JP3819468B2 - Condensation trap - Google Patents

Condensation trap Download PDF

Info

Publication number
JP3819468B2
JP3819468B2 JP01331496A JP1331496A JP3819468B2 JP 3819468 B2 JP3819468 B2 JP 3819468B2 JP 01331496 A JP01331496 A JP 01331496A JP 1331496 A JP1331496 A JP 1331496A JP 3819468 B2 JP3819468 B2 JP 3819468B2
Authority
JP
Japan
Prior art keywords
umbrella
heat transfer
refrigerant
tank
trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01331496A
Other languages
Japanese (ja)
Other versions
JPH09209934A (en
Inventor
正浩 米倉
弘幸 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP01331496A priority Critical patent/JP3819468B2/en
Publication of JPH09209934A publication Critical patent/JPH09209934A/en
Application granted granted Critical
Publication of JP3819468B2 publication Critical patent/JP3819468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機溶剤等の低沸点の液体を含む溶液中の低沸点成分の蒸気を真空系内で凝縮回収し、減圧に用いられる真空ポンプへの低沸点成分の混入量を減少させるのに好適な凝縮トラップに関する。
【0002】
【従来の技術】
有機溶剤を含む溶液を濃縮するためにエバポレータを用いて溶液中の有機溶剤を減圧下で蒸留する濃縮操作において、真空ポンプに有機溶剤蒸気を吸引させないようにするために、エバポレータと真空ポンプとの間に凝縮トラップを配置する必要がある。
図5は従来の凝縮トラップを例示するものであり、この凝縮トラップは、ガラスコンデンサ1を、冷却コイル2が設けられたトラップ槽4内のメタノール、シリコンオイル等の不凍液3に浸漬させてなるものである。この冷却コイル2内には冷凍機10に付属された熱交換器8で冷却されたフロン等の冷媒がポンプ9で圧送され、配管13,14を介して冷却コイル2内を循環するようになっている。ガ ラスコンデンサ1内は真空ポンプ12で真空に引かれ、ガラスコンデンサ1内には適温に加温され気化した有機溶剤が配管11から導かれ、減圧下で液化凝縮が行われるようになっている。有機溶剤系蒸気はガラスコンデンサ1内で凝縮され、その下部に溜る。真空ポンプ12としては油回転式真空ポンプが用いられる。また、真空ポンプ12に代えて、アスピレータを用いる場合もある。
【0003】
【発明が解決しようとする課題】
しかしながら、前述した従来の凝縮トラップのようにガラスコンデンサ1に冷却コイル2を巻回して冷却しつつ、ガラスコンデンサ1内を減圧にして流入する有機溶剤系蒸気を液化凝縮する方式では、フロン等の冷媒による冷却が十分でないため、有機溶剤系蒸気を凝縮回収しきれず、油回転式真空ポンプのオイル中に気化した有機溶剤が混入してオイルが劣化し易く、到達真空度が悪くなる。そのためオイルを定期的に交換する必要があり、オイル交換の頻度が増える不都合がある。また、有機溶剤の回収率が悪く、有機溶剤の再利用が困難であった。
また、真空ポンプに代えてアスピレータを用いた場合には、到達真空度が低いため濃縮に時間がかかる欠点がある。
【0004】
本発明は前記事情に鑑みてなされたもので、有機溶剤系蒸気の回収を短時間且つ効率的に行い、しかも真空ポンプのオイルの劣化を防止し真空ポンプを保護する凝縮トラップの提供を目的としている。
【0005】
【課題を解決するための手段】
本発明の請求項1に係る発明は、被処理ガスに含まれる凝縮成分を凝縮捕集する凝縮トラップであって、冷媒を収容する有底筒状の内槽と、該内槽の外周に多段に配された傘型伝熱フィンと、それらを収容する外槽と、少なくとも内槽と外槽の間の空間部の開口を気密に塞ぎ、かつ該空間部に先端を位置させて設けられた被処理ガスの導入管路および排気管路が接続された蓋体とを備え、
前記傘型伝熱フィンに複数の通気口が周方向に等間隔で穿設され、かつ上下の傘型伝熱フィンの該通気口の位置を周方向に所定角度ずらせて構成したことを特徴とする凝縮トラップである。
請求項2にかかる発明は、被処理ガスに含まれる凝縮成分を凝縮捕集する凝縮トラップであって、冷媒を収容する有底筒状の内槽と、該内槽の外周に多段に配された傘型伝熱フィンと、それらを収容する外槽と、少なくとも内槽と外槽の間の空間部の開口を気密に塞ぎ、かつ該空間部に先端を位置させて設けられた被処理蒸ガスの導入管路および排気管路が接続された蓋体とを備え、
前記内槽内に、固体充填材を配したことを特徴とする凝縮トラップである。
【0006】
【発明の実施の形態】
図1は本発明に係る凝縮トラップの一例を示すものである。この凝縮トラップ20は、液体窒素などの冷媒を入れる有底筒状の冷媒槽21(内槽)と、該冷媒槽21の外周面に多段に設けられた傘型伝熱フィン23…と、それらを収容する有底筒状のトラップ槽22(外槽)と、該トラップ槽22の上端に取り付けられた蓋体21aと、該蓋体21aに設けられた導入口25に接続された被処理蒸気の導入管路26、61と、該蓋体21aに設けられた排気口27に接続された排気管路62とを主な構成要素として備えている。
冷媒槽21、トラップ槽22、傘型伝熱フィン23および蓋体21aの材質としては、熱伝導率がよく耐食性が高い金属、例えばSUS304、SUS316等のステンレス鋼、アルミ合金、チタン等が好ましく用いられる。
【0007】
トラップ槽22の開口部には、鍔部22aが外方に周設され、この鍔部22aに蓋体21aが戴置された状態で接合されており、こうしてトラップ槽22内に空間部22bを形成しつつ冷媒槽21が気密に収納されている。
冷媒槽21の外周面には、傘型伝熱フィン23…が、冷媒槽21外壁とトラップ槽内壁とで形成される空間部22bを上下方向に等間隔に仕切るように多段に配設されている。
【0008】
上記傘型伝熱フィン23…の先端とトラップ槽22の内面との間の間隔は、以下の理由により、1〜5mm程度であることが好ましい。
上記間隔が1mm以下であると傘型伝熱フィンが形成された冷媒槽21を凝縮トラップに収納し難く、傘型伝熱フィンで液化した溶剤を下方へ流し落とすための流路を確保し難くなるので、上記間隔は1mm以上であることが好ましい。
一方、傘型伝熱フィン23…の先端とトラップ槽22の内面との間の間隔は、少ない方が、より多くの被処理蒸気が傘型伝熱フィンに沿って上昇し、効果的に冷却されるので、上記間隔を5mm以下とすることが好ましい。この間隔が5mmを越えると傘型伝熱フィンとトラップ槽22側壁との間隙からの被処理蒸気の移動量が増え、被処理蒸気が液化または固化することなく真空ポンプ29に吸引される量が増え、トラップ槽22内の凝縮効率が低下し、真空ポンプのオイルの劣化を早めることになる。
【0009】
上記傘型伝熱フィン23の段数は特に限定されない。また傘型伝熱フィン23…の段間のピッチは、20〜100mm程度であることが好ましい。
ピッチを20〜100mmとした理由は、製作上の作業性を考慮に入れたものであり作業可能であれば上記ピンチを短くするのが好ましい。
また傘型伝熱フィン23は、傘型伝熱フィンの上面で液化した低沸点成分をトラップ槽22底面に流すために、傘型伝熱フィンの周縁部に向かって下降するように設ける。すなわち傘型伝熱フィンと冷媒槽外壁とがなす角度θを90゜未満、好ましくは60〜85゜とすればよい。
【0010】
上記傘型伝熱フィン23には、トラップ槽22の内部下方に導入された被処理蒸気を、傘型伝熱フィンに沿ってトラップ槽22内部上方へ導くための通気口23aが設けられている。通気口23aの大きさにより、被処理蒸気が上方に移動する抵抗を調節できるので、任意の上昇速度を得られるように適宜設定することができる。
【0011】
図2および図3に、傘型伝熱フィンに穿設した通気口23aの態様を例示する。これらの図で、点線で示した23cは、図で示した傘型伝熱フィン23の1段上または1段下の傘型伝熱フィンにおける通気口23cの位置を示している。
図2に示すように、1枚の傘型伝熱フィン23あたりの通気口23aの数を1個とする場合、上下の傘型伝熱フィン23の通気口23aの位置を、径方向に中心を挟んで対向する位置となるように、各段ごとに交互に周方向に180゜ずらして設けることが好ましい。これにより被処理蒸気の伝熱フィンや冷媒槽の外面への接触時間が最も長くなるようにすることができ、したがって被処理蒸気を効率的に冷却することができる。
すなわち図4に示すように、導入管路26、61からトラップ槽22底面付近に導入された被処理蒸気の流路を、各々の傘型伝熱フィン23…に沿って半周ずつ流れるように形成することができる。
【0012】
また図3には、1枚の傘型伝熱フィン23に2個の通気口23a、23aを、周方向に180゜ずらして形成した例を示した。この場合、図3に示した傘型伝熱フィン23の下から上昇する被処理蒸気が、傘型伝熱フィン23上面や冷媒槽の外周面と最も長く接触するように、直上の通気口が周方向に90゜ずれた位置に設けられることが好ましい。すなわち、図3に示した傘型伝熱フィンの1段上には、同形状の傘型伝熱フィンを周方向に90゜回転させた向きで冷媒槽21に取り付け、直上の通気口23c,23cが、通気口23a,23aの中間に相当する位置となるようにする。そして順次交互に上段の傘型伝熱フィン23の通気口がその1段下の傘型伝熱フィン23の通気口と周方向に90゜ずらした位置となるように取り付けることが好ましい。
さらに図2または図3に示した例に限らず、1枚の傘型伝熱フィンに3個以上の通気口を等間隔に設けることも可能である。このような場合でも各段ごとに形成された通気口の中間に相当する箇所に、その上下の傘型フィンの通気口が形成されることが好ましい。
また傘型伝熱フィン23には、図2および図3に示すように、後述する導入管路26を挿入するための挿入孔23bが形成されている。
【0013】
上記蓋体21aには、冷媒槽21、トラップ槽22、蓋体21aで形成される空間部22bの内外へ連通するように、被処理蒸気導入口25と処理蒸気排気口27が穿設されている。
被処理蒸気導入口25には、被処理蒸気を導入するための導入管路61、26が接続されており、これらを介して、有機溶剤などの被処理蒸気を空間部22bへ導入できるようになっている。そして被処理蒸気導入管26は、多段に形成された複数の傘型伝熱フィン23に形成された挿入孔23bを貫通して最下段の傘型伝熱フィンの下方に被処理蒸気を導くように、かつ導入管路26の周囲が傘型伝熱フィン23に接するように取り付けられている。
処理蒸気排気口27は、空間部22bから処理蒸気を排気するためのもので、冷媒槽21の中心に対して被処理蒸気導入口25と対向する位置に設けられている。これにより、被処理蒸気導入口25を介して被処理蒸気導入管26から空間部22bに導入され、処理蒸気排気口27から排気されるまでの被処理蒸気の流路を長くとることができ、被処理蒸気が凝縮の効率が良好となる。処理蒸気排気口27には、真空ポンプ29が設けられた管62が接続されている。
【0014】
また蓋体21aには冷媒槽21内外を連通するように冷媒供給口37と気化冷媒排気口39が穿設され、冷媒供給口37には、管63と冷媒導入管38が取り付けられており、液化窒素などの冷媒を、管63、冷媒供給口37、および冷媒導入管38から冷媒槽21内へ導入し、気化冷媒を気化冷媒排気口39から排気できるようになっている。
冷媒は、低沸点成分の凝縮温度によって適当な冷媒を選択でき、例えば液化窒素(大気圧で−195.8℃)などの低温液化ガス、ドライアイス−アルコール系冷媒などが好ましく用いられる。
さらに蓋体21aには液面計41取り付け用の液面計取り付け口40が穿設されており、この液面計取り付け口40から冷媒槽21内方へ液面計41を挿入することにより、冷媒槽21内に導入された冷媒の液面高さを測定できるようになっている。
冷媒液面高さの測定方法は、特に限定されないが、例えば液面計の液面からの突出高さの計測値から冷媒の液面高さを自動的に測定できるように構成することができる。そしてこの自動測定液面計41に液面指示調節計42を接続し、液面計41で計測された冷媒槽21内部の冷媒液面のデータを液面指示調節計42に送り、冷媒液面が所定高さより下がったときは液面指示調節計42が電磁弁36を開いて冷媒を供給し、所定の冷媒液面高さに達した時点で電磁弁36を閉じるように構成すれば、冷媒の自動供給が可能となる。
【0015】
また冷媒槽21には、固体充填材35が充填されており、液体窒素などの冷媒の使用量を節約しつつ、冷媒液面を高く維持して冷媒槽と傘型伝熱フィンの冷却効率を高めることができる。また固体充填材35使用により、運転終了時の残存冷媒量を減らすことができる。固体充填材35としては、アルミニウム合金や鉄などの金属、アルミナやシリカなどのセラミック及びガラスなどからなる球状、柱状などの塊状のものなどが好ましく用いられる。
【0016】
上記凝縮トラップ20は、保冷槽24内に入れて保冷しつつ使用される。またトラップ槽22の外周には、トラップ槽加熱のためのヒータ34が設けられており、トラップ槽22内壁に低沸点成分蒸気が固化した場合に、これを加熱して液化し、トラップ槽22の下方に流し落とすことができるようになっている。トラップ槽22の底部にはトラップ槽22内に溜まった溶剤を外部に排出するためのドレーン弁32が設けられている。
【0017】
排気管路62は真空ポンプ29に接続されている。この真空ポンプ29としては油回転式真空ポンプなどの通常の真空ポンプが使用できる。
また導入管路26の他端側はロータリーエバポレータ50の排気端に接続されている。このロータリーエバポレータ50は、濃縮するべき溶液を入れる試料フラスコを取り付けて、これを回転させる図示略の回転駆動手段を備え、その上方には内部の蛇管51aに冷却水を流して気化した蒸気を凝縮する水冷式回収トラップ51が接続され、その水冷式回収トラップ51の下方に凝縮された溶剤などを捕集する受けフラスコを取り付けて構成されている。試料フラスコ53はウォーターバス54に浸漬されて所定温度に加温されるようになっている。水冷式回収トラップ51のロータリーエバポレータ50との接続側と反対の端部は被処理蒸気の導入管路61と接続され、該管路61を通してロータリーエバポレータ50内を排気し、減圧下で溶液から溶剤などを蒸発させて溶液を濃縮できるようになっている。
【0018】
また凝縮トラップ20は、図示したような定置式とする以外に、可搬型としても構成することができる。凝縮トラップ20を可搬型にする場合は、管61および63に接合強度の高い接合部を設け、この接合部で、凝縮トラップ20を着脱自在とすればよい。またトラップ槽22と保冷槽24を一体とし、トラップ槽外壁と保冷槽内壁との間の空間を真空引きした真空断熱容器とすれば、冷却効率の高い持ち運びに便利な凝縮トラップとすることができる。さらに、可搬型の凝縮トラップとする場合は、トラップ槽の内部に、冷媒槽を支持する支持体を設けて、強度を高めることが好ましい。
また可搬型の凝縮トラップとする場合、トラップ槽22の内径を200〜400mm程度に形成することが好ましい。
【0019】
上記構成により、凝縮トラップ20において、冷媒槽21およびその外周面に形成された傘型伝熱フィン23…は、低温の冷媒を冷媒槽21内に導入することにより冷却される。またこの状態でトラップ槽22の内壁および空間部22bは、冷媒槽21および冷媒槽の外壁に連なる傘型伝熱フィン23…からの輻射伝熱により効果的に冷却される。
【0020】
次に図1および図2に示した凝縮トラップ20の使用方法の一例を説明する。まず、冷媒槽21内に、例えば液化窒素などの冷媒を冷媒源(図示せず)から冷媒供給口37を介して冷媒導入管38から供給する。冷媒槽21の液面は、液面計41で計測され、その計測値に従って液面指示調節計から電磁弁36を開閉して液化窒素が自動供給されるようにする。
ついで管61の先端に、有機溶剤を含む溶液を濃縮するためのロータリーエバポレータ50を取り付け、試料フラスコ53内に被濃縮液を入れる。そして真空ポンプ29を稼動させて、凝縮トラップ内の空間部22bを、1Torr以下に減圧する。このような状態で試料フラスコ53を回転しつつウォーターバスで加温すれば、試料フラスコ53内の溶剤などの低沸点成分を含む被濃縮液から、低沸点成分が蒸発する。ロータリーエバポレータ50の上部には水冷式回収トラップ51が設けられており、蛇管51aに水を流せば発生した低沸点成分蒸気の減圧冷却が行われる。しかしながら水冷式の蛇管51aによる水冷式回収トラップ51内の温度は、冷却が不十分なため、低沸点成分蒸気の一部が凝縮液化して受フラスコ52で回収されるのみで、蒸気のほとんどは冷却温度が低い凝縮トラップ20に導入される。
【0021】
凝縮トラップ20に導入された被処理蒸気は、被処理蒸気導入管26を介して最下段の傘型伝熱フィン23の下方に導かれ、まず最下段の傘型伝熱フィン23の下面等に接触して急冷され、凝縮液化される。ただし冷媒槽21の外表面や冷媒槽に連なる傘型伝熱フィン23の溶接部に近い部分の表面では固化する場合もある。
液化または固化されない残りの被処理蒸気は、最下段の傘型伝熱フィン23の通気口23aを通って一段上の空間部22bに至る。この段の空間部22bに面する冷媒槽21の外側壁や最下段の傘型伝熱フィン23の上面および下から2番目の傘型伝熱フィン23の下面などと接触して急冷され液化または固化する。さらにこの段でも液化または固化されずに残った被処理蒸気は最下段の傘型伝熱フィンの通気口23aと周方向に180゜ずれた位置に形成された下から2番目の傘型伝熱フィン23の通気口23aを通って、さらに一段上の空間部22bへと移動し、順次これを繰り返す。
【0022】
最終的に最上段の傘型伝熱フィン23の通気口23aから処理蒸気排気口27に至るとき、処理蒸気はほとんど低沸点成分蒸気の混ざらない気体となって真空ポンプ29の働きでトラップ槽外部へ排気される。これにより真空ポンプ29のオイルを劣化させず、真空ポンプ29を長時間性能維持することが可能となる。試料フラスコ53内の被処理溶液の低沸点成分が蒸発し終わった時点で、真空ポンプ29の稼動を停止する。その後、トラップ槽22の底部に溜まった低沸点成分を回収後、空間部22b内を自然昇温またはヒータ34などで加熱し、冷媒槽21の外表面や傘型伝熱フィン23の表面の霜状の低沸点成分を液化してトラップ槽22の底部に溜め、ドレーン弁32から回収する。
【0023】
【実施例】
図1および図3に示す構成の凝縮トラップ20を作製した。
トラップ槽として、日本酸素株式会社製、商品名サーモカットD6000(内径185mm、深さ270mm)を用いた。SUS316を材料にして冷媒槽(内径110mm、深さ220mm)、蓋体、6枚の傘型伝熱フィンを作製し、図1に示すように組み立てて溶接した。傘型伝熱フィン先端とトラップ槽内壁との間隔は、1mmとした。また冷媒として液体窒素、固体充填材として球状アルミナを使用した。
ジクロロメタン540gを被濃縮液とし、ロータリーエバポレータで濃縮処理を行った。蒸発処理を11分間持続させて、試料フラスコからの蒸発がなくなったのを確認した後、真空ポンプを止め、トラップ槽内を自然昇温させて凝縮トラップのトラップ槽内に凝縮させた溶剤成分を計量した結果、回収量は540gで100%であった。
【0024】
【発明の効果】
本発明によれば、有機溶剤などを含む溶液をエバポレータで濃縮する際に、真空ポンプとの間に本発明の凝縮トラップを取り付けることにより、エバポレータで発生した低沸点成分蒸気を、凝縮トラップの冷媒槽の外壁面や傘型伝熱フィンなどに接触させて液化もしくは固化させ、短時間かつ効率的に回収できる。これにより、真空ポンプの有機溶剤蒸気の吸引を防止し、真空ポンプのオイルの劣化を防ぐことができるので、真空ポンプの長期に亘る性能維持が可能となり真空ポンプを保護することができる。
また、多段に配置された傘型伝熱フィンの各々に1個以上の通気口を穿設し、かつ通気口の位置を各段ごとに被処理蒸気の傘型伝熱フィンや溶媒槽外壁面などへの接触時間が長くなるように設定することにより、および/または被処理蒸気の導入管路の先端を、最下段の傘型伝熱フィンの下方に位置させることにより、被処理蒸気の回収効率を高くすることができ、真空ポンプの保護効果を高めることができる。
また内槽内に、固体充填材を配すれば、より少量の冷媒で効果的に被処理蒸気の冷却を行うことができ、経済性、操作性が向上する。
【図面の簡単な説明】
【図1】本発明の凝縮トラップの一実施例を示す図である。
【図2】本発明の凝縮トラップにおける、通気口形成の一例を示す図である。
【図3】本発明の凝縮トラップにおける、通気口形成の別の例を示す図である。
【図4】本発明の凝縮トラップの一実施例を示す一部断面図である。
【図5】従来の凝縮トラップの一例を示す図である。
【符号の説明】
20……凝縮トラップ、21……内槽(冷媒槽)、21a……蓋体、22……外槽(トラップ槽)、22b……空間部、23……傘型伝熱フィン、23a……通気口、25……導入管路(被処理蒸気導入口)、26……被処理蒸気導入管、27……排気管路(処理蒸気排気口)、35……固体充填材。
[0001]
BACKGROUND OF THE INVENTION
The present invention condenses and recovers low-boiling component vapor in a solution containing a low-boiling liquid such as an organic solvent in a vacuum system, and reduces the amount of low-boiling component mixed in a vacuum pump used for decompression. It relates to a suitable condensation trap.
[0002]
[Prior art]
In order to prevent the organic solvent vapor from being sucked into the vacuum pump during the concentration operation in which the organic solvent in the solution is distilled under reduced pressure using an evaporator to concentrate the solution containing the organic solvent, the evaporator and the vacuum pump are It is necessary to place a condensation trap between them.
FIG. 5 illustrates a conventional condensation trap. This condensation trap is obtained by immersing a glass capacitor 1 in an antifreeze liquid 3 such as methanol or silicon oil in a trap tank 4 provided with a cooling coil 2. It is. In the cooling coil 2, a refrigerant such as chlorofluorocarbon cooled by a heat exchanger 8 attached to the refrigerator 10 is pumped by a pump 9 and circulates in the cooling coil 2 through pipes 13 and 14. ing. The glass condenser 1 is evacuated by a vacuum pump 12, and an organic solvent heated and vaporized to an appropriate temperature is introduced into the glass condenser 1 from a pipe 11, and liquefaction condensation is performed under reduced pressure. . The organic solvent-based vapor is condensed in the glass capacitor 1 and accumulates in the lower part thereof. An oil rotary vacuum pump is used as the vacuum pump 12. Further, an aspirator may be used in place of the vacuum pump 12.
[0003]
[Problems to be solved by the invention]
However, as in the conventional condensation trap described above, in the system in which the cooling condenser 2 is wound around the glass condenser 1 and cooled, the organic solvent vapor flowing in the glass condenser 1 under reduced pressure is liquefied and condensed. Since the cooling by the refrigerant is not sufficient, the organic solvent-based vapor cannot be condensed and recovered, the vaporized organic solvent is mixed into the oil of the oil rotary vacuum pump, and the oil is easily deteriorated, and the ultimate vacuum is deteriorated. For this reason, it is necessary to change the oil periodically, which disadvantageously increases the frequency of oil change. Moreover, the recovery rate of the organic solvent was poor, and it was difficult to reuse the organic solvent.
Further, when an aspirator is used instead of the vacuum pump, there is a drawback that it takes time to concentrate because the ultimate vacuum is low.
[0004]
The present invention has been made in view of the above circumstances, and aims to provide a condensing trap that efficiently recovers organic solvent vapor in a short time and prevents deterioration of oil in the vacuum pump and protects the vacuum pump. Yes.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a condensation trap for condensing and collecting condensed components contained in the gas to be treated, and has a bottomed cylindrical inner tank containing a refrigerant, and a multi-stage on the outer periphery of the inner tank. Umbrella-type heat transfer fins arranged on the outside, an outer tub that accommodates them, and at least a space portion between the inner tub and the outer tub is hermetically closed, and the tip is positioned in the space portion. A lid to which an introduction pipe line and an exhaust pipe line of the gas to be treated are connected ,
A plurality of vent holes are perforated in the circumferential direction at equal intervals in the umbrella-type heat transfer fin, and the positions of the vent holes of the upper and lower umbrella-type heat transfer fins are shifted by a predetermined angle in the circumferential direction. It is a condensation trap.
The invention according to claim 2 is a condensation trap for condensing and collecting condensate components contained in the gas to be treated, and is arranged in multiple stages on the bottomed cylindrical inner tank containing the refrigerant and on the outer periphery of the inner tank. Umbrella type heat transfer fins, an outer tub that accommodates them, and at least an opening in a space between the inner tub and the outer tub, which is hermetically closed and has a tip positioned in the space. And a lid to which a gas introduction pipe and an exhaust pipe are connected,
It is a condensation trap characterized by arranging a solid filler in the inner tank.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of a condensation trap according to the present invention. The condensation trap 20 includes a bottomed cylindrical refrigerant tank 21 (inner tank) into which a refrigerant such as liquid nitrogen is placed, umbrella-shaped heat transfer fins 23 provided in multiple stages on the outer peripheral surface of the refrigerant tank 21, and the like. A bottomed cylindrical trap tank 22 (outer tank) for storing the liquid, a lid body 21a attached to the upper end of the trap tank 22, and steam to be treated connected to an inlet 25 provided in the lid body 21a Main pipes 26 and 61 and an exhaust pipe 62 connected to an exhaust port 27 provided in the lid 21a as main components.
As a material of the refrigerant tank 21, the trap tank 22, the umbrella-shaped heat transfer fin 23, and the lid 21a, a metal having high thermal conductivity and high corrosion resistance, for example, stainless steel such as SUS304 and SUS316, aluminum alloy, titanium, or the like is preferably used. It is done.
[0007]
At the opening of the trap tank 22, a flange 22 a is provided around the outside, and the lid 21 a is joined to the flange 22 a so that the space 22 b is formed in the trap tank 22. While being formed, the refrigerant tank 21 is stored in an airtight manner.
On the outer peripheral surface of the refrigerant tank 21, umbrella-shaped heat transfer fins 23 are arranged in multiple stages so as to partition the space 22b formed by the outer wall of the refrigerant tank 21 and the inner wall of the trap tank at equal intervals in the vertical direction. Yes.
[0008]
It is preferable that the space | interval between the front-end | tip of the said umbrella-shaped heat-transfer fin 23 ... and the inner surface of the trap tank 22 is about 1-5 mm for the following reasons.
When the distance is 1 mm or less, it is difficult to store the refrigerant tank 21 in which the umbrella-shaped heat transfer fins are formed in the condensation trap, and it is difficult to secure a flow path for allowing the solvent liquefied by the umbrella-shaped heat transfer fins to flow downward. Therefore, the interval is preferably 1 mm or more.
On the other hand, the smaller the distance between the tip of the umbrella-type heat transfer fins 23 ... and the inner surface of the trap tank 22, the more steam to be treated rises along the umbrella-type heat transfer fins, thereby effectively cooling. Therefore, the interval is preferably 5 mm or less. If this distance exceeds 5 mm, the amount of steam to be processed from the gap between the umbrella-type heat transfer fin and the side wall of the trap tank 22 will increase, and the amount of steam to be processed will be sucked into the vacuum pump 29 without liquefying or solidifying. As a result, the condensation efficiency in the trap tank 22 is lowered, and the oil of the vacuum pump is accelerated.
[0009]
The number of stages of the umbrella-type heat transfer fins 23 is not particularly limited. Moreover, it is preferable that the pitch between the steps of the umbrella-type heat transfer fins 23 is about 20 to 100 mm.
The reason why the pitch is 20 to 100 mm is that the workability in production is taken into consideration, and if the work is possible, it is preferable to shorten the pinch.
Moreover, the umbrella-type heat transfer fin 23 is provided so as to descend toward the peripheral edge of the umbrella-type heat transfer fin in order to flow the low boiling point component liquefied on the upper surface of the umbrella-type heat transfer fin to the bottom surface of the trap tank 22. That is, the angle θ formed by the umbrella-type heat transfer fin and the outer wall of the refrigerant tank may be less than 90 °, preferably 60 to 85 °.
[0010]
The umbrella-type heat transfer fin 23 is provided with a vent 23a for guiding the steam to be treated introduced into the lower part inside the trap tank 22 to the upper part inside the trap tank 22 along the umbrella-type heat transfer fin. . Since the resistance of the steam to be processed to move upward can be adjusted depending on the size of the vent 23a, it can be appropriately set so as to obtain an arbitrary rising speed.
[0011]
FIG. 2 and FIG. 3 exemplify the mode of the vent 23a formed in the umbrella-type heat transfer fin. In these drawings, 23c indicated by a dotted line indicates the position of the vent 23c in the umbrella-type heat transfer fin one step above or one step below the umbrella-type heat transfer fin 23 shown in the drawing.
As shown in FIG. 2, when the number of the vent holes 23a per umbrella-type heat transfer fin 23 is one, the position of the vent holes 23a of the upper and lower umbrella-type heat transfer fins 23 is centered in the radial direction. Preferably, each stage is alternately shifted by 180 ° in the circumferential direction so as to be opposed to each other. As a result, the contact time of the steam to be treated with the heat transfer fins and the outer surface of the refrigerant tank can be maximized, so that the steam to be treated can be efficiently cooled.
That is, as shown in FIG. 4, the flow path of the steam to be treated introduced from the introduction pipes 26 and 61 to the vicinity of the bottom surface of the trap tank 22 is formed so as to flow half a circumference along each umbrella-shaped heat transfer fin 23. can do.
[0012]
FIG. 3 shows an example in which two vent holes 23a and 23a are formed in a single umbrella-shaped heat transfer fin 23 while being shifted by 180 ° in the circumferential direction. In this case, the vent hole directly above the steam to be treated rising from below the umbrella-type heat transfer fin 23 shown in FIG. 3 is in contact with the upper surface of the umbrella-type heat transfer fin 23 or the outer peripheral surface of the refrigerant tank for the longest time. It is preferably provided at a position shifted by 90 ° in the circumferential direction. That is, the umbrella-shaped heat transfer fin of the same shape is attached to the refrigerant tank 21 in the direction rotated by 90 ° in the circumferential direction on the first stage of the umbrella-shaped heat transfer fin shown in FIG. 23c is set to a position corresponding to the middle of the vent holes 23a, 23a. Then, it is preferable that the vent holes of the upper umbrella-shaped heat transfer fins 23 are alternately and sequentially attached so that the vent holes of the upper umbrella-shaped heat transfer fins 23 are shifted by 90 ° in the circumferential direction.
Furthermore, not limited to the example shown in FIG. 2 or FIG. 3, it is also possible to provide three or more vent holes at equal intervals in one umbrella-type heat transfer fin. Even in such a case, it is preferable that the vents of the upper and lower umbrella-shaped fins are formed at locations corresponding to the middle of the vents formed for each stage.
Further, as shown in FIGS. 2 and 3, the umbrella-type heat transfer fin 23 is formed with an insertion hole 23 b for inserting an introduction pipe 26 described later.
[0013]
The lid 21a is provided with a steam inlet 25 and a steam outlet 27 so as to communicate with the inside and outside of the space 22b formed by the refrigerant tank 21, the trap tank 22 and the lid 21a. Yes.
Introductory pipes 61 and 26 for introducing the steam to be treated are connected to the steam to be treated inlet 25, so that steam to be treated such as an organic solvent can be introduced into the space 22 b through these. It has become. And the to-be-processed steam introduction pipe | tube 26 penetrates the insertion hole 23b formed in the several umbrella-shaped heat-transfer fin 23 formed in multiple stages, and guides to-be-processed steam below the lowermost-stage umbrella-type heat transfer fin. And the periphery of the introduction pipe line 26 is attached so as to be in contact with the umbrella-type heat transfer fins 23.
The processing steam exhaust port 27 is for exhausting processing steam from the space 22 b and is provided at a position facing the processing target steam introduction port 25 with respect to the center of the refrigerant tank 21. Thereby, the flow path of the steam to be treated is introduced into the space portion 22b from the steam to be treated inlet 26 through the steam to be treated inlet 25 and exhausted from the steam outlet 27 of the steam to be treated. The steam to be treated has good condensation efficiency. A pipe 62 provided with a vacuum pump 29 is connected to the processing steam exhaust port 27.
[0014]
The lid 21a is provided with a refrigerant supply port 37 and a vaporized refrigerant exhaust port 39 so as to communicate between the inside and outside of the refrigerant tank 21, and a pipe 63 and a refrigerant introduction pipe 38 are attached to the refrigerant supply port 37. A refrigerant such as liquefied nitrogen is introduced into the refrigerant tank 21 from the pipe 63, the refrigerant supply port 37, and the refrigerant introduction pipe 38, and the vaporized refrigerant can be exhausted from the vaporized refrigerant exhaust port 39.
As the refrigerant, an appropriate refrigerant can be selected depending on the condensation temperature of the low boiling point component. For example, a low-temperature liquefied gas such as liquefied nitrogen (at atmospheric pressure of −195.8 ° C.), a dry ice-alcohol refrigerant, or the like is preferably used.
Further, the lid 21a is provided with a level gauge mounting port 40 for mounting the level gauge 41. By inserting the level gauge 41 into the refrigerant tank 21 from the level gauge mounting port 40, The liquid level height of the refrigerant introduced into the refrigerant tank 21 can be measured.
The method for measuring the liquid level of the refrigerant is not particularly limited. For example, the liquid level of the refrigerant can be automatically measured from the measured value of the protrusion height from the liquid level of the liquid level gauge. . Then, a liquid level indicating controller 42 is connected to the automatic measuring liquid level meter 41, and data of the refrigerant liquid level inside the refrigerant tank 21 measured by the liquid level meter 41 is sent to the liquid level indicating controller 42. If the liquid level indicating controller 42 opens the electromagnetic valve 36 to supply the refrigerant when it falls below a predetermined height, and the electromagnetic valve 36 is closed when the predetermined refrigerant liquid level is reached, the refrigerant Can be automatically supplied.
[0015]
In addition, the refrigerant tank 21 is filled with a solid filler 35, and the cooling efficiency of the refrigerant tank and the umbrella-type heat transfer fin is improved by maintaining a high refrigerant liquid level while saving the amount of refrigerant used such as liquid nitrogen. Can be increased. Further, the use of the solid filler 35 can reduce the amount of remaining refrigerant at the end of the operation. As the solid filler 35, a spherical or columnar material made of a metal such as an aluminum alloy or iron, a ceramic such as alumina or silica, and glass is preferably used.
[0016]
The condensation trap 20 is used while being kept in the cold storage tank 24. Further, a heater 34 for heating the trap tank is provided on the outer periphery of the trap tank 22, and when the low boiling point vapor is solidified on the inner wall of the trap tank 22, this is heated and liquefied. It can be drained downward. A drain valve 32 for discharging the solvent accumulated in the trap tank 22 to the outside is provided at the bottom of the trap tank 22.
[0017]
The exhaust line 62 is connected to the vacuum pump 29. As this vacuum pump 29, a normal vacuum pump such as an oil rotary vacuum pump can be used.
The other end side of the introduction pipe line 26 is connected to the exhaust end of the rotary evaporator 50. This rotary evaporator 50 is equipped with a rotation driving means (not shown) for attaching a sample flask containing a solution to be concentrated and rotating the flask. Above this, the evaporated vapor is condensed by flowing cooling water through the internal snake pipe 51a. A water-cooled recovery trap 51 is connected, and a receiving flask for collecting the condensed solvent or the like is attached below the water-cooled recovery trap 51. The sample flask 53 is immersed in a water bath 54 and heated to a predetermined temperature. The end of the water-cooled recovery trap 51 opposite to the connection side of the rotary evaporator 50 is connected to the steam supply pipe 61, the rotary evaporator 50 is exhausted through the pipe 61, and the solvent is removed from the solution under reduced pressure. Etc. can be evaporated to concentrate the solution.
[0018]
Further, the condensation trap 20 can be configured as a portable type in addition to the stationary type as illustrated. When the condensation trap 20 is made portable, the pipes 61 and 63 may be provided with a joint having high joint strength, and the condensation trap 20 may be detachable at this joint. Further, if the trap tank 22 and the cold storage tank 24 are integrated and a vacuum insulation container is formed by evacuating the space between the trap tank outer wall and the cold storage tank inner wall, it is possible to provide a condensation trap that is highly portable and easy to carry. . Furthermore, when it is set as a portable condensation trap, it is preferable to provide the support body which supports a refrigerant tank inside a trap tank, and to raise intensity | strength.
Moreover, when setting it as a portable condensation trap, it is preferable to form the internal diameter of the trap tank 22 to about 200-400 mm.
[0019]
With the above configuration, in the condensation trap 20, the refrigerant tank 21 and the umbrella-shaped heat transfer fins 23 formed on the outer peripheral surface thereof are cooled by introducing a low-temperature refrigerant into the refrigerant tank 21. In this state, the inner wall and the space 22b of the trap tank 22 are effectively cooled by radiant heat transfer from the refrigerant tank 21 and the umbrella-shaped heat transfer fins 23 connected to the outer wall of the refrigerant tank.
[0020]
Next, an example of how to use the condensation trap 20 shown in FIGS. 1 and 2 will be described. First, a refrigerant such as liquefied nitrogen is supplied into the refrigerant tank 21 from a refrigerant source (not shown) through a refrigerant supply port 37 from a refrigerant introduction pipe 38. The liquid level in the refrigerant tank 21 is measured by the liquid level gauge 41, and the electromagnetic valve 36 is opened and closed from the liquid level indicating controller according to the measured value so that liquefied nitrogen is automatically supplied.
Next, a rotary evaporator 50 for concentrating the solution containing the organic solvent is attached to the tip of the tube 61, and the liquid to be concentrated is put into the sample flask 53. Then, the vacuum pump 29 is operated to depressurize the space 22b in the condensation trap to 1 Torr or less. If the sample flask 53 is heated in a water bath while rotating in such a state, the low boiling point component evaporates from the liquid to be concentrated containing the low boiling point component such as the solvent in the sample flask 53. A water-cooled recovery trap 51 is provided in the upper part of the rotary evaporator 50, and the low-boiling component vapor generated by flowing water through the serpentine tube 51a is cooled under reduced pressure. However, since the temperature in the water-cooled recovery trap 51 by the water-cooled serpentine tube 51a is insufficiently cooled, only a part of the low-boiling component vapor is condensed and liquefied and collected in the receiving flask 52, and most of the vapor is collected. It is introduced into the condensation trap 20 having a low cooling temperature.
[0021]
The steam to be treated introduced into the condensation trap 20 is guided below the lowermost umbrella-type heat transfer fin 23 via the steam-to-be-treated introduction pipe 26 and is first applied to the lower surface of the lowermost umbrella-shaped heat transfer fin 23 and the like. Upon contact, it is cooled rapidly and condensed. However, the outer surface of the refrigerant tank 21 and the surface of the portion near the welded portion of the umbrella-type heat transfer fin 23 connected to the refrigerant tank may be solidified.
The remaining steam to be treated that is not liquefied or solidified reaches the upper space portion 22b through the vent holes 23a of the lowermost umbrella-shaped heat transfer fins 23. The outer wall of the refrigerant tank 21 facing the space portion 22b of this step, the upper surface of the lowermost umbrella-type heat transfer fin 23, the lower surface of the second umbrella-type heat transfer fin 23 from the bottom, etc. Solidify. Further, the steam to be treated which remains without being liquefied or solidified at this stage is the second umbrella-shaped heat transfer from the bottom formed at a position shifted by 180 ° in the circumferential direction from the vent hole 23a of the lowest umbrella-shaped heat transfer fin. It moves to the upper space 22b through the vent 23a of the fin 23, and this is sequentially repeated.
[0022]
Finally, when reaching the process steam exhaust port 27 from the vent 23a of the uppermost umbrella-type heat transfer fin 23, the process steam becomes a gas that is hardly mixed with the low-boiling-point component steam, and the vacuum pump 29 functions to external the trap tank. Is exhausted. This makes it possible to maintain the performance of the vacuum pump 29 for a long time without deteriorating the oil of the vacuum pump 29. When the low boiling point component of the solution to be processed in the sample flask 53 has been evaporated, the operation of the vacuum pump 29 is stopped. Thereafter, the low-boiling components accumulated at the bottom of the trap tank 22 are collected, and then the space 22b is heated naturally or heated by a heater 34 or the like, and frost on the outer surface of the refrigerant tank 21 or the surface of the umbrella-shaped heat transfer fins 23. The low boiling point component is liquefied and stored at the bottom of the trap tank 22 and recovered from the drain valve 32.
[0023]
【Example】
A condensation trap 20 having the configuration shown in FIGS. 1 and 3 was produced.
As a trap tank, Nippon Oxygen Co., Ltd. product name Thermo Cut D6000 (inner diameter 185 mm, depth 270 mm) was used. Using SUS316 as a material, a refrigerant tank (inner diameter 110 mm, depth 220 mm), a lid, and six umbrella-shaped heat transfer fins were prepared, assembled and welded as shown in FIG. The distance between the tip of the umbrella-type heat transfer fin and the inner wall of the trap tank was 1 mm. Further, liquid nitrogen was used as a refrigerant, and spherical alumina was used as a solid filler.
Dichloromethane (540 g) was used as a liquid to be concentrated, and concentration treatment was performed using a rotary evaporator. The evaporation process is continued for 11 minutes, and after confirming that the evaporation from the sample flask has ceased, the vacuum pump is stopped, the temperature of the trap tank is naturally raised, and the solvent component condensed in the trap tank of the condensation trap is removed. As a result of weighing, the recovered amount was 540 g and 100%.
[0024]
【The invention's effect】
According to the present invention, when a solution containing an organic solvent or the like is concentrated by an evaporator, the low-boiling component vapor generated in the evaporator is converted into a refrigerant of the condensation trap by attaching the condensation trap of the present invention to a vacuum pump. It can be liquefied or solidified by bringing it into contact with the outer wall surface of the tank or umbrella-type heat transfer fins and recovered efficiently in a short time. Thereby, since the suction of the organic solvent vapor of the vacuum pump can be prevented and the oil of the vacuum pump can be prevented from being deteriorated, the performance of the vacuum pump can be maintained over a long period of time, and the vacuum pump can be protected.
In addition, one or more vent holes are formed in each of the umbrella-shaped heat transfer fins arranged in multiple stages, and the positions of the vent holes are the umbrella-shaped heat transfer fins of the steam to be treated and the outer wall surface of the solvent tank for each stage. Recovery of steam to be treated by setting the contact time to be long and / or by positioning the tip of the pipe to be treated below the lowermost umbrella-shaped heat transfer fin Efficiency can be made high and the protective effect of a vacuum pump can be heightened.
Further, if a solid filler is disposed in the inner tank, the steam to be treated can be effectively cooled with a smaller amount of refrigerant, and the economic efficiency and operability are improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a condensation trap according to the present invention.
FIG. 2 is a diagram showing an example of vent formation in the condensation trap of the present invention.
FIG. 3 is a diagram showing another example of vent formation in the condensation trap of the present invention.
FIG. 4 is a partial cross-sectional view showing an embodiment of the condensation trap of the present invention.
FIG. 5 is a diagram showing an example of a conventional condensation trap.
[Explanation of symbols]
20 ... Condensation trap, 21 ... Inner tank (refrigerant tank), 21a ... Lid, 22 ... Outer tank (trap tank), 22b ... Space, 23 ... Umbrella type heat transfer fin, 23a ... Vent, 25... Introduction pipe (processed steam inlet), 26... Treated steam introduction pipe, 27... Exhaust pipe (process steam exhaust), 35.

Claims (2)

被処理ガスに含まれる凝縮成分を凝縮捕集する凝縮トラップであって、冷媒を収容する有底筒状の内槽と、該内槽の外周に多段に配された傘型伝熱フィンと、それらを収容する外槽と、少なくとも内槽と外槽の間の空間部の開口を気密に塞ぎ、かつ該空間部に先端を位置させて設けられた被処理ガスの導入管路および排気管路が接続された蓋体とを備え、
前記傘型伝熱フィンに複数の通気口が周方向に等間隔で穿設され、かつ上下の傘型伝熱フィンの該通気口の位置を周方向に所定角度ずらせて構成したことを特徴とする凝縮トラップ。
A condensation trap that condenses and collects a condensed component contained in the gas to be treated, which has a bottomed cylindrical inner tank that contains a refrigerant, and umbrella-shaped heat transfer fins arranged in multiple stages on the outer periphery of the inner tank, Outer tub that accommodates them, and at least an opening in a space between the inner tub and the outer tub, which is hermetically closed and has a leading end positioned in the space, and a gas introduction pipe and an exhaust pipe There a connected lid,
A plurality of vent holes are perforated in the circumferential direction at equal intervals in the umbrella-type heat transfer fin, and the positions of the vent holes of the upper and lower umbrella-type heat transfer fins are shifted by a predetermined angle in the circumferential direction. Condensation trap to be.
被処理ガスに含まれる凝縮成分を凝縮捕集する凝縮トラップであって、冷媒を収容する有底筒状の内槽と、該内槽の外周に多段に配された傘型伝熱フィンと、それらを収容する外槽と、少なくとも内槽と外槽の間の空間部の開口を気密に塞ぎ、かつ該空間部に先端を位置させて設けられた被処理ガスの導入管路および排気管路が接続された蓋体とを備え、A condensation trap that condenses and collects a condensed component contained in the gas to be treated, which has a bottomed cylindrical inner tank that contains a refrigerant, and umbrella-shaped heat transfer fins arranged in multiple stages on the outer periphery of the inner tank, Outer tub that accommodates them, and at least an opening in a space between the inner tub and the outer tub, which is hermetically closed and has a leading end positioned in the space, and a gas introduction pipe and an exhaust pipe And a lid connected to
前記内槽内に、固体充填材を配したことを特徴とする凝縮トラップ。  A condensation trap, wherein a solid filler is disposed in the inner tank.
JP01331496A 1996-01-29 1996-01-29 Condensation trap Expired - Lifetime JP3819468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01331496A JP3819468B2 (en) 1996-01-29 1996-01-29 Condensation trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01331496A JP3819468B2 (en) 1996-01-29 1996-01-29 Condensation trap

Publications (2)

Publication Number Publication Date
JPH09209934A JPH09209934A (en) 1997-08-12
JP3819468B2 true JP3819468B2 (en) 2006-09-06

Family

ID=11829718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01331496A Expired - Lifetime JP3819468B2 (en) 1996-01-29 1996-01-29 Condensation trap

Country Status (1)

Country Link
JP (1) JP3819468B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020005209A (en) * 2000-06-27 2002-01-17 장근호 Cold Trap for contamination protection during vacuum pump operation of thermal vacuum chamber
US6488745B2 (en) * 2001-03-23 2002-12-03 Mks Instruments, Inc. Trap apparatus and method for condensable by-products of deposition reactions
KR100384492B1 (en) * 2001-04-17 2003-05-22 한국항공우주연구원 Pre-cooling device for cooling water of thermal vacuum chamber using Liquid Nitrogen
WO2016086101A1 (en) 2014-11-25 2016-06-02 Ecodyst, Inc. Distillation and rotary evaporation apparatuses, devices and systems
EP3307411A4 (en) 2015-06-11 2019-03-06 Ecodyst, Inc. Compact chiller and cooler apparatuses, devices and systems

Also Published As

Publication number Publication date
JPH09209934A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP6759205B2 (en) Distillation and rotary evaporation equipment, equipment and systems
US6010599A (en) Compact vacuum distillation device
JP3819468B2 (en) Condensation trap
US6564471B1 (en) Method and apparatus for freeze-drying
JP2020515409A (en) Large standalone chiller, all-in-one rotary evaporator and related methods
JP2005503915A (en) An apparatus for flowing and evaporating liquid material and then condensing the vapor formed
US4538423A (en) Cooling apparatus and cooling trap including such an apparatus
JP3819467B2 (en) Condensation trap
US3447333A (en) Helium film refrigerator
CN114191835B (en) Molecular distillation device and purification system for removing radioactive impurities in alloy
US5001904A (en) Fan cooled absorption refrigerating apparatus
JP3163676B2 (en) Vacuum heating method
KR200257841Y1 (en) Honey concentrator
JP2000121257A (en) Heat exchanger
JP2737378B2 (en) Refrigerant degassing equipment
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
SU972159A1 (en) Method for obtaining vacuum
CN219689399U (en) Lithium cell NMP retrieves cooling tower
JP3244639B2 (en) Organic solvent recovery device
JP2010130923A (en) Vacuum thawing apparatus
SU1344938A1 (en) Method of producing vacuum and device for obtaining same
JPH0587453A (en) Heat pump type vacuum-evaporation and drying apparatus
SU1617194A1 (en) Backing cryocondensation pump
JPH0538640Y2 (en)
JP2023150013A (en) Trap and recovery system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term