JP3819119B2 - Optical fiber temperature strain sensor and temperature strain measuring device - Google Patents

Optical fiber temperature strain sensor and temperature strain measuring device Download PDF

Info

Publication number
JP3819119B2
JP3819119B2 JP21681597A JP21681597A JP3819119B2 JP 3819119 B2 JP3819119 B2 JP 3819119B2 JP 21681597 A JP21681597 A JP 21681597A JP 21681597 A JP21681597 A JP 21681597A JP 3819119 B2 JP3819119 B2 JP 3819119B2
Authority
JP
Japan
Prior art keywords
temperature
optical fiber
strain
light
temperature strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21681597A
Other languages
Japanese (ja)
Other versions
JPH1164119A (en
Inventor
正明 須藤
良三 山内
朗 和田
邦治 姫野
慎三 須崎
道弘 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP21681597A priority Critical patent/JP3819119B2/en
Publication of JPH1164119A publication Critical patent/JPH1164119A/en
Application granted granted Critical
Publication of JP3819119B2 publication Critical patent/JP3819119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光ファイバセンサに関し、温度と歪みとを同時に計測することができるようにしたものである。
【0002】
【従来の技術】
温度と歪みを同時に計測することができる光ファイバセンサとして、シングルモードファイバのコアにグレーティング周期150〜400μmの長周期グレーティングを形成したものをセンシング部とするセンサがは発表されている(V.Bhatia et al.,Conference Proceedingsof OFS−11,paper Fr2−5,p702,1996)。
【0003】
このセンサでは、長周期グレーティングの周期とコア伝搬モードおよびクラッド伝搬モードの実効屈折率とで定まるある波長の光が、コア伝搬モードからクラッド伝搬モードに結合、変換され、その波長での損失が生じるとともに、クラッド伝搬モードが多数存在することから、その波長以外の多数の波長でも損失が生じることになる。
そして、これらの損失ピーク波長は、温度依存性、歪み依存性を有しているので、これらの損失ピーク波長の温度、歪による変化量を計測することで、温度および歪を測定することができるものである。
【0004】
しかしながら、このセンサでは、損失ピーク波長の温度依存性が小さく、温度変化に敏感でなく、感度が低い欠点がある。また、損失ピーク波長の帯域が広いため、その中心波長の測定精度が不十分で、温度歪みの測定精度もよくない欠点もある。
【0005】
【発明が解決しようとする課題】
よって、本発明における課題は、測定精度、感度が良好であり、温度および歪みを同時に計測できる光ファイバ温度歪みセンサを得ることにある。
【0006】
【課題を解決するための手段】
かかる課題は、PANDA型偏波面保存光ファイバのコアに反射型グレーティングを1以上形成したものをセンシング部とし、このセンシング部において直交する2の偏波モードの各反射光または透過光の中心波長の温度および歪みによる変化量を計測してセンシング部に作用する温度および歪みを測定することで解決される。
上記センシング部となる偏波面保存光ファイバのモード複屈折率を3×10−4以上とすることが望ましい。
【0007】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1は、本発明の光ファイバ温度歪みセンサのセンシング部を模式的に示すもので、図中符号1はPANDA型偏波面保存光ファイバである。
このPANDA型偏波面保存光ファイバ1は、中心のコア2と、このコア2からやや離れてコア2を中心に挟んで相対向する位置に対称的に設けられた1対の応力付与部3、3とこれらコア2および応力付与部3、3を包囲するクラッド4とからなるもので、そのモード複屈折率が3×10-4以上のものが好ましい。モード複屈折率がこの値未満であると、後述する2つの反射光の中心波長の差が0.3nm以下となり、その差を光検出器において検知することが困難となる。
【0008】
このPANDA型偏波面保存光ファイバ1は、コア2のほぼ中央の長さが10〜20mm程度の部分には反射型グレーティング5が形成されている。このグレーティング5は、例えばコア2にエキシマレーザ光などを照射し、ホトリフラクティブ効果によって光ファイバの長手方向に屈折率の一定周期の変動を形成したものであって、屈折率変動の周期、すなわちグレーティング周期Λが0.1〜1.0μm程度のものである。このコア2にグレーティング5が形成されたPANDA型偏波面保存光ファイバ1がセンシング部6となる。
【0009】
そして、図2に示すように、センシング部6の一端には測定光を導波するための導波ファイバ7の一端が接続され、この導波ファイバ7の他端は光サーキュレータ8に接続されている。光サーキュレータ8は、導波ファイバ7によって、光源9および光検出器10にそれぞれ接続されて、この例の温度歪み測定装置となっている。
光源9には、無偏光の光を発光するものが使用される。光源には狭い発光波長のLDは不適当であって、望ましくはある程度波長範囲(後述する温度又は歪み変化による波長変化をカバーできる波長範囲)の光(以下広帯域の光という)を安定したパワーで発光する光源、例えばLED(発光ダイオード)、ハロゲンランプ、ASE(Amplified spontaneous emission)光源などが用いられる。
光検出器10には、波長分解能が0.01nm程度の光スペクトルアナライザーなどが用いられる。
導波ファイバ7には、一般のシングルモードファイバーなどが用いられる。
【0010】
次に、このような構成のセンサの測定原理について説明する。
PANDA型偏波面保存光ファイバ1では、コア2に導波される光のモードは、1対の応力付与部3、3の中心点を結ぶ平面に沿って導波される偏波モードLP01 X モード(以下、sモードとする。)と、上記平面に直交する平面に沿って導波される偏波モードLP01 y モード(以下、fモードとする。)とがある。これら2つの偏波モード間にはその伝搬定数の差(Δβ=βs−βf)が形成され、各偏波モードはこれに対応して、それぞれ別の実効屈折率Nf、Nsを持つことになる。
【0011】
一般に、反射型グレーティングに入射された光は、λ=2NΛの条件を満たすときに反射される。ここでλは反射光の中心波長、Nは実効屈折率
、Λはグレーティング周期である。
このため、PANDA型偏波面保存光ファイバ1に形成された反射型グレーティング5で反射される光(偏光)の中心波長は、2つの実効屈折率NfとNsとに対応して2つ存在することになり、これをλf、λsとする。
図3は、センシング部6から反射されたfモード及びsモードの反射光のスペクトルの一例を示すもので、2つの尖鋭な反射ピークが明確に分かれて表れており、短波長側のピークがλf、長波長側のピークがλsとなる。
【0012】
一般に、ガラスの屈折率は温度依存性を持つ。また、伝搬定数はファイバの導波構造とコアおよびクラッドの屈折率によって決まるので、実効屈折率Nf、Nsはそれぞれ異なる温度依存性を持ち、したがって反射光の中心波長λf、λsもそれぞれ異なる温度依存性を持つ。
また、センシング部6の長手方向に歪みが加えられると、これが伸縮してグレーティング周期Λが変化する。また、光弾性効果により実効屈折率Nf、Nsも変化する。このため、反射光の中心波長λf、λsは、それぞれ異なる歪み依存性を持つ。
【0013】
この現象を利用して、センシング部6のグレーティング5から反射されるfモードおよびsモードの光の中心波長λf、λsの変化を計測することにより、グレーティング5の持つ温度依存性、歪み依存性を分離して、センシング部6に作用する温度、歪みを同時に測定することが可能になる。
【0014】
sモード及びfモードの各反射光の中心波長λs、λfの温度に対する変化率、歪みに対する変化率は、それぞれ∂λs/∂T、∂λs/∂ε、∂λf/∂T、∂λf/∂εで表されるので、温度変化ΔT、歪み変化Δεに対するsモードおよびfモードの反射波長の変化Δλs、Δλfは、下記(1)式で表わされる。
【0015】
【数1】

Figure 0003819119
【0016】
そして、温度変化ΔT、歪み変化Δεは、式(1)をΔT、Δεについて解いて、下記(2)式で与えられる。
【0017】
【数2】
Figure 0003819119
【0018】
上記(2)式において、∂λs/∂T、∂λs/∂ε、∂λf/∂T、∂λf/∂εについては、予めセンシング部6に既知の温度変化および歪み変化を別々に与えて、その時に得られるλs、λfを測定し、これから求めておくことができる。
図4は、λs、λfの温度依存性の一例を示すもので、Aがλsの、Bがλfの温度依存性を示す。
図5は、λs、λfの歪み依存性の具体例としての張力依存性の一例を示すもので、Cがλsの、Bがλfの張力依存性を示す。ここでの張力Fは、ファイバ1の長手方向に作用する引っ張り力である。
【0019】
図4、図5ではA〜Dは、ほぼ直線で表されているので、その傾きから、上記の∂λs/∂T、∂λs/∂F、∂λf/∂T、∂λf/∂Fが求められ張力Fからガラスのヤング率を使って歪みεに変換すると、∂λs/∂ε、∂λf/∂εが具体的な数値として求められる。
よって、(2)式より、ΔλsとΔλfが実測で求まれば、ΔT、Δεが求められることになる。
したがって、ある基準の温度Toおよび歪みεoでの反射中心波長λso、λfoが既知であれば、ΔλsとΔλfから上述のようにしてΔT、Δεを加えることにより、センシング部6に作用する温度、歪みを同時に求めることができる。
(2)式による演算は、パーソナルコンピュータなどを使用して簡単に実施できる。
図4,図5に示すA〜Dが直線で表される場合は、∂λs/∂T、∂λs/∂F、∂λf/∂T、∂λf/∂Fはそれぞれ基準温度T0または基準歪みt0における張力あるいは温度に対する偏微分値を求めればよい。
【0020】
以下、図4および図5に示した例を利用して、具体的に数値を挙げて説明する。
図4および図5の直線A〜Dの傾きから、
∂λs/∂T=0.0095nm/℃
∂λf/∂T=0.0101nm/℃
∂λs/∂F=0.01470nm/g
∂λf/∂F=0.01461nm/g
となる。
ファイバガラスのヤング率72.9GPaを使って張力Fを歪みεに変換すると、
∂λs/∂ε=0.001342nm/με
∂λf/∂ε=0.001334nm/με
となる。
これらの値を代入して計算すると、D=−8.812×10-7(nm2 /με・℃)となる。
【0021】
いま、基準温度20℃、基準歪み0μεとしたとき、λf=1535.07nm、λs=1535.551nmを基準値と設定する。
センシング部6をある温度条件下におき、かつ歪みを与えたときに計測されたλfが1537.518nm、λsは1537.061nmとすると、Δλf=1.967nm、Δλs=1.990nmとなる。(2)式にこの値と上述の各数値を代入して解くと、
ΔT=52.88℃、 Δε=1091με
と言う解が求まり、センシング部6に作用した温度は72.88℃、歪みは1091μεであることがわかる。
この計測値は、別の歪みセンサと熱電対とにより測定した値とよく一致しており、その差が温度では0.2℃、歪みでは10μεであった。
このように、この光ファイバ温度歪みセンサは、温度と歪みを同時に精度よく、高感度で測定することができる。
【0022】
図6は、この発明の光ファイバ温度歪みセンサの他の例を示すもので、この例のセンサは透過光を測定する型のものである。すなわち、光源9からの測定光は導波ファイバ7からセンシング部6の一端に入射され、センシング部6の他端からの透過光は光検出器10に導波ファイバ7で送られるものである。
図7に反射型光ファイバグレーティングの透過スペクトルの一例を示すが、この例のセンサでは、光検出器10で計測される透過光のスペクトルのピークの形状が反転して谷状となる点が若干異るものの、各ピークの波長値は同一であり、測定原理も先 例のものと同一である。
【0023】
また、本発明の光ファイバ温度歪みセンサでは、1本のPANDA型偏波面保存光ファイバ1にグレーティング5をその長手方向に沿って複数間隔をあけて形成したものをセンシング部6とすることも可能である。ただし、この場合には各グレーティング5のグレーティング周期Λを互いに異らせ、1のグレーティング5によって生じる2つの反射光の中心波長λf、λsが互いに重ならず、かつ1組のλfとλsとの差以上の間隔を空けるようにすることが必要となる。
このような複数のグレーティング5.5……をファイバ1の長手方向に沿って設けたものでは、多数の異なる位置での温度および歪を同時に計測できる。
【0024】
また、上述の例では、偏波面保存光ファイバとしてPANDA型のものを使用したが、これに限られことはなく、ボウタイ型、楕円クラッド型などの種々のタイプの偏波面保存光ファイバが使用できることは言うまでもない。
【0025】
【発明の効果】
以上説明したように、本発明の光ファイバ温度歪みセンサにあっては、センシング部に作用する温度、歪みを高精度、高感度で同時測定することができる。また、センシング部が10mm程度の小型であるので、例えば電気ケーブルなどの狭い空間などに装填しておくことができ、かつ局所的な温度、歪みを測定できる。さらに、必要な機器が少なく、装置を安価とすることもできるなどの効果を有する。
【図面の簡単な説明】
【図1】 本発明のセンサのセンシング部の構成の一例を示す模式図である。
【図2】 本発明のセンサの構成の一例を示す構成図である。
【図3】 本発明における反射型グレーティングから反射される反射光のスペクトルの例を示すスペクトラムである。
【図4】 本発明におけるλf、λsの温度依存性の例を示すグラフである。
【図5】 本発明におけるλf、λsの張力依存性の例を示すグラフである。
【図6】 本発明のセンサの構成の他の例を示す構成図である。
【図7】 反射型グレーティングから反射される反射光のスペクトルの例を示すスペクトラムである。
【符号の説明】
1…PANDA型偏波面保存光ファイバ、2…コア、5…反射型グレーティング、6…センシング部、9…光源、10…光検出器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber sensor, and is capable of simultaneously measuring temperature and strain.
[0002]
[Prior art]
As an optical fiber sensor capable of simultaneously measuring temperature and strain, a sensor having a sensing unit in which a long-period grating with a grating period of 150 to 400 μm is formed on a single-mode fiber core has been announced (V. Bhatia). et al., Conference Processing of OFS-11, paper Fr2-5, p702, 1996).
[0003]
In this sensor, light of a certain wavelength determined by the period of the long-period grating and the effective refractive index of the core propagation mode and the cladding propagation mode is coupled and converted from the core propagation mode to the cladding propagation mode, resulting in a loss at that wavelength. At the same time, since there are many clad propagation modes, loss occurs at many wavelengths other than the wavelength.
Since these loss peak wavelengths have temperature dependency and strain dependency, the temperature and strain can be measured by measuring the temperature and the amount of change due to strain of these loss peak wavelengths. Is.
[0004]
However, this sensor has a drawback that the temperature dependence of the loss peak wavelength is small, is not sensitive to temperature changes, and has low sensitivity. In addition, since the loss peak wavelength band is wide, the measurement accuracy of the center wavelength is insufficient, and the measurement accuracy of temperature distortion is not good.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to obtain an optical fiber temperature strain sensor that has good measurement accuracy and sensitivity and can simultaneously measure temperature and strain.
[0006]
[Means for Solving the Problems]
Such a problem is that a sensing part is formed by forming one or more reflective gratings in the core of a PANDA polarization-maintaining optical fiber, and the center wavelength of each reflected or transmitted light in two polarization modes orthogonal to each other in this sensing part. The problem is solved by measuring the amount of change due to temperature and strain and measuring the temperature and strain acting on the sensing unit.
It is desirable that the mode birefringence of the polarization-maintaining optical fiber serving as the sensing unit is 3 × 10 −4 or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
FIG. 1 schematically shows a sensing portion of an optical fiber temperature strain sensor according to the present invention. Reference numeral 1 in the drawing denotes a PANDA type polarization-maintaining optical fiber.
This PANDA-type polarization-maintaining optical fiber 1 is composed of a central core 2 and a pair of stress applying portions 3 provided symmetrically at positions facing each other with the core 2 at a distance from the core 2. 3 and the clad 4 surrounding the core 2 and the stress applying portions 3 and 3 and having a mode birefringence of 3 × 10 −4 or more is preferable. If the mode birefringence is less than this value, the difference between the center wavelengths of two reflected lights to be described later becomes 0.3 nm or less, and it is difficult to detect the difference with the photodetector.
[0008]
In this PANDA type polarization-maintaining optical fiber 1, a reflection type grating 5 is formed in a portion where the length of the center of the core 2 is about 10 to 20 mm. The grating 5 is formed by, for example, irradiating the core 2 with excimer laser light or the like, and forming a constant cycle of the refractive index in the longitudinal direction of the optical fiber by the photorefractive effect. The period Λ is about 0.1 to 1.0 μm. The PANDA polarization-maintaining optical fiber 1 in which the grating 2 is formed on the core 2 serves as the sensing unit 6.
[0009]
As shown in FIG. 2, one end of a sensing fiber 6 is connected to one end of a waveguide fiber 7 for guiding measurement light, and the other end of the waveguide fiber 7 is connected to an optical circulator 8. Yes. The optical circulator 8 is connected to the light source 9 and the photodetector 10 by the waveguide fiber 7 to form a temperature strain measuring device of this example.
As the light source 9, one that emits non-polarized light is used. An LD with a narrow emission wavelength is not suitable for a light source, and desirably has a stable power for light (hereinafter referred to as broadband light) in a certain wavelength range (a wavelength range that can cover wavelength changes due to temperature or strain changes described later). A light source that emits light, for example, an LED (light emitting diode), a halogen lamp, an ASE (Amplified spontaneous emission) light source, or the like is used.
For the photodetector 10, an optical spectrum analyzer or the like having a wavelength resolution of about 0.01 nm is used.
As the waveguide fiber 7, a general single mode fiber or the like is used.
[0010]
Next, the measurement principle of the sensor having such a configuration will be described.
In the PANDA-type polarization-maintaining optical fiber 1, the mode of light guided to the core 2 is a polarization mode LP 01 X guided along a plane connecting the center points of the pair of stress applying portions 3 and 3. Mode (hereinafter referred to as s mode) and polarization mode LP 01 y mode (hereinafter referred to as f mode) guided along a plane orthogonal to the plane. A difference in propagation constant (Δβ = βs−βf) is formed between these two polarization modes, and each polarization mode has a different effective refractive index Nf and Ns correspondingly. .
[0011]
In general, light incident on the reflective grating is reflected when the condition of λ = 2NΛ is satisfied. Here, λ is the center wavelength of the reflected light, N is the effective refractive index, and Λ is the grating period.
For this reason, there are two center wavelengths of light (polarized light) reflected by the reflective grating 5 formed in the PANDA type polarization-maintaining optical fiber 1 corresponding to the two effective refractive indexes Nf and Ns. This is defined as λf and λs.
FIG. 3 shows an example of the spectrum of the reflected light of the f mode and s mode reflected from the sensing unit 6, and two sharp reflection peaks are clearly separated and the peak on the short wavelength side is λf. The peak on the long wavelength side is λs.
[0012]
In general, the refractive index of glass has temperature dependence. Further, since the propagation constant is determined by the waveguide structure of the fiber and the refractive indexes of the core and the clad, the effective refractive indexes Nf and Ns have different temperature dependencies, and therefore the center wavelengths λf and λs of the reflected light also have different temperature dependencies. Have sex.
Further, when a strain is applied in the longitudinal direction of the sensing unit 6, it is expanded and contracted to change the grating period Λ. Further, the effective refractive indexes Nf and Ns also change due to the photoelastic effect. For this reason, the center wavelengths λf and λs of the reflected light have different strain dependencies.
[0013]
Utilizing this phenomenon, the temperature dependence and strain dependence of the grating 5 are measured by measuring changes in the center wavelengths λf and λs of the f-mode and s-mode light reflected from the grating 5 of the sensing unit 6. It becomes possible to measure the temperature and strain acting on the sensing unit 6 separately.
[0014]
The rate of change of the center wavelengths λs and λf of the reflected light in the s mode and f mode with respect to temperature and the rate of change with respect to strain are ∂λs / ∂T, ∂λs / ∂ε, ∂λf / ∂T, and ∂λf / ∂, respectively. Since it is represented by ε, the changes Δλs and Δλf of the reflection wavelength of the s mode and the f mode with respect to the temperature change ΔT and the strain change Δε are expressed by the following equation (1).
[0015]
[Expression 1]
Figure 0003819119
[0016]
The temperature change ΔT and strain change Δε are given by the following equation (2) by solving the equation (1) for ΔT and Δε.
[0017]
[Expression 2]
Figure 0003819119
[0018]
In the above equation (2), for ∂λs / ∂T, ∂λs / ∂ε, ∂λf / ∂T, and ∂λf / ∂ε, a known temperature change and strain change are separately given to the sensing unit 6 in advance. Λs and λf obtained at that time can be measured and obtained from this.
FIG. 4 shows an example of the temperature dependence of λs and λf, where A is λs and B is λf.
FIG. 5 shows an example of the tension dependence as a specific example of the strain dependence of λs and λf, and shows the tension dependence of C being λs and B being λf. The tension F here is a tensile force acting in the longitudinal direction of the fiber 1.
[0019]
In FIGS. 4 and 5, A to D are substantially represented by straight lines. Therefore, from the inclination, the above-described ∂λs / ∂T, ∂λs / ∂F, ∂λf / ∂T, and ∂λf / ∂F are When the tension F is converted into strain ε using the Young's modulus of glass, ∂λs / ∂ε and ∂λf / ∂ε are obtained as specific numerical values.
Therefore, if Δλs and Δλf are obtained by actual measurement from Equation (2), ΔT and Δε are obtained.
Therefore, if the reflection center wavelengths λso and λfo at a certain reference temperature To and strain εo are known, the temperature and strain acting on the sensing unit 6 can be obtained by adding ΔT and Δε as described above from Δλs and Δλf. Can be obtained simultaneously.
The calculation by equation (2) can be easily performed using a personal computer or the like.
4 and 5 are represented by straight lines, ∂λs / ∂T, ∂λs / ∂F, ∂λf / ∂T, and ∂λf / ∂F are the reference temperature T0 and the reference strain, respectively. What is necessary is just to obtain the partial differential value with respect to the tension or temperature at t0.
[0020]
Hereinafter, a specific numerical value will be described using the example shown in FIG. 4 and FIG.
From the slopes of the straight lines A to D in FIG. 4 and FIG.
∂λs / ∂T = 0.0095nm / ° C
∂λf / ∂T = 0.101 nm / ° C.
∂λs / ∂F = 0.01470 nm / g
∂λf / ∂F = 0.01461 nm / g
It becomes.
When the tension F is converted to strain ε using the Young's modulus of fiber glass of 72.9 GPa,
∂λs / ∂ε = 0.001342 nm / με
∂λf / ∂ε = 0.001334nm / με
It becomes.
When these values are substituted and calculated, D = −8.812 × 10 −7 (nm 2 / με · ° C.).
[0021]
Now, assuming that the reference temperature is 20 ° C. and the reference strain is 0 με, λf = 1535.07 nm and λs = 1535.551 nm are set as reference values.
Assuming that λf is 153.718 nm and λs is 1537.061 nm when the sensing unit 6 is placed under a certain temperature condition and is distorted, Δλf = 1.967 nm and Δλs = 1.990 nm. Substituting this value and each of the above numerical values into equation (2),
ΔT = 52.88 ° C., Δε = 1091 με
It can be seen that the temperature acting on the sensing unit 6 is 72.88 ° C. and the strain is 1091 με.
This measured value was in good agreement with the value measured by another strain sensor and a thermocouple, and the difference was 0.2 ° C. for temperature and 10 με for strain.
Thus, this optical fiber temperature strain sensor can measure temperature and strain simultaneously with high accuracy and high sensitivity.
[0022]
FIG. 6 shows another example of the optical fiber temperature strain sensor of the present invention. The sensor of this example is of a type for measuring transmitted light. That is, measurement light from the light source 9 is incident on one end of the sensing unit 6 from the waveguide fiber 7, and transmitted light from the other end of the sensing unit 6 is sent to the photodetector 10 through the waveguide fiber 7.
FIG. 7 shows an example of the transmission spectrum of the reflection type optical fiber grating. In the sensor of this example, the shape of the peak of the spectrum of the transmitted light measured by the photodetector 10 is inverted to form a valley shape. Although different, the wavelength value of each peak is the same, and the measurement principle is the same as the previous one.
[0023]
Further, in the optical fiber temperature strain sensor of the present invention, the sensing unit 6 may be formed by forming the grating 5 on the single PANDA type polarization-maintaining optical fiber 1 at a plurality of intervals along the longitudinal direction thereof. It is. However, in this case, the grating periods Λ of the gratings 5 are different from each other, the center wavelengths λf and λs of the two reflected lights generated by one grating 5 do not overlap each other, and a set of λf and λs It is necessary to make an interval larger than the difference.
In the case where such a plurality of gratings 5.5... Are provided along the longitudinal direction of the fiber 1, temperature and strain at a number of different positions can be measured simultaneously.
[0024]
In the above example, the PANDA type is used as the polarization-maintaining optical fiber, but the present invention is not limited to this, and various types of polarization-maintaining optical fibers such as a bow tie type and an elliptical clad type can be used. Needless to say.
[0025]
【The invention's effect】
As described above, in the optical fiber temperature strain sensor of the present invention, the temperature and strain acting on the sensing unit can be simultaneously measured with high accuracy and high sensitivity. In addition, since the sensing unit is as small as about 10 mm, it can be loaded in a narrow space such as an electric cable, and local temperature and strain can be measured. Further, there are effects such that less equipment is required and the apparatus can be made inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating an example of a configuration of a sensing unit of a sensor according to the present invention.
FIG. 2 is a configuration diagram showing an example of a configuration of a sensor of the present invention.
FIG. 3 is a spectrum showing an example of a spectrum of reflected light reflected from a reflective grating in the present invention.
FIG. 4 is a graph showing an example of temperature dependence of λf and λs in the present invention.
FIG. 5 is a graph showing an example of tension dependence of λf and λs in the present invention.
FIG. 6 is a configuration diagram showing another example of the configuration of the sensor of the present invention.
FIG. 7 is a spectrum showing an example of a spectrum of reflected light reflected from a reflective grating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... PANDA type polarization-maintaining optical fiber, 2 ... Core, 5 ... Reflective grating, 6 ... Sensing part, 9 ... Light source, 10 ... Photodetector

Claims (3)

PANDA型偏波面保存光ファイバのコアに反射型グレーティングを形成してなるセンシング部を有し、このセンシング部において、直交する2つの偏波モードの各反射光もしくは透過光の中心波長の温度および歪みによる変化量を計測して、センシング部に作用する温度および歪みを同時測定するようにした光ファイバ温度歪みセンサ。 It has a sensing part formed by forming a reflection type grating in the core of a PANDA type polarization-maintaining optical fiber, and in this sensing part, the temperature and distortion of the center wavelength of each reflected light or transmitted light in two orthogonal polarization modes An optical fiber temperature strain sensor that measures the amount of change caused by the sensor and measures the temperature and strain acting on the sensing unit simultaneously. 請求項1記載の光ファイバ温度歪みセンサにおいて、センシング部に形成されている反射型グレーティングが、複数個偏波面保存光ファイバの長手方向に形成されている光ファイバ温度歪みセンサ。  2. The optical fiber temperature strain sensor according to claim 1, wherein a plurality of reflection type gratings formed in the sensing portion are formed in a longitudinal direction of the polarization maintaining optical fiber. 請求項1または2記載の光ファイバ温度歪みセンサと、この光ファイバ温度歪みセンサに測定光を送る光源と、上記光ファイバ温度歪みセンサからの反射光もしくは透過光を受光し、その反射光もしくは透過光の中心波長の変化量を検出する光検出器を有し、上記センシング部において、直交する2の偏波モードの各反射光もしくは透過光の中心波長の温度および歪みによる変化量を計測して、センシング部に作用する温度および歪みを同時測定するようにした温度歪み測定装置。  The optical fiber temperature strain sensor according to claim 1, a light source that transmits measurement light to the optical fiber temperature strain sensor, reflected light or transmitted light from the optical fiber temperature strain sensor, and the reflected light or transmitted light. It has a photodetector for detecting the amount of change in the center wavelength of light, and the sensing unit measures the amount of change due to temperature and distortion of the center wavelength of each reflected or transmitted light in two orthogonal polarization modes. A temperature strain measuring device that simultaneously measures the temperature and strain acting on the sensing unit.
JP21681597A 1997-08-11 1997-08-11 Optical fiber temperature strain sensor and temperature strain measuring device Expired - Lifetime JP3819119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21681597A JP3819119B2 (en) 1997-08-11 1997-08-11 Optical fiber temperature strain sensor and temperature strain measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21681597A JP3819119B2 (en) 1997-08-11 1997-08-11 Optical fiber temperature strain sensor and temperature strain measuring device

Publications (2)

Publication Number Publication Date
JPH1164119A JPH1164119A (en) 1999-03-05
JP3819119B2 true JP3819119B2 (en) 2006-09-06

Family

ID=16694331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21681597A Expired - Lifetime JP3819119B2 (en) 1997-08-11 1997-08-11 Optical fiber temperature strain sensor and temperature strain measuring device

Country Status (1)

Country Link
JP (1) JP3819119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107839A1 (en) 2008-02-29 2009-09-03 株式会社フジクラ Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device
WO2009107838A1 (en) 2008-02-29 2009-09-03 株式会社フジクラ Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain measuring method using the device
WO2012023219A1 (en) 2010-08-18 2012-02-23 株式会社フジクラ Polarization maintaining fiber and optical fiber sensor using same
JP2014500497A (en) * 2010-12-02 2014-01-09 オーエフエス ファイテル,エルエルシー DFB fiber laser bending sensor and optical heterodyne microphone
US8641274B2 (en) 2010-08-18 2014-02-04 Fujikura Ltd. Polarization-maintaining fiber and optical fiber sensor using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137924A (en) * 1998-09-02 2000-10-24 Lucent Technologies Inc. Article comprising a dispersion compensating grating with low polarization mode dispersion
KR100660088B1 (en) * 1999-12-28 2006-12-20 주식회사 케이티 Optical fiber compensator for the simultaneous compensation of polarization mode dispersion and chromatic dispersion
KR100429504B1 (en) * 2002-02-08 2004-05-03 삼성전자주식회사 Sensor using polarization maintaining fiber grating
KR100470911B1 (en) * 2002-06-05 2005-02-21 주식회사 아이세스 FBG sensor system
WO2006032116A1 (en) * 2004-09-22 2006-03-30 Faculte Polytechnique De Mons Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating
EP1640692A1 (en) * 2004-09-22 2006-03-29 Faculté Polytechnique de Mons Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating.
US7421162B2 (en) * 2005-03-22 2008-09-02 General Electric Company Fiber optic sensing device and method of making and operating the same
EP2035792B1 (en) * 2006-06-16 2018-05-23 Intuitive Surgical Operations, Inc. Distributed strain and temperature discrimination in polarization maintaining fiber
JP2008224413A (en) * 2007-03-13 2008-09-25 Denso Corp Printed board manufacturing device and printed board manufacturing method
JP5367347B2 (en) * 2008-11-26 2013-12-11 古河電気工業株式会社 Optical fiber sensor
WO2015027247A1 (en) * 2013-08-23 2015-02-26 Foce Technology International Bv Single mode fiber bragg grating pressure sensor
EP3237833A4 (en) 2014-12-22 2018-06-13 Sikorsky Aircraft Corporation Fiber optic weight sensor optimization for landing gear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107839A1 (en) 2008-02-29 2009-09-03 株式会社フジクラ Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain simultaneous measuring method using the device
WO2009107838A1 (en) 2008-02-29 2009-09-03 株式会社フジクラ Physical quantity measuring device of optical frequency range reflection measuring type, and temperature and strain measuring method using the device
US7889332B2 (en) 2008-02-29 2011-02-15 Fujikura Ltd. Physical quantity measuring apparatus utilizing optical frequency domain reflectometry, and method for simultaneous measurement of temperature and strain using the apparatus
US7973914B2 (en) 2008-02-29 2011-07-05 Fujikura Ltd. Physical quantity measuring apparatus utilizing optical frequency domain reflectometry and method for temperature and strain measurement using the apparatus
WO2012023219A1 (en) 2010-08-18 2012-02-23 株式会社フジクラ Polarization maintaining fiber and optical fiber sensor using same
US8641274B2 (en) 2010-08-18 2014-02-04 Fujikura Ltd. Polarization-maintaining fiber and optical fiber sensor using same
JP2014500497A (en) * 2010-12-02 2014-01-09 オーエフエス ファイテル,エルエルシー DFB fiber laser bending sensor and optical heterodyne microphone

Also Published As

Publication number Publication date
JPH1164119A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
JP3819119B2 (en) Optical fiber temperature strain sensor and temperature strain measuring device
US9329089B2 (en) Optical device utilizing fiber bragg grating and narrowband light with non-bragg wavelength
Kersey et al. Fiber grating sensors
Rao Fiber Bragg grating sensors: principles and applications
Silva et al. Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure
US9366808B2 (en) Slow-light sensor utilizing an optical filter and a narrowband optical source
Li Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers
US8727613B2 (en) Method and system for measuring a parameter in a high temperature environment using an optical sensor
Kumar et al. Studies on a few-mode fiber-optic strain sensor based on LP01-LP 02 mode interference
JP5150445B2 (en) Optical fiber sensor device, temperature and strain measurement method, and optical fiber sensor
Shao et al. Optical refractive-index sensor based on dual fiber-Bragg gratings interposed with a multimode-fiber taper
Qiu et al. Simultaneous measurement of temperature and strain using a single Bragg grating in a few-mode polymer optical fiber
US20190170609A1 (en) Birefringent multi-peak optical reference element and birefringent sensor system
Ouyang et al. Highly sensitive two-axis bending sensor based on arc-induced long period fiber grating in dual side-hole fiber
US6603559B2 (en) Silicon-on-insulator optical waveguide Michelson interferometer sensor for temperature monitoring
Bao et al. Fiber optic accelerometer based on grating inscribed over innermost-clad of multi-clad fiber
CN108279079B (en) Point type temperature sensing device based on radial large dislocation structure coating polydimethylsiloxane of coreless optical fiber
EP3757524B1 (en) Composed multicore optical fiber interferometer
Xie et al. Temperature-compensating multiple fiber Bragg grating strain sensors with a metrological grating
Ribeiro et al. An intrinsic graded-index multimode optical fibre strain-gauge
Su et al. Fiber Bragg-grating incorporated microbend sensor for simultaneous mechanical parameter and temperature measurement
Salceda-Delgado et al. Optical fiber curvature sensors based on single mode-7 core-single mode fiber structures
Chen et al. Strain and Temperature Discrimination Measurement Sensor Using FMF-PMF Fiber Structure Built in Sagnac Loop
KR20010105452A (en) Chirped fiber Bragg grating sensor with variable reflection bandwidth according to strain and measuring device using the fiber Bragg grating sensor
Wu et al. Simultaneous measurement of displacement and temperature with a single singlemode-multimode-singlemode (SMS) fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term