JP3818887B2 - Method for producing additive for lubricating oil - Google Patents

Method for producing additive for lubricating oil Download PDF

Info

Publication number
JP3818887B2
JP3818887B2 JP2001306997A JP2001306997A JP3818887B2 JP 3818887 B2 JP3818887 B2 JP 3818887B2 JP 2001306997 A JP2001306997 A JP 2001306997A JP 2001306997 A JP2001306997 A JP 2001306997A JP 3818887 B2 JP3818887 B2 JP 3818887B2
Authority
JP
Japan
Prior art keywords
oil
fine powder
additive
tetrafluoroethylene resin
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001306997A
Other languages
Japanese (ja)
Other versions
JP2003113390A (en
Inventor
俊則 田中
Original Assignee
株式会社トランスベック
佐藤 久二男
株式会社トライボロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トランスベック, 佐藤 久二男, 株式会社トライボロジー filed Critical 株式会社トランスベック
Priority to JP2001306997A priority Critical patent/JP3818887B2/en
Publication of JP2003113390A publication Critical patent/JP2003113390A/en
Application granted granted Critical
Publication of JP3818887B2 publication Critical patent/JP3818887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車・建設機械等のエンジンやギヤボックス、或いは一般機械の摺動部に供給する潤滑油に添加する潤滑油用添加剤の製造方法に関する。
【0002】
【従来の技術】
自動車や建設機械等のエンジンの潤滑のために使用されるエンジンオイルには、摩擦調整や粘度指数向上、焼付防止、酸化防止等、種々の目的で添加剤が加えられる。このうち、摩擦調整、特に摩擦係数減少及び摩耗減少のための添加剤として、従来より四フッ化エチレン樹脂(ポリテトラフルオロエチレン、PTFE)を主成分としたものが多く用いられている。
【0003】
四フッ化エチレン樹脂は常温で固体である。それ自体の表面は低摩擦係数を有するが、微小隙間で摺動するエンジン各部に隈無く供給されるべきエンジンオイルの添加剤に用いるためには、その形状が十分細かいものでなければならない。そこで従来、エンジンオイル添加剤に用いる場合には、四フッ化エチレン樹脂をボールミル等で粉砕して十数μm〜数μm程度の微粉末としていた。
【0004】
このような四フッ化エチレン樹脂の微粉末は、潤滑用添加剤として、その形態でも各種メーカーより市場に供給されている。例えば旭硝子株式会社からは、潤滑用添加剤として、平均粒径(光透過法による50wt%における平均粒径)7〜13μm、嵩密度0.30〜0.56g/mLの微粉末状の四フッ化エチレン樹脂が上市されている(「フルオン(登録商標)・ルブリカントL150J、L169J、L170J、L172J、L173J」)。
【0005】
【発明が解決しようとする課題】
エンジンオイルは、エンジンの種類に応じてその要求特性が異なる。エンジンオイル添加剤についても同様であり、ガソリンエンジン用のものとディーゼルエンジン用のものとでは、異なった添加剤が使用される。
【0006】
要求特性が異なることの原因の一つに、エンジンオイルの濾過フィルタがある。摩耗粉等がエンジン各部に送給されることを防止するため、エンジンオイルはフィルタにより濾過されるが、そのメッシュ(目の細かさ)は、ガソリンエンジンとディーゼルエンジンとでは大きく異なる。すなわち、ディーゼルエンジンはガソリンエンジンよりも細かいメッシュのオイルフィルタを使用する。そのため、上記のような従来の四フッ化エチレン樹脂の微粉末を使用した添加剤をディーゼルエンジン用エンジンオイルに添加すると、添加剤がオイルフィルタにおいて目詰まりを引き起こしてしまい、エンジンオイルがエンジン各部に送給されなくなるという問題が生ずる。
【0007】
上記の通り、現在市販されている四フッ化エチレン樹脂微粉末の平均粒径は、もっとも細かいものでも7μm程度である。しかし、ディーゼルエンジンで用いられているオイルフィルタのメッシュは1μm程度であり、従来の四フッ化エチレン樹脂微粉末は、そのままではディーゼルエンジン用添加剤に使用することができない。そこで、そのように市販されている平均粒径7μm程度の四フッ化エチレン樹脂微粉末を更にボールミルで粉砕し、1μm程度まで微細化することが考えられるが、ボールミルでは均等に微細な粒子を得ることが難しいという問題がある。仮に、粒子径分布を相当程度均等にし、しかも平均粒径が1μm以下という微粉末を生成しようとすると、非常に長時間を要する。しかし、その場合でも、そのように長時間の機械的摩擦を行うことにより、ベースオイルの方に変質という問題が生じる。更に、粉末を微細化すればする程、微粉末粒子同士が再凝集しやすくなり、結局、フィルタの目詰まりを解消することができないという問題もある。
【0008】
そこで、本発明者は鋭意研究及び実験を重ねた結果、上記本発明を成すに至ったものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る潤滑油用添加剤の製造方法は、ベースオイルに四フッ化エチレン樹脂微粉末を添加し、高圧式均質分散機を用いて均質分散処理を施した後、ボールミルにより該微粉末の平均粒径が1μm以下となるように粉砕処理を施すことを特徴とする。
【0010】
【発明の実施の形態】
潤滑油用添加剤のベースとなる油(ベースオイル)に、ボールミルで粉砕した、或いは市販の、四フッ化エチレン樹脂微粉末を添加する。この、原料としての四フッ化エチレン樹脂微粉末は、平均粒子径が数十〜数μm程度のものでよい。ベースオイルへの四フッ化エチレン樹脂微粉末の添加量は、ベースオイル1Lに対して四フッ化エチレン樹脂微粉末が50〜200g(一般的には、100g程度)となるようにする。
【0011】
これを高圧式均質分散機(圧力式ホモジナイザー)に連続的に投入し、均質分散処理を行う。高圧式均質分散機とは、高圧ポンプに、流路間隙が調整可能な均質バルブを組み合わせた機械で、高圧ポンプにより被処理流体(今の場合、ベースオイルと四フッ化エチレン樹脂微粉末の混合体)に高い圧力(均質圧力。500〜2000kg/cm2)をかけて押し出し、その高圧流を均質バルブの非常に微細な間隙から噴出させることにより、微粉末懸濁液の均質分散化を行うものである。高圧ポンプによる均質圧力を調節し、また、均質バルブの間隙の大きさを変えることにより、均質分散効果の調節が可能となっている。
【0012】
その後、処理液をボールミルに入れ、微粉末を更に粉砕して平均粒子径が1μm以下となるようにする。処理液は予め均質分散処理を施してあるため、ボールミルによる平均粒子径が1μm以下となるようにするための粉砕処理も短時間で済み、また、処理後の微粉末の再凝集も殆ど無い。
【0013】
【発明の効果】
本発明に係る方法で添加剤を製造することにより、ベースオイルに分散した四フッ化エチレン樹脂微粉末の平均粒径を1μm以下とすることができ、また、その分散状態も均質なものとなる。しかも、微粒子の再凝集が殆ど生じないため、均質分散状態が長期間維持される。従って、ディーゼルエンジン用エンジンオイルに使用しても長期間フィルタの目詰まりを生ずることがなく、安心して添加することができる。
【0014】
更に、均質分散処理を施さない場合と比較すると、製造時間が非常に短くて済む。また、処理時のベースオイルの温度上昇を抑えることができるため、ベースオイルの変質を最小限に抑えることができる。
【0015】
上記の通り、本発明はディーゼルエンジン用オイルの添加剤を主眼として開発されたが、その添加剤自体はもちろんガソリンエンジン用オイルにも使用することが可能であるし、ギヤボックスや粉砕機等の一般機械の摺動部に供給される潤滑油に添加することも可能である。
【0016】
【実施例】
本発明に係るエンジンオイル添加剤の製造方法の第1実施例を説明する。
使用した四フッ化エチレン樹脂微粉末は旭硝子株式会社製「フルオン(登録商標)・ルブリカントL173J」であり、その性状は次の通りである。
平均粒径:7μm
嵩密度:0.30g/ml
融点:330℃
比表面積:8.2m2/g
【0017】
ベースオイルには、富士興産株式会社製「350NT」を使用した。その性状は次の通りである。
密度(15℃):0.890g/cm2
引火点:230℃
動粘度(40℃):73.28mm2/s
動粘度(100℃):8.2〜10.2mm2/s
粘度指数:95
流動点:-12.5℃
残留炭素分:0.03wt%
全酸価:0.02mgKOH/g
色(ASTM):1.5
水分:100ppm
【0018】
これらを混合した後(以下、これを混合オイルと呼ぶ)、株式会社日本精機製作所製圧力式ホモジナイザー(高圧式均質分散機)HA-4191により均質分散処理を行った。このホモジナイザーの主要部の構造を図1に示す。
【0019】
前段の高圧ポンプにより約1500kg/cm2の高圧(均質圧力)を付与された混合オイル11は、図1の左方から供給され、まずホモバルブ12の表面に突き当たり、その流れを直角に変えて、ホモバルブ12とホモバルブシート13との間の微小な間隙14から外方に、爆発的な圧力をもって噴出する。この噴出流は、間隙14の周囲に設けられたブレーカーリング15の内表面に衝突し、更に流れを直角に変えて低圧部16の方に排出されてゆく。このような動きの中で、混合オイル11には大きな外部剪断力が与えられ、それに含まれる四フッ化エチレン樹脂微粉末のうち、凝集してクラスタとなっているものは破壊され、個々の微粉末に分散させられる。また、四フッ化エチレン樹脂微粉末のうち特に粒径の大きいものは粉砕され、粒径分布がより均等な状態に近づく。
【0020】
その後、ボールミルで粉砕処理を行うことにより、容易に微粉末の平均粒径を1μm以下とすることができる。また、一旦分散した四フッ化エチレン樹脂微粉末は再凝集することなく、均質分散した状態が長期間維持される。
【0021】
上記製造時、特に高圧式均質分散機で均質分散処理を行うに際しては、例えば冷却装置を用いるなどして、混合オイル11の温度が40℃を超えないようにすることが望ましい。このようにして混合オイル11の温度が上昇し過ぎないようにするのは、以下のような理由に基づく。
【0022】
第1に、混合オイル11の温度が上昇するのに比例して四フッ化エチレン樹脂微粉末の粒子の運動性が高まり、その結果、粒子が再凝集し易くなる。これを防止するために、温度の上昇をできる限り抑える必要がある。
【0023】
第2に、混合オイル11の温度が上昇するのに反比例してその粘度は低くなるが、ここで、粘度と剪断力との間には次のような関係がある。
S=D・η
S:剪断応力(kg/m・sec2
D:剪断速度(sec-1
η:粘度(kg/m・sec)
従って、剪断速度を一定とした場合、粘度が低くなるのに比例して剪断力が小さく、すなわち、クラスタ破壊効果及び大粒子の粉砕効果が低減する。
【0024】
このように、均質分散処理時における混合オイル11の温度が上昇し過ぎないようにすることで、四フッ化エチレン樹脂微粉末のベースオイルにおける均質分散効果がより好ましいものとなる。本発明者の実験によると、高圧式均質分散機における処理温度は40℃以下にしておくことが望ましいことが判明した。
【0025】
本発明に係るエンジンオイル添加剤の製造方法の効果を明らかにするため、ベースオイル350NTにフルオン・ルブリカントL173Jを混合したままの混合オイルを6kg/cm2の圧力で加圧し、1μmメッシュのオイルフィルターを通過させたところ、20Lを通過させた時点でオイルフィルターは目詰まりを起こした。それに対し、上記工程で製造したエンジンオイル添加剤を同様に1μmメッシュのオイルフィルターを通過させたところ、60Lを通過させた時点においてもオイルフィルターが目詰まりを起こすことはなかった。
【図面の簡単な説明】
【図1】 ホモジナイザの主要部の概略構成図。
【符号の説明】
11…混合オイル
12…ホモバルブ
13…ホモバルブシート
14…間隙
15…ブレーカーリング
16…低圧部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an additive for lubricating oil to be added to lubricating oil to be supplied to engines and gear boxes of automobiles and construction machines, or sliding parts of general machines.
[0002]
[Prior art]
Additives are added to engine oils used for lubricating engines such as automobiles and construction machinery for various purposes such as friction adjustment, viscosity index improvement, seizure prevention, and oxidation prevention. Among these, as an additive for friction adjustment, particularly for reducing the friction coefficient and wear, a material mainly composed of tetrafluoroethylene resin (polytetrafluoroethylene, PTFE) has been used.
[0003]
Tetrafluoroethylene resin is solid at room temperature. Although its own surface has a low coefficient of friction, its shape must be fine enough to be used as an additive for engine oil to be supplied to all parts of the engine that slide in a minute gap. Therefore, conventionally, when used as an engine oil additive, a tetrafluoroethylene resin is pulverized with a ball mill or the like to obtain a fine powder of about 10 to several μm.
[0004]
Such fine powders of tetrafluoroethylene resin are also supplied to the market from various manufacturers in the form as additives for lubrication. For example, from Asahi Glass Co., Ltd., a fine powdery tetrafluoroethylene resin having an average particle diameter (average particle diameter at 50 wt% by light transmission method) of 7 to 13 μm and a bulk density of 0.30 to 0.56 g / mL as an additive for lubrication ("Fullon (registered trademark) Lubricant L150J, L169J, L170J, L172J, L173J").
[0005]
[Problems to be solved by the invention]
The required characteristics of engine oil differ depending on the type of engine. The same applies to engine oil additives, and different additives are used for gasoline engines and diesel engines.
[0006]
One of the causes of the different required characteristics is an engine oil filter. Engine oil is filtered by a filter in order to prevent wear powder and the like from being sent to various parts of the engine, but the mesh (fineness) of the engine is greatly different between a gasoline engine and a diesel engine. That is, the diesel engine uses a finer mesh oil filter than the gasoline engine. Therefore, when an additive using fine powder of the conventional tetrafluoroethylene resin as described above is added to engine oil for diesel engines, the additive causes clogging in the oil filter, and engine oil is contained in each part of the engine. There is a problem that it is not delivered.
[0007]
As described above, the average particle diameter of the currently commercially available fine powder of tetrafluoroethylene resin is about 7 μm even at the finest. However, the mesh of an oil filter used in a diesel engine is about 1 μm, and conventional tetrafluoroethylene resin fine powder cannot be used as an additive for a diesel engine as it is. Therefore, it is conceivable to pulverize such a commercially available tetrafluoroethylene resin fine powder having an average particle size of about 7 μm with a ball mill to make it finer to about 1 μm, but with the ball mill, uniformly fine particles are obtained. There is a problem that it is difficult. If it is attempted to produce a fine powder having an evenly uniform particle size distribution and an average particle size of 1 μm or less, a very long time is required. However, even in such a case, the problem of deterioration of the base oil occurs due to such a long period of mechanical friction. Furthermore, the finer the powder, the easier it is for the fine powder particles to re-agglomerate, and eventually there is a problem that clogging of the filter cannot be eliminated.
[0008]
Therefore, as a result of intensive studies and experiments, the present inventor has achieved the above-described present invention.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the method for producing an additive for lubricating oil according to the present invention comprises adding tetrafluoroethylene resin fine powder to a base oil and subjecting it to a homogeneous dispersion treatment using a high-pressure homogenizer. Then, a pulverization process is performed by a ball mill so that the average particle size of the fine powder is 1 μm or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A fine powder of ethylene tetrafluoride resin pulverized with a ball mill or commercially available is added to the base oil of the additive for lubricating oil. The fine powder of tetrafluoroethylene resin as a raw material may have an average particle diameter of about several tens to several μm. The amount of tetrafluoroethylene resin fine powder added to the base oil is 50 to 200 g (generally about 100 g) of tetrafluoroethylene resin fine powder per 1 L of base oil.
[0011]
This is continuously charged into a high-pressure homogenizer (pressure homogenizer) to perform a homogenous dispersion treatment. A high-pressure homogenizer is a machine that combines a high-pressure pump with a homogenous valve that can adjust the gap between the channels. The high-pressure pump uses a fluid to be treated (in this case, a mixture of base oil and fine powder of tetrafluoroethylene resin). ) And high pressure (homogeneous pressure; 500 to 2000 kg / cm 2 ), and the high-pressure flow is ejected from the very fine gaps of the homogeneous valve to homogenize and disperse the fine powder suspension. It is. By adjusting the homogeneous pressure by the high-pressure pump and changing the size of the gap of the homogeneous valve, the homogeneous dispersion effect can be adjusted.
[0012]
Thereafter, the treatment liquid is put into a ball mill, and the fine powder is further pulverized so that the average particle diameter becomes 1 μm or less. Since the treatment liquid has been subjected to a homogenous dispersion treatment in advance, the pulverization treatment for reducing the average particle diameter to 1 μm or less with a ball mill can be completed in a short time, and there is almost no re-aggregation of the fine powder after the treatment.
[0013]
【The invention's effect】
By producing the additive by the method according to the present invention, the average particle diameter of the tetrafluoroethylene resin fine powder dispersed in the base oil can be reduced to 1 μm or less, and the dispersion state thereof becomes homogeneous. In addition, since the fine particles hardly reaggregate, a homogeneous dispersion state is maintained for a long time. Therefore, even if it is used in engine oil for diesel engines, the filter will not be clogged for a long period of time, and it can be added safely.
[0014]
Furthermore, the manufacturing time can be very short as compared with the case where no homogeneous dispersion treatment is performed. Moreover, since the temperature rise of the base oil at the time of a process can be suppressed, deterioration of a base oil can be suppressed to the minimum.
[0015]
As described above, the present invention was developed mainly for diesel engine oil additives, but it can be used for gasoline engine oils as well as the additive itself, such as gearboxes and pulverizers. It is also possible to add to the lubricating oil supplied to the sliding part of a general machine.
[0016]
【Example】
1st Example of the manufacturing method of the engine oil additive which concerns on this invention is described.
The fine powder of tetrafluoroethylene resin used is “Fluon (registered trademark) Lubricant L173J” manufactured by Asahi Glass Co., Ltd., and its properties are as follows.
Average particle size: 7μm
Bulk density: 0.30g / ml
Melting point: 330 ° C
Specific surface area: 8.2m 2 / g
[0017]
“350NT” manufactured by Fuji Kosan Co., Ltd. was used as the base oil. Its properties are as follows.
Density (15 ° C): 0.890g / cm 2
Flash point: 230 ° C
Kinematic viscosity (40 ° C): 73.28mm 2 / s
Kinematic viscosity (100 ° C): 8.2-10.2 mm 2 / s
Viscosity index: 95
Pour point: -12.5 ° C
Residual carbon content: 0.03wt%
Total acid value: 0.02mgKOH / g
Color (ASTM): 1.5
Moisture: 100ppm
[0018]
After mixing these (hereinafter referred to as mixed oil), homogenous dispersion treatment was performed with a pressure homogenizer (high-pressure homogenizer) HA-4191 manufactured by Nippon Seiki Seisakusho. The structure of the main part of this homogenizer is shown in FIG.
[0019]
The mixed oil 11 applied with a high pressure (homogeneous pressure) of about 1500 kg / cm 2 by the high pressure pump in the previous stage is supplied from the left side of FIG. 1, first hitting the surface of the homo valve 12 and changing its flow to a right angle, It ejects with explosive pressure outward from the minute gap 14 between the homovalve 12 and the homovalve seat 13. This jet flow collides with the inner surface of the breaker ring 15 provided around the gap 14, and further, the flow is changed to a right angle and discharged toward the low pressure portion 16. In such movement, the mixed oil 11 is given a large external shearing force, and among the fine powder of tetrafluoroethylene resin contained in the mixed oil 11, the aggregated and clustered particles are destroyed and individual fine particles are destroyed. Dispersed in powder. Further, among the tetrafluoroethylene resin fine powder, those having a particularly large particle size are pulverized, and the particle size distribution approaches a more uniform state.
[0020]
Thereafter, the average particle size of the fine powder can be easily reduced to 1 μm or less by pulverizing with a ball mill. Moreover, the once dispersed tetrafluoroethylene resin fine powder is maintained for a long time without being re-agglomerated.
[0021]
During the above-described production, particularly when performing homogeneous dispersion treatment with a high-pressure homogenizer, it is desirable that the temperature of the mixed oil 11 not exceed 40 ° C., for example, by using a cooling device. The reason for preventing the temperature of the mixed oil 11 from rising excessively in this way is as follows.
[0022]
First, the motility of the particles of the tetrafluoroethylene resin fine powder increases in proportion to the temperature of the mixed oil 11 increasing, and as a result, the particles easily reaggregate. In order to prevent this, it is necessary to suppress the temperature rise as much as possible.
[0023]
Secondly, the viscosity decreases in inverse proportion to the increase in the temperature of the mixed oil 11, but here, there is the following relationship between the viscosity and the shearing force.
S = D · η
S: Shear stress (kg / m · sec 2 )
D: Shear rate (sec -1 )
η: Viscosity (kg / m · sec)
Therefore, when the shear rate is constant, the shear force is reduced in proportion to the decrease in the viscosity, that is, the cluster breaking effect and the large particle grinding effect are reduced.
[0024]
As described above, by preventing the temperature of the mixed oil 11 from rising excessively during the homogeneous dispersion treatment, the homogeneous dispersion effect in the base oil of the tetrafluoroethylene resin fine powder becomes more preferable. According to the experiments by the present inventors, it has been found that it is desirable to keep the treatment temperature in the high-pressure homogenizer at 40 ° C. or lower.
[0025]
In order to clarify the effect of the method for producing the engine oil additive according to the present invention, the mixed oil with the full oil lubrication L173J mixed with the base oil 350NT is pressurized at a pressure of 6 kg / cm 2 and an oil filter of 1 μm mesh is applied. As a result, the oil filter was clogged when 20 L was passed. In contrast, when the engine oil additive produced in the above process was similarly passed through a 1 μm mesh oil filter, the oil filter was not clogged even when 60 L was passed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a main part of a homogenizer.
[Explanation of symbols]
11 ... Mixed oil 12 ... Homo valve 13 ... Homo valve seat 14 ... Gap 15 ... Breaker ring 16 ... Low pressure part

Claims (2)

ベースオイルに四フッ化エチレン樹脂微粉末を添加し、高圧式均質分散機を用いて均質分散処理を施した後、ボールミルにより該微粉末の平均粒径が1μm以下となるように粉砕処理を施すことを特徴とする潤滑油用添加剤の製造方法。After adding tetrafluoroethylene resin fine powder to the base oil and applying homogenous dispersion treatment using a high-pressure homogenizer, the ball powder is pulverized so that the average particle size of the fine powder is 1 μm or less. A method for producing an additive for lubricating oils. 均質分散処理時の被処理物の温度を40℃以下に保持することを特徴とする請求項1に記載の潤滑油用添加剤の製造方法。The method for producing an additive for lubricating oil according to claim 1, wherein the temperature of the object to be treated during the homogeneous dispersion treatment is maintained at 40 ° C or lower.
JP2001306997A 2001-10-03 2001-10-03 Method for producing additive for lubricating oil Expired - Fee Related JP3818887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001306997A JP3818887B2 (en) 2001-10-03 2001-10-03 Method for producing additive for lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001306997A JP3818887B2 (en) 2001-10-03 2001-10-03 Method for producing additive for lubricating oil

Publications (2)

Publication Number Publication Date
JP2003113390A JP2003113390A (en) 2003-04-18
JP3818887B2 true JP3818887B2 (en) 2006-09-06

Family

ID=19126534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001306997A Expired - Fee Related JP3818887B2 (en) 2001-10-03 2001-10-03 Method for producing additive for lubricating oil

Country Status (1)

Country Link
JP (1) JP3818887B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176375B2 (en) * 2007-04-12 2013-04-03 ダイキン工業株式会社 Method for producing aqueous dispersion and aqueous dispersion
DE102007055927A1 (en) 2007-12-23 2009-06-25 Leibniz-Institut Für Polymerforschung Dresden E.V. Long-term stable oil-PTFE dispersion and process for its preparation

Also Published As

Publication number Publication date
JP2003113390A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
DE112007001514B4 (en) Abrasion-resistant Cu-Ni-Sn copper-based sintered alloy and ball bearing made therefrom
EP2994550B1 (en) Copper alloy, use of a copper alloy, bearing having a copper alloy, and method for producing a bearing composed of a copper alloy
DE102013227187A1 (en) Slide bearing material and plain bearing composite with zinc sulfide and barium sulfate
CN110184546B (en) Heavy-load powder metallurgy oil-retaining bearing and preparation method thereof
JP3818887B2 (en) Method for producing additive for lubricating oil
KR100614888B1 (en) Method for preparing lubricant composition comprising nanoscale copper or copper alloy powder and lubricant composition prepared thereby
KR910003442B1 (en) Sintered self-lubricating bearing and process for its manufacture
DE102006043581B4 (en) Method and device for producing a cemented carbide or cermet mixture
DE3640126C2 (en) Wear-reducing agent and manufacturing process
TWI465589B (en) Production method of sintered bronze alloy powder
DE69414488T2 (en) Sintered contact component and method of its manufacture
WO2004029157A2 (en) Mixture for the production of sintered molded parts
EP2012038B1 (en) Dry run friction covering
KR20110110179A (en) Composition of particulate materials for forming self- lubricating products in sintered steel, product in self- lubricating sintered steel and process for obtaining self-lubricating products in sintered steel
EP0445292A1 (en) Lubricating composition with a solid friction modificator
DE102015222656A1 (en) Powder metallurgy method
DE202007012740U1 (en) Apparatus for producing a hard metal or cermet mixture and dispersing machine usable in this case
DE2201114A1 (en) TETRAFLUORAETHYLENE POLYMERS
DE112013000990T5 (en) Powder metal with solid lubricant and a powder metal scroll compressor made from it
DE2322050C3 (en) Process for the production of filled polytetrafluoroethylene
KR20060103958A (en) Powder metal mixture including micronized starch
US20240207930A1 (en) Methods for making a sintered body
JPH06172893A (en) Sliding member excellent in wear resistance and its production
JPH0428802A (en) Production of sintered sliding material
JPS6335692B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees