアルミナ33は、例えば3mmピッチで部分的に0.005mm厚みむらを作成する。このアルミナ蒸着された電極32を上記仮焼成された検出管30の電極挿入用穴31に挿入し、1400〜1700℃の本焼成温度、例えば1600℃の温度で焼結させる。この焼結処理を行なうことにより、検出管30の電極挿入用穴31が狭まり、電極32の外周面が電極挿入用穴31の内壁に密着して確実に保持される。その後、最終研磨を行ない、検出管30として完成させる。
【0041】
上記のように電極32の外周面にアルミナ33を蒸着して電極挿入用穴31に挿入し、その後、焼結処理を行なうことにより、電極32と電極挿入用穴31との密着性を高めることがてき、かつ、電極32の抜けを確実に防止することができる。
【0042】
【発明の効果】
以上詳記したように本発明によれば、セラミクス粉体を圧縮型成形し、検出管の構造に加工した状態で、電極挿入用穴を開けているので、電極の穴開け加工を容易に行なうことができる。また、上記圧縮型成形した検出管を600〜1400℃の任意の温度で一旦仮焼成し、少し固くなった状態で、電極挿入用穴に電極を挿入し、その後、1400〜1700℃の温度で本焼成処理を行なっているので、電極挿入時に粉体成形体が削られる可能性及びクラックの発生を低減し、かつ、電極の外周面と電極挿入用穴の内壁との密着性を向上することができる。
【0043】
そして、検出管を構成するセラミクス粉体は、アルミナとアルミナより熱膨張率の大きいセラミクスとを複合して、例えば部分安定化ジルコニアを添加することにより、アルミナの熱膨張係数を白金の熱膨張係数に近付けたので、セラミクス検出管と白金電極との熱膨張係数差を殆ど無くすことができ、検出管に大きな温度変化が与えられた場合でも損傷を防止することができる。
また、検出管を構成する粉体セラミクスとして、アルミをベースに部分安定化ジルコニアを30〜40%の範囲で複合したものは、ジルコニア粒子が微細化して耐食性が増加して、耐食性と熱膨張係数を考慮した高強度セラミクス検出管を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る電磁流量計用流体検出管の製造方法を示す工程図。
【図2】第2実施例におけるアルミナ/ジルコニア複合焼結体のアルミナ含有量とアルミナ含有量と曲げ強度との関係を示す特性曲線図。
【図3】同実施例におけるアルミナ/ジルコニア複合焼結体のアルミナ含有量とアルミナ及びジルコニアの粒径との関係を示す特性曲線図。
【図4】同実施例におけるアルミナ/ジルコニア複合焼結体のジルコニア含有量と線膨張係数(10−6/℃)の関係を示す特性図。
【図5】本発明の第4実施例に係る流体検出管の仮焼成前の要部を示す図。
【図6】本発明の対象とする電磁流量計の概略構成を示す図。
【図7】(a)〜(c)は従来の流体検出管における電極の断面構造を示す図。
【符号の説明】
30 検出管
31 電極挿入用穴
32 電極
33 アルミナ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid detection tube for an electromagnetic flowmeter that detects a flow rate of a fluid to be filled by a beverage filling machine or the like, and a method for manufacturing the fluid detection tube.
[0002]
[Prior art]
In a beverage filling machine, for example, when a beverage such as a glass bottle or a PET bottle is filled with a beverage, the flow rate of the beverage to be filled is measured with a flow meter, and the flow rate is set so that an appropriate amount of beverage is filled into the container based on the measurement result. Control is performed. An example of the flow meter is an electromagnetic flow meter that electromagnetically measures the flow rate. FIG. 6 shows a schematic configuration of an electromagnetic flow meter which is an object of the present invention.
[0003]
In FIG. 6, reference numeral 1 denotes a detection tube for detecting a fluid flow rate, and a fluid 2 such as a beverage flows in a flow path in the detection tube 1. A pair of electrodes 3a and 3b are attached to the detection tube 1 symmetrically with respect to the flow path in the diameter direction, that is, so as to face each other. In addition, a pair of electromagnetic coils 4a and 4b are attached to the outside of the detection tube 1 so as to face each other at a position shifted by 90 from the electrodes 3a and 3b. The electromagnetic coils 4 a and 4 b are excited by the excitation circuit 5. The excitation circuit 5 is supplied with DC power from a power line 6 and is grounded through a constant current circuit 7. The excitation circuit 5 supplies a sine wave or rectangular wave excitation signal to the electromagnetic coils 4a and 4b in accordance with an excitation command given from a CPU (microcomputer) 11 described later.
[0004]
When the electromagnetic coils 4a and 4b are excited, a voltage corresponding to the fluid velocity, the local strength, and the like is induced in the electrodes 3a and 3b of the detection tube 1. For example, the diameter of the detection tube 1 is d (m), the magnetic flux density provided by the electromagnetic coils 4a and 4b is B (T), the average flow velocity of the conductive fluid 2 is v (m / s), and the magnetic field is When the detection tube 1 is uniform and has an axisymmetric flow velocity distribution, the voltage e (v) generated in the fluid 2 is obtained by the following equation.
[0005]
e = B ・ d ・ v
The voltage e induced in the electrodes 3 a and 3 b is input to the differential amplifier circuit 8 and amplified, and then sent to the synchronization detection circuit 9. The synchronization detection circuit 9 detects the induced voltage applied to the electrodes 3 a and 3 b in synchronization with the excitation signal from the excitation circuit 5 and outputs it to the flow rate conversion circuit 10. The flow rate conversion circuit 10 converts the signal detected by the synchronization detection circuit 9 into a flow rate and outputs it to the CPU 11. The CPU 11 outputs an excitation command to the excitation circuit 5 as described above, and outputs a control signal to a beverage filling machine (not shown) according to the flow rate output from the flow rate conversion circuit 10.
[0006]
If the voltage e induced in the electrodes 3a and 3b of the detection tube 1 is measured as described above, the average flow velocity v can be uniquely obtained, and the flow rate of the fluid 2 can be calculated from the flow velocity v.
[0007]
The potential of the electrodes 3a and 3b is a voltage generated between the fluid 2 and the signal voltage generated by the movement of the fluid 2 is several mV, and noise is generated from several mV to several volt. Measurement is not possible, and measurement is performed by applying an alternating magnetic field as described above.
[0008]
Conventionally, the electrodes 3a and 3b of the detection tube 1 are flat, extrapolated, or pointed, as shown in FIGS. 7A to 7C show the cross-sectional structure of the electrode portion.
[0009]
In the flat shape shown in FIG. 7A, a hole for an electrode is formed in the tube wall 21 of the metal detection tube 1 and the lining 22 provided on the inside thereof, and the electrode 3 having a flat tip is inserted into the hole from the inside of the tube. Inserted and sealed with an insulator 23 interposed between the tube wall 21 and the electrode 3 from the outside of the tube.
[0010]
In the extrapolated form shown in FIG. 7B, the tip of the electrode 3 is formed in a small diameter, inserted into the hole provided in the tube wall 21 and the lining 22 from the outside of the tube, and the tip of the electrode is slightly protruded from the lining 22. Yes. The gap between the tube wall 21 and the electrode 3 is sealed with an insulator 23 interposed from the outside of the tube in the same manner as the flat shape.
[0011]
In the pointed shape shown in FIG. 7C, a flange portion 24 is formed in a portion near the tip of the electrode 3, and the center portion of the flange portion 24 is formed in a pointed shape. An insulating coating 25 is applied except for the pointed electrode portion. Then, the electrode 3 is inserted into the hole provided in the tube wall 21 and the lining 22 from the inside of the tube, the flange portion 24 is brought into contact with the inner wall of the lining 22, and the gap between the tube wall 21 and the electrode 3 is insulated from the outside of the tube. The body 23 is interposed and sealed.
[0012]
As the material of the electrode 3 (3a, 3b), SUS316 is usually used. However, in order to measure the particularly highly corrosive fluid 2, for example, platinum iridium, hastelloy B, hastelloy C, titanium, tantalum, monel, etc. As the lining material, neoprene, polyurethane, natural rubber, tetrafluoroethylene resin, trifluoride ethylene, glass or the like is used depending on conditions.
[0013]
[Problems to be solved by the invention]
As a material for the detection tube 1, conventionally, metals have been generally used as described above, but recently, ceramics having excellent corrosion resistance have been used.
[0014]
The detection tube 1 using the above ceramics is excellent in corrosion resistance, but has a problem that it is difficult to process. For example, when drilling for electrode insertion, the ceramics become very hard if fired after firing, making drilling difficult with a drill. There was a possibility of missing. Furthermore, if an electrode is inserted into an unsintered powder compact, the powder compact may be scraped when the electrode is inserted, resulting in a change in the hole diameter, resulting in gaps between the electrode and chipping after firing. was there.
[0015]
The combination of the ceramic detector tube and platinum (electrode) is excellent in terms of corrosion resistance, but there is still room for improvement in terms of thermal shock, bending strength, and adhesion.
[0016]
The present invention has been made to solve the above-mentioned problems, and is capable of reliably mounting an electrode, and manufacturing a fluid detection tube and a fluid detection tube for an electromagnetic flowmeter that are excellent in thermal shock, bending strength, corrosion resistance, and adhesion. It aims to provide a method.
[0017]
[Means for Solving the Problems]
1st invention is a manufacturing method of the fluid detection tube for electromagnetic flowmeters. The ceramic powder which has an alumina as a main component is compression-molded, The hole for electrode insertion is made in this compression-molded body, and the temperature of 600-1400 degreeC is formed. in calcined, the above electrode insertion hole after calcination by inserting the electrode of platinum or platinum alloy and the sintering at a temperature of 1400-1700 ° C., and said ceramic powder is heat than alumina and said alumina It is characterized in that it has a thermal expansion coefficient close to that of platinum by combining with ceramics having a large expansion coefficient .
[0018]
A second invention is a method of manufacturing a fluid detection tube for an electromagnetic flow meter, wherein a ceramic powder containing alumina as a main component is compression-molded, and a hole for electrode insertion is formed in the compression-molded body at a temperature of 600 to 1400 ° C. , Calcined at the temperature of 1400-1700 ° C. by inserting a platinum or platinum alloy electrode into the electrode insertion hole after the temporary firing , and the ceramic powder is partially stable based on alumina. Zirconia compounded in a range of 30 to 40% .
[0022]
A third invention is, in the fluid sensing tube for an electromagnetic flowmeter, and a platinum electrode, alumina and Sera Miku scan that by combining large Serra Miku scan of thermal expansion coefficient than the alumina and the thermal expansion coefficient close to platinum It consists of the produced tube.
[0023]
A fourth invention, in the fluid sensing tube for an electromagnetic flowmeter, and a platinum electrode, that made of zirconia in the range of 30-40% alumina as the base material and a tube manufactured in Sera Miku scan complexed Features.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
(First embodiment)
FIGS. 1A to 1C show the manufacturing process of the fluid detection tube in the electromagnetic flow meter according to the first embodiment of the present invention. First, as shown in FIG. 1A, a raw powder of high-purity alumina (Al 2 O 3 ) is compression-molded, and this powder compact is processed into a schematic structure of the detection tube 30 with a lathe or a drill.
[0026]
Next, the powder molded body processed into the structure of the detection tube 30 is drilled with a drill to form an electrode insertion hole 31. Thereafter, the detection tube 30 is temporarily sintered at a pre-baking temperature of 600 to 1400 ° C., for example, 1000 ° C. to volatilize the binder, and is slightly sintered (hardened). The inner surface and end of the temporary sintered body are polished to improve the flow of the flow path, and then formed in the electrode insertion hole 31 with platinum or a platinum alloy as shown in FIG. The rod-shaped (columnar) electrode 32 is inserted. In this case, the insertion position is adjusted so that the tip of the electrode 32 is flush with the inner surface of the detection tube 30. The electrode insertion hole 31 is set in advance to a value slightly larger than the diameter of the electrode 32.
[0027]
Next, sintering is performed at a main firing temperature of 1400 to 1700 ° C., for example, 1600 ° C., with the electrode 32 inserted into the electrode insertion hole 31 of the detection tube 30 as described above. By performing this sintering process, the electrode insertion hole 31 of the detection tube 30 is narrowed as shown in FIG. 1C, and the outer peripheral surface of the electrode 32 is in close contact with the inner wall of the electrode insertion hole 31 and securely held. Is done. Thereafter, final polishing is performed to complete the detection tube 30.
[0028]
In the electromagnetic flow meter, in order to measure a voltage according to the magnetic field strength, it is necessary to cover at least the inside of the fluid detection tube with an insulator and to contact the electrode 32 for measuring the voltage. As shown in the above embodiment, when ceramic is used for the piping, the thermal expansion coefficient of the piping itself is “1 * 10 −5 / ° C.” or less, and the measurement accuracy of the electromagnetic flowmeter is generally on the order of 0.1%. Therefore, the thermal expansion of the piping is hardly a problem and there is no need for temperature correction. Moreover, the corrosion resistance of ceramics is very good.
[0029]
When platinum is used for the electrode 32, the thermal expansion coefficient of platinum is “9 * 10 −6 / ° C.”, and the thermal expansion coefficient of ceramics, for example, the thermal expansion coefficient of high-purity alumina is “8 * 10 −6 / “° C.”, both of which are close to each other and cannot be a big problem. Moreover, platinum has excellent corrosion resistance.
[0030]
Then, as shown in the first embodiment, the ceramic powder is compression-molded, and the electrode insertion hole 31 is opened in a state where the ceramic powder is processed into the structure of the detection tube 30, so that the electrode is easily drilled. be able to. In addition, the detection tube 30 is temporarily sintered at an arbitrary temperature of 600 to 1400 ° C., and in a slightly hardened state, the electrode 32 is inserted into the slightly larger electrode insertion hole 31, and then the main firing process is performed. Therefore, it is possible to reduce the possibility of the powder molded body being scraped when the electrode is inserted and the occurrence of cracks, and to improve the adhesion between the outer peripheral surface of the electrode 32 and the inner wall of the electrode insertion hole 31.
[0031]
(Second embodiment)
35% of partially stabilized zirconia (ZrO 2 ) containing 3 mol of yttria is added to alumina (Al 2 O 3 ), and the detection tube 30 is completed by the same method as in the first embodiment.
[0032]
The composite sintered body of alumina and zirconia (Al 2 O 3 / ZrO 2 ) is also called zirconia toughened alumina, and alumina (Al 2 O 3 ) suppresses the phase transformation of zirconia (ZrO 2 ) during the sintering process. On the contrary, zirconia slows the grain growth rate of alumina, which acts as a synergy effect and acts on toughening. This is also shown by Ryoichi Shikata, et al. “Evaluation of mechanical properties and structure of high-strength ZrO 2 —Al 2 O 3 composite sintered body”. FIG. 2 is a characteristic curve diagram showing the relationship between the alumina content (% by weight) and the bending strength (MPa) in the alumina / zirconia composite sintered body. In particular, when the addition amount of zirconia is in the range of 30 to 40%, the particle diameter of zirconia gradually approaches 0.2 μm as shown in FIG. FIG. 3 shows the relationship between the alumina content and the particle sizes of alumina and zirconia in an alumina / zirconia composite sintered body. Furthermore, in Ryoichi Shikata and other authors, “Influence of the specific surface area of raw material powder on low temperature thermal degradation of zirconia”, the critical particle size not subject to thermal degradation at low temperature (200 ° C. hot water) is about 0.3 to 0.4 μm. If it is very fine, the corrosion resistance is said to increase. For this reason, the addition amount of zirconia is made 40% or less in the alumina / zirconia composite sintered body so that a grain size of 0.2 μm can be obtained with an allowance and the strength and thermal expansion coefficient can be arbitrarily selected. it is, it is possible to obtain a high strength sera Miku scan sensing tube in consideration of corrosion resistance and thermal expansion coefficient.
[0033]
The zirconia content is desirably 15% or more for the following reason.
The amount of the ceramics (alumina / zirconia composite sintered body) clamped to the electrode 3 is determined from cracks during sintering, but it is about 10 to 20% of the electrode diameter by experience. Adhesion is secured by this tightening. When the ceramics clamps the electrode 3, the internal stress due to plastic deformation is relaxed in a high temperature state, and the residual internal strain can be reduced by slowly cooling after firing. Although depending on the slow cooling conditions, the internal tensile stress is generated when the electrode (platinum) contracts from a certain temperature.
[0034]
For this reason, the temperature under the conditions of use is regarded as a problem. Usually, since an electromagnetic flowmeter is used at 200 degrees C or less at the maximum, the linear expansion coefficient of 0-200 degrees C of ceramics (alumina / zirconia composite sintered compact) is considered. The linear expansion coefficient of platinum is 9.6. FIG. 4 shows the relationship between the zirconia content and the linear expansion coefficient (10 −6 / ° C.) of the alumina / zirconia composite sintered body. Curve a is 0 to 100 ° C., curve b is 0 to 200 ° C. A curve c is a characteristic diagram in the case of 0 to 300 ° C.
The difference in coefficient of linear expansion between platinum and ceramics also depends on the strength of the ceramics and the amount of tightening of platinum, but empirical values allow an alumina / zirconia composite sintered body up to about 15%. If the linear expansion coefficient difference is about 20%, the lower limit of the zirconia content is up to about 15%. Considering the variation in shrinkage, the lower limit of the zirconia content is 30%. As described above, the content of zirconia is preferably 15% to 40%, but considering the variation, the content of zirconia is appropriately 30 to 40%. For this reason, in this example, 35% was selected as the zirconia content.
[0035]
(Third embodiment)
75% of zirconia (ZrO 2 ) containing 3 mol of yttrium is added to alumina (Al 2 O 3 ), and the detection tube 30 is completed by the same method as in the first embodiment.
[0036]
As shown in the first embodiment, the pipe portion is made of ceramics and the platinum electrode 32 is used to reduce the occurrence of cracks and eliminate gaps in the electrode portion, and has excellent corrosion resistance. 30 can be configured.
[0037]
However, when the temperature change is large, for example, when the detection tube 30 is rapidly cooled, the thermal shock is repeatedly applied even when the difference in thermal expansion coefficient between the pipe and the electrode is small as described above, and the possibility of cracking increases. Therefore, in the third embodiment, 75% of partially stabilized zirconia is added as a ceramic powder having a thermal expansion coefficient larger than that of alumina to increase the thermal expansion coefficient of alumina. The thermal expansion coefficient of the zirconia is “10 * 10 −6 / ° C.”.
[0038]
By adding 75% of partially stabilized zirconia as shown in the third embodiment, the thermal expansion coefficient of alumina can be made close to “9 * 10 −6 / ° C.” which is the thermal expansion coefficient of platinum. The difference in thermal expansion coefficient can be almost eliminated. As a result, even when a large temperature change is given to the detection tube 30, damage to the piping can be prevented.
[0039]
(Fourth embodiment)
FIG. 5 shows a main part of the fluid detection tube according to the fourth embodiment of the present invention before temporary firing. In the same manner as in the first embodiment, the raw material powder mainly composed of alumina is compression-molded, and then processed into a schematic structure of the detection tube 30 with a lathe or a drill. Next, the detection tube 30 is drilled with a drill to form an electrode insertion hole 31. Further, the detection tube 30 is temporarily sintered at a temporary firing temperature of 600 to 1400 ° C., for example, a temperature of 1000 ° C., and then the inner surface and end portions thereof are polished.
[0040]
On the other hand, with respect to a rod-like (columnar) electrode 32 formed of platinum or a platinum alloy, alumina 33 is deposited on the outer peripheral surface by 0.001 to 0.005 mm by a vapor deposition method. At this time, the alumina 33 partially creates 0.005 mm thickness unevenness at a pitch of 3 mm, for example. The alumina-deposited electrode 32 is inserted into the electrode insertion hole 31 of the temporarily fired detection tube 30 and sintered at a main firing temperature of 1400 to 1700 ° C., for example, 1600 ° C. By performing this sintering process, the electrode insertion hole 31 of the detection tube 30 is narrowed, and the outer peripheral surface of the electrode 32 is securely held in close contact with the inner wall of the electrode insertion hole 31. Thereafter, final polishing is performed to complete the detection tube 30.
[0041]
As described above, the alumina 33 is vapor-deposited on the outer peripheral surface of the electrode 32 and inserted into the electrode insertion hole 31, and then the sintering process is performed to improve the adhesion between the electrode 32 and the electrode insertion hole 31. In addition, it is possible to reliably prevent the electrode 32 from coming off.
[0042]
【The invention's effect】
As described above in detail, according to the present invention, since the ceramic powder is compression-molded and processed into the structure of the detection tube, the electrode insertion hole is formed, so that the electrode can be easily drilled. be able to. In addition, the compression-molded detection tube is temporarily calcined at an arbitrary temperature of 600 to 1400 ° C., and in a state of being slightly hardened, the electrode is inserted into the electrode insertion hole, and thereafter at a temperature of 1400 to 1700 ° C. Since the main firing process is performed, the possibility that the powder molded body is scraped during electrode insertion and the generation of cracks are reduced, and the adhesion between the outer peripheral surface of the electrode and the inner wall of the electrode insertion hole is improved. Can do.
[0043]
The ceramic powder composing the detection tube is composed of a composite of alumina and ceramic having a higher coefficient of thermal expansion than alumina. For example , by adding partially stabilized zirconia, the thermal expansion coefficient of alumina is changed to that of platinum. Therefore , the difference in thermal expansion coefficient between the ceramics detection tube and the platinum electrode can be almost eliminated, and damage can be prevented even when a large temperature change is given to the detection tube.
In addition, the powder ceramics that compose the detection tube is a composite of aluminum and partially stabilized zirconia in the range of 30 to 40%. The zirconia particles are refined to increase the corrosion resistance, resulting in corrosion resistance and thermal expansion coefficient. It is possible to obtain a high-strength ceramics detection tube in consideration of
[Brief description of the drawings]
FIG. 1 is a process diagram showing a method of manufacturing a fluid detection tube for an electromagnetic flow meter according to a first embodiment of the present invention.
FIG. 2 is a characteristic curve diagram showing the relationship between alumina content, alumina content, and bending strength of an alumina / zirconia composite sintered body in a second embodiment.
FIG. 3 is a characteristic curve diagram showing the relationship between the alumina content of the alumina / zirconia composite sintered body and the particle sizes of alumina and zirconia in the same example.
FIG. 4 is a characteristic diagram showing the relationship between the zirconia content of the alumina / zirconia composite sintered body and the linear expansion coefficient (10 −6 / ° C.) in the same example.
FIG. 5 is a view showing a main part of a fluid detection tube according to a fourth embodiment of the present invention before temporary firing.
FIG. 6 is a diagram showing a schematic configuration of an electromagnetic flow meter that is an object of the present invention.
7A to 7C are views showing a cross-sectional structure of an electrode in a conventional fluid detection tube.
[Explanation of symbols]
30 Detection tube 31 Electrode insertion hole 32 Electrode 33 Alumina

Claims (4)

電磁流量計用流体検出管の製造方法において、アルミナが主成分のセラミクス粉末を圧縮型成形し、この圧縮成形体に電極挿入用の穴を開けて600〜1400℃の温度で仮焼成し、この仮焼成後の上記電極挿入用穴に白金若しくは白金合金の電極を挿入して1400〜1700℃の温度で本焼成し、且つ、前記セラミクス粉末は、アルミナと該アルミナより熱膨張係数の大きいセラミクスとを複合して白金に近い熱膨張係数としたことを特徴とする電磁流量計用流体検出管の製造方法。In the method of manufacturing a fluid detection tube for an electromagnetic flow meter, a ceramic powder containing alumina as a main component is compression-molded, and a hole for inserting an electrode is formed in the compression-molded body, and calcined at a temperature of 600 to 1400 ° C. An electrode made of platinum or a platinum alloy is inserted into the electrode insertion hole after the preliminary firing , and the main firing is performed at a temperature of 1400 to 1700 ° C. , and the ceramic powder is composed of alumina and a ceramic having a larger thermal expansion coefficient than the alumina. And a thermal expansion coefficient close to that of platinum . 電磁流量計用流体検出管の製造方法において、アルミナが主成分のセラミクス粉末を圧縮型成形し、この圧縮成形体に電極挿入用の穴を開けて600〜1400℃の温度で仮焼成し、この仮焼成後の上記電極挿入用穴に白金若しくは白金合金の電極を挿入して1400〜1700℃の温度で本焼成し、且つ、前記セラミクス粉末は、アルミナをベースに部分安定化ジルコニアを30〜40%の範囲で複合したことを特徴とする電磁流量計用流体検出管の製造方法。In the method of manufacturing a fluid detection tube for an electromagnetic flow meter, a ceramic powder containing alumina as a main component is compression-molded, and a hole for inserting an electrode is formed in the compression-molded body, and calcined at a temperature of 600 to 1400 ° C. An electrode made of platinum or a platinum alloy is inserted into the electrode insertion hole after the preliminary firing, and is finally fired at a temperature of 1400 to 1700 ° C. The ceramic powder is composed of 30 to 40 partially stabilized zirconia based on alumina. % . A method for producing a fluid detection tube for an electromagnetic flowmeter, characterized by being combined within a range of% . 白金電極と、アルミナ及び該アルミナより熱膨張係数の大きいセラミクスを複合して白金に近い熱膨張係数としたセラミクスで作製した管体とから成る電磁流量計用流体検出管。 A fluid detection tube for an electromagnetic flow meter comprising a platinum electrode and a tube made of alumina and a ceramic having a thermal expansion coefficient close to that of platinum by combining ceramic and a ceramic having a thermal expansion coefficient larger than that of the alumina . 白金電極と、アルミナを基本材料として30〜40%の範囲でジルコニアを複合したセラミクスで作製した管体とから成る電磁流量計用流体検出管。 A fluid detection tube for an electromagnetic flow meter comprising a platinum electrode and a tube made of ceramics in which the basic material is alumina and zirconia is combined in a range of 30 to 40% .
JP04139499A 1999-02-19 1999-02-19 Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube Expired - Fee Related JP3820051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04139499A JP3820051B2 (en) 1999-02-19 1999-02-19 Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04139499A JP3820051B2 (en) 1999-02-19 1999-02-19 Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube

Publications (2)

Publication Number Publication Date
JP2000241212A JP2000241212A (en) 2000-09-08
JP3820051B2 true JP3820051B2 (en) 2006-09-13

Family

ID=12607171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04139499A Expired - Fee Related JP3820051B2 (en) 1999-02-19 1999-02-19 Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube

Country Status (1)

Country Link
JP (1) JP3820051B2 (en)

Also Published As

Publication number Publication date
JP2000241212A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
JPH0522829Y2 (en)
JP3736771B2 (en) Fluid tube for conveying erodible liquid, enclosure structure thereof, and manufacturing method thereof
US5289725A (en) Monolithic flow tube with improved dielectric properties for use with a magnetic flowmeter
US4741215A (en) Flow tube for a magnetic flowmeter
JPH06103202B2 (en) Electromagnetic flow meter
JPH0527804B2 (en)
JP3820051B2 (en) Fluid detection tube for electromagnetic flow meter and method of manufacturing fluid detection tube
JP2931931B2 (en) Electromagnetic flow meter
US4746534A (en) Method of making a thermocouple
US5670723A (en) Isolated liner for an electromagnetic flowmeter
GB2186223A (en) Method of fixing member in ceramic body
CN103119403B (en) For measuring measurement mechanism and the method for the flow velocity of the medium flowing through measuring tube
Saremi-Yarahmadi et al. Erosion and mechanical properties of hydrothermally-resistant nanostructured zirconia components
CA1269711A (en) Measurement of non-metallic material molded body
Shim et al. Effect of carbon nanotubes on the properties of spark plasma sintered ZrO2/CNT composites
O'Brien et al. Porous alumina coating with tailored fracture resistance for alumina composites
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
JP2578642B2 (en) Thermocouple protection tube for immersion in molten metal
JPH0743615Y2 (en) Electromagnetic flowmeter detector
US20230009049A1 (en) Magnetic-inductive flow meter
WALLACE et al. Electrical resistivity of refractories
JPH08166266A (en) Capacity type ceramic electromagnetic flow meter
US20210096008A1 (en) Rod Shaped Measuring Electrode for a Magnetic Inductive Flow Meter
Han et al. Cyclic Fatigue–Crack Propagation Behavior in Silicon Carbide: Long‐and Small‐Crack Behavior
JPH04130028U (en) Measuring tube of electromagnetic flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees